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ABSTRACT 2. MMSE SPECTRAL ESTIMATION

DFT-based speech enhancement algorithms typically rely 0.1 Signal model and assumptions

a statistical model of the spectral amplitudes of the ndise-  \ve consider an additive-noise signal model of the form
speech signal. It has been shown in the literature recently

that the speech spectral amplitude distributions, condi _

on estimated a priori SNR, may differ significantly from Xk, m) = Sk,m) + Dk, m),
the traditional Gaussian model and are better described b30vherex
super-Gaussian probability density functions. We show thadom va
these conditional distributions can be accurately approxi

mated by a mixture of Rayleigh distributions. The I\/”\/ISEﬁoisy speech, clean speech and noise process, respectively

amplitude estimators based on Rayleigh Mixture Models perAppIying the standard assumption tfgk, m) andD(k, m)

fgm at least dals V‘I’:e" tﬁ‘s the e?ﬁmators badsgd ?n_ iul\elerélre statistically independent across time and frequency as
aussian modeis. FUrtneérmore, tn€ proposed Rayieigh MiXzq | 55 from each other, leads to expressions for the regulti

%{ﬁimgﬁ]elsoﬁ:gw ;Orégﬁﬂ\éﬂt'orgIg\flgrl]?sd?gtgcr’trignnenigrg?rsestimators th_at are independent of time and frequency. For

which mag be diffﬁ:ult fc?r othgr models ease of notation we therefore drop the time and/or frequency
' index when this does not cause confusion. We use capitals

for random variables and the corresponding lower-case let-

1. INTRODUCTION ters for their realizations. The speech amplitudéis |3,

The traditional assumption for speech enhancement in thend the noisy amplitude R = |X|. The noise DFT coeffi-

DFT domain is that the distribution of the complex speecttientsD are assumed to follow a complex Gaussian distribu-

DFT coefficients is Gaussian [1]-[3]. Consequently, thetion with variancelp.

spectral amplitude distribution is modeled by a Rayleigh di

tribution. Recently, super-Gaussian models of the DFT c02.2 p-th Order amplitude estimators

efficients have received quite some attention, because they,, given noise spectral variandg and given speech spec-

lead to estimators with better performance than those basg | variancels, the MMSE estimator of some powpof the
on a Gaussian model. Martin [4] derived complex-DFT eSygpeech amplit,ude is (see, e.g., [1]):

timators for Laplacian and Gamma speech priors, and Lot-

(k,m), S(k,m), andD(k, m) are complex-valued ran-
riables representing the short-time DFT coefficients
btained at frequency inddxin signal framem from the

ter and Vary [5] proposed a Maximum A Posteriori (MAP) ©_p 2 2aR

amplitude estimator for a generalized Gamma amplitude dis- 75 _ E{APR} — Jo aPexp(—35)10(5;) fa(a)da

tribution. MMSE estimators for the amplitudes, assuming a - - I ex ff—z)lo(¥*)fA(a)da 5
D D

one-sided generalized Gamma distribution, were treated in
[6] and [7]. : . : . .
: .. Wwherefa(a) is the probability density function o4, which

In this paper we propose to model the distributions : ' :
of speech |[I?)Fp'l' amplifudre)s by Rayleigh Mixture Models@€PeNdS 0s, andlo(-) is the zeroth order Bessel function
(RMMs) RMMs have some important advantages over exof the fist k|ndAp is called thq)'th Ol‘deramplitude estima-
isting speech models. They offer more accurate fits to thér. In practice, the spectral variancgsandAp are unknown
amplitude distributions, and can also adapt better toathe and have to be estimated. This will affect the optimality of
priori SNR estimator used. Furthermore, analytical derivathe estimators. We will take into account, to some extent,
tion of estimators for relevant distortion measures is-relathe influence of the speech spectral variance estimation, by
tively simple. matching our model ofa(a) to measured histograms that

The paper is organized as follows. Section 2 recapitulate®® conditional on a high value of estimatéd In the fol-
MMSE speech spectral estimation and introduces RMMsOWing, we assumetha_t the noise spectral variance can be es-
Section 3 motivates the use of RMMs. Estimators under afmated accurately during speech pauses for stationagenoi
RMM speech prior are derived in Section 4. The amplitude?" Py using approaches based on minimum-statistics [8][9],
estimator is evaluated in Section 5 and compared with exis{O" €xample, for non-stationary noise.

ing estimators. Section 6 concludes the paper. . o
2.2.1 Generalized Gamma distribution

The research is supported by MultimediaN, the TechnologynBation . L . .
STW (applied science division of NWO), and the technologygramme of ~ R€cently, the clean-amplitude d'_St”bUt'dﬂ(a) in (1) has
the ministry of Economic Affairs. been modeled using the generalized Gamma distribution [5,
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6, 7]. This distribution is given by

yB*
r(v)
with the constraints on the parametegrs 0, v > 0. We will
consider the casgs= 1 andy = 2. Becausé&{A?} equals
As by definition, 8 is related toy, v andAs. Fory =1 we
haveB? = v(v+1)/As, andB = v/Asfor y=2. Fory =2,
v = 1, the Rayleigh distribution appears as a special cas

fa(a) = a"~lexp(—pa¥), a>0,

)

2.2.2 Rayleigh Mixture Model

@ * (b)
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As an alternative to the generalized Gamma model, we prd=igure 1: Normalized histogram of clean spectral amplitude
pose a Rayleigh Mixture Model. If the complex speech DFTfrom frequency bins with an estimatedpriori SNR in the
coefficients are modeled by a Gaussian Mixture Model, themange 19-21 dB, (a) maximume-likelihood fits of a Rayleigh

the amplitude distribution is a sum of Rayleigh distribngo

J 2a a2
)= 5 ofen{ -5 .
=1

®3)

wherel is the number of components and theare positive
weighting factors that satisfy c; = 1. TheA; are the vari-
ances of the individual components; they satfsfyAj = As.

2.3 Apriori SNR estimation

Speech amplitude estimators are usually written in terms
gain functions, e.gA = G(&, {)R. These gain functions de-

pend ora priori SNR¢E, defined ag§ = As/Ap, anda posteri-
ori SNR/, defined ag = RZ//\D. We will use the decision-
directed approach [1] to estima@epriori SNR, with a bias
correction [10]:

: AZ(m—1)

&k(m) = max am + (1= a)[¢k(m) — 1], &min]| -

“4)

distribution and generalized Gamma distributions wjith:
1 andy = 2, and (b) maximume-likelihood fit of a Rayleigh
Mixture Model with J=7 components.

3.1 Measured amplitude distributions

Following an idea of Martin [4], Lotter and Vary [5] have at-
tempted to measure the distribution of amplitudes of speech
DFT coefficients. For this purpose, a speech database is
processed in a standard DFT-based enhancement algorithm,
and coefficients are collected from those frequency bins
for which the estimated priori SNR is within a narrow
range of high values. We performed a similar experiment.
Figure 1(a) shows a histogram of one million of such am-
plitudes from TIMIT, normalized such that the second mo-

ment equals one, i.eA? = 1, where the overbar indicates the
sample mean. Also shown are maximume-likelihood fits of a
Rayleigh distribution and generalized Gamma distribigion
Clearly the measured amplitude distribution does not ¥ollo
the Rayleigh model, while the generalized Gamma models fit
better. Amplitude estimators based on generalized Gamma

Note that in the first term, the second order amplitude estimayistributions improve speech enhancement performanae ove
tor is used, mstead of the square of th_e .fI.I’St order amplitudghose based on a Gaussian speech model [5]-[7]. Figure 1(b)
estimator, which was the original definition [1]. The sec-shows a maximum-likelihood fit (see section 4.2.1) of the
ond order amplitude estimator used in (4) will be based oproposed RMM (3) to the histogram, usidg= 7 compo-

the generalized Gamma distribution (2), with eitlret 1 or
y = 2. We have observed that this n@apriori SNR esti-

nents. Clearly, the RMM model offers a much better fit to
the histogram. The experiments of Section 5 show that the

mator (4) leads to less musicality than the old definitiom, fo resulting estimators also perform very well in a speech en-
parameter setting&/, ar) with the same speech quality ver- hancement context. However, online adaptation to speech

sus noise reduction trade-off [11].

3. RAYLEIGH MIXTURE MODELING OF
CONDITIONAL SPEECH AMPLITUDE
DISTRIBUTIONS

characteristics would be easier for the generalized Gamma
models, because of the smaller number of parameters.

3.2 Discussion
Ephraim and Cohen [14] have shown that the Gaussian

It has been shown in several papers [4]-[7] that better noisgP€ech model and other models are not necessarily contra-

suppression performance can be achieved by abandoning

ictory. If the spectral variancas is treated as a random

Gaussian speech model. There may be several reasons ¥éfiable with pdff(As), then the joint distribution of real
the suboptimality of the Gaussian model. Often, the normand imaginary parts of the corresponding DFT coefficient is

distribution of DFT coefficients is motivated by the central9iven by
limit theorem. For speech DFT coefficients, the centraltlimi
theorem may not be applicable, because of the long span of
correlation which can be larger than the frame lengths [4][5

fs) = [ flsa e T(hs)dhs
0

Speech is also non-stationary, causing many time framegsheresg ands are the real and imaginary parts of a clean

to contain non-identically distributed samples [6]. Ferth
more, gain functions are derived fanown a priori SNR.

speech DFT coefficient, respectively. 1{sr,s|As) is a
Gaussian distribution, thefi(sg,s) is a continuous mix-

In practice,a priori SNR has to be estimated. This meansture of Gaussian distributions, which can take many differe
that the optimal statistical model for enhancement madiff forms depending ofi(As). For example, iff (As) is assumed
from the true underlying speech distribution, and should béo be exponential, then the pdf of the real and imaginaryspart

adapted to tha priori SNR estimator used [10]—[13].
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The distributions faced in practice are conditionalesa It can be shown that fov — o, the first and second order

timated a prioriSNR and are given by amplitude estimates approat&® andAs, respectively. The

o reason for this behavior is that for a givag, (2) tends to

f(sr,S A :/f .S1|As, As) f(As|As)dAs, a delta-function centered around> whenv goes to infin-
S (8145, A5) T (AslAs)dAs ity. This is also true for they = 1 case. Consequently, the

0 decision-directea priori SNR estimator behaves like an or-

wheres is given byé Ap. GivenAs, we expeckg ands to  dinary exponential smoother for— co.
be only weakly dependent ok for the following reasons. 42 Rayleigh Mixture Model

SinceAs Is only an estimate of the true speciral variage The derivation of the MMSE estimator for the RMM speech

it may contain less information abost ands thanAg it- . . . L
self. The second term in the decision directed estimator (4f1mplltude priors goes much along the lines of the derivation

(1— a)[r3(m)/Ap — 1], depends on the noisy amplitude and™" [1). If we define; asA;/Ap, and v, gj andg; as

therefore contains some information about the clgaand & Ci v gj
s . However, the weighting factd. — a) of this term is gen- Vi= 1+ ¢ 9= 1+ ¢ e, =5
erally small (0.02 is a typical value). We therefore expket t ! ) 2 0
following approximation to be reasonable: =1

® respectively, then the amplitude estimator is
f(sr,5/Ag) ~ / f(s,509)f(AAg)dAs  (5) ) N

0 ArvM = Y Z Qj\/\/_j 1F1(—O.5;1;—VJ)R. @)
Note that any dependency that may exist between the real and =t
imaginary parts of the current time framss(m) or §(m),  Existing estimators under a Gaussian speech model that min-
and the estimated (second order) amplitude estimate of thimize other perceptually relevant distortion measureshsu
previous time framed2(m— 1), is also neglected givers, as S those in [2][3], may also be generalized to the RMM case.
is usually done in the derivation of estimatorsf (&, § |As) For example, the estimator that minimizes the log distartio

A Alol : f
is Gaussian, then (5) expresskiss, s |As) as a continuous Measurée{(logA— logA)?}, calledAgyy, is given by
mixture of Gaussians. The corresponding amplitude distri- 3 L .
bution is a continuous mixture of Rayleigh distributionse W flog ) , €
propose to model such amplitude distributions by RMMs (3). Armm = €XP Zlql logvj —logd + 2 / Tdt R
That model is used in (1) to obtain estimators that take into = Vi
account statistics of the speeahd the particulara priori  \ye are unaware of closed-form log-amplitude estimators un-
SNR estimator used. Note that we do not really rely onyer the generalized Gamma model.
(5), because the RMM model can accurately match the his-

tograms with a sufficiently large number of components, rez 2 1 parameter estimation and estimator implementation
gardless of whether (5) is accurate or not. As was illustrate

in Figure 1(b), only a small number of components suffices N parameters of the RMM in (3) are found by fitting to

in practice. measured amplitude data from TIMIT, as in Figure 1(b).
First, the amplitude data is normalized such tAdt= 1.
4. AMPLITUDE ESTIMATORS Next, a least-squares fit of (3) to the histogram is made under
4.1 Generalized Gammadistribution the constraint§ c; = 5 ¢jA; and allcj andAj positive. The

A MAP amplitude estimator for the model (2) fgr= 1 was ~ Cj thus found are normalized wiic;, such that the pdf (3)
derived in [5], while MMSE amplitude estimators for the intégratesto 1. Finally, the parameters are used as iodf
classesy = 1 andy = 2 have been studied in [6] and [7]. ditions for the EM-algorithm. It can be shown that, under the
Fory = 2, the expressions are exact, while approximation§onstrainty ¢ = 1, the resulting maximum-likelihood esti-
have to be made for= 1. The maximum achievable perfor- mates of the parameters satisficjA; = A%. To apply the
mance for both classes is about the same. Because of laektimators of Section 4.2, the variance parameigrisave

of space, we show only the expressions for the estimators ¢b be scaled since they are found from normalized data. In
they = 2 class, which contain the Gaussian speech model asery frequency bin of every time frame, the parameters to
a special case far = 1. The MMSE amplitude estimator is be used in (7) are found by multiplying each of the fitigd

given by by As(k,m) = &(m)Ap(k,m). Fora priori SNR estimation,
= (v 105 1_£) (4) is used with the second order amplitude estimator from a
A2 _ I(v+0.5) & 11 > viE) o generalized Gamma model (which fpe= 2 is given by (6)).
Y T(v) {((v+¢&) .E (v-l-ﬁ) ’ To gain speed, we tabulated all gain functions in the ex-
WL Svge periments, for the range19 dB< & < 40 dB and—30 dB<

where;Fy (a;b; ) is a confluent hypergeometric function [15, ¢ < 40 dB, both in steps of 1 dB.

13.1.2]. The superscrip? indicates thay = 2. The corre- 5. EXPERIMENTAL RESULTS
sponding second order amplitude estimator is given by )
5.1 Experimental set-up

—~(2) vé 1F1 (v +1; 1;5—&) In the enhancement system, we use 50%-overlapping frames
A5 = Z(vie I . (6)  of 32 ms. The data window used was a cosine-squared win-
(v+¢) 1R (V:l;—wg) dow. The smoothing parametaris set to 0.98 andmin to
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—19dB. We use all 30 clean sentences of the NOIZI SNR=5 dB RV white | SNR=15 dB
database [16]. Noisy signals were generated by ac 5 - = = RMM. car 08
white and nearly stationary car noise from the Noise: 45 aan Gamma, white 0
database [17] to the clean signals, at 5 and 15 dB o\ . R Gamma. car N '
SNR. The noise and speech are limited to telephone t & e + RRe 0.6
width (300-3400 Hz). The noise variance was estimated = 35f w22 0 _ ~/' +
0.64 seconds of noise only preceding speech activity. © 3 e e % 05
tive quality was measured in two different ways. We mea ) 5e 3 x D 04
mean-square erroMSE), because it is what MMSE estim 05 25 45 Inf 05 25 45 nf

tors should minimize on the average. We compytE as

12 20
-~ +
MSEf — Z Z{a (k,m) — a(k,m)}?, " L7 \ X 19

o : 18

o !\l\ SN, ST \‘
wherea(k,m) and&lk,m) are the clean speech spectral ¢~ @ 10f <" e R w
plitude and the estimated amplitude of frequency band ‘ K 16
time framem, respectively, and! is the number of frame ok 15
containing speech in a sentence. To exclude silence if$e 4 6 8 10 12 2 4 6 8

frames with a clean energy more than 40 dB below the NR [dB] NR [dB]

imum clean frame energy of a speech sentence are not takﬁﬂgure 2: MSE versus and SQ versus NR fgr= 1. White

into account. All results at a given SNR are averages over g nd car noise have been used at overall SNRs of 5 and 15 dB.
test sentences. Furthermore, to quantify the speechtilistor

versus hoise reduction trade-off, we also measure sepa

SNR=5 dB SNR=15 dB

segmental Speech Qualit$Q) and Noise ReductiolNR) 7 <, RMM, white 14
as in [5], and plot these quantities against each other \ . Sy == -RMM,car | 1
varyingv. The enhanced speesfnf can be written as R Gamma, white | .7 '
w5 R R Gamma, car |# 1
~ R
§(n) = §(n) +d(n), 2 4-r\;;' + 7 08
. Ym=————— [
wheres{n) andd(n) result from applying the gain functiol i S X &_ ______ * 06
to the clean speech and noise DFT coefficients separ 2, 5 PR 0 > T
and transforming back to the time domain. We define v v
mental Speech Quality as 1 -
1 Y < Isml[2 ) 12 + >
SQ=—- Y 10lo — |, - ik \ 18
W 2,100%0 (a5 Sl PN Bt VU I
g :f NS, \;;\' N,
wheres, andsy, denote time framen of the signals(n) and 8 j:' R4 14
§(n), respectively. The operatf || computes the energy 6 N4 12
a time frame. Segmental Noise Reduction is defined as 5 10 5 0 5 0 D
NR [dB] NR [dB]
1Y [ dm|® - : -
NR= M Z 10logq =3 Figure 3: MSE versug and SQ versus NR fgr = 2. White
m=1 [ dmll and car noise have been used at overall SNRs of 5 and 15 dB.
Strong suppression leads to I&Qand highNR, while the
opposite happens for weak suppression. result for the RMM amplitude estimator, for white and car
) noise respectively, when an exponential smoother is used fo
5.2 Performance evaluation a priori SNR estimation (corresponding to— «). The up-

We will compare amplitude estimators for the generalizeger two panels show that minimum achievaBISE s lower
Gamma model with those of RMM models, while varying for the RMM amplitude estimators. Furthermore, the RMM
the parametevr. A priori SNR estimation with (4) was al- estimators are much less sensitive to the value dhe main
ways based on the generalized Gamma model. The parameason for this behavior is that the RMM models have been
eters of the RMM models are found from the correspondin@dapted to some extent to thepriori SNR estimator used,
histograms, as was outlined in Sections 3.1 and 4.2.1. &igubecause the parameters are found from measured data that
2 shows the results for the= 1 case. The dash-dotted lines depend on it (see sections 3.1 and 4.2.1). Itis clear thagusi
result for white noise when the generalized-Gamma amplian exponential smoother farpriori SNR estimation is not
tude estimators are used for reconstruction, while thelsolioptimal. The lower two panels shdQversudNRwhenv is
curves are for RMM amplitude estimators wilh= 7 com-  varied over the same range as for the upper two panels. The
ponents. The dotted and dashed lines are the correspondimglue of v increases when going from the right to the left
results for car noise. The value wfs limited to values larger along the curves. More noise reduction is possible for the
than 0.5 fory =1, because of an approximation that is used ingeneralized Gamma amplitude estimators, but the maximum
the derivation of the estimators [7]. The crosses and plusexchievable speech quality is higher for the RMM amplitude
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estimators. Similar trends are seen for car noise. [3] P. C. Loizou, "Speech enhancement based on percep-
Figure 3 shows the results for tlye= 2 case. The max- tually motivated bayesian estimators of the magnitude

imum achievable performance is about the same as for the spectrum,1EEE Trans. Speech Audio Proeol. 13, no.

y = 1 case, although the results are much more sensitive to 5, Pp. 857-869, Sept. 2005.

the value of the/-parameter. The RMM amplitude estima- [4] R. Martin, "Speech enhancement based on Minimum

tors perform about the same on tag@riori SNR estimators Mean-Square Error Estimation and supergaussian pri-

of both cases. ors”, IEEE Trans. Speech Audio Proasol. 13, no. 5,

pp. 845-856, Sept. 2005.

5.2.1 Informal listening f
] , [5] T. Lotter, and P. Vary, "Speech enhancement by MAP
For increasing values of the enhanced speech sounds more ~ spectral amplitude estimation using a super-gaussian

reverberant but the musicality decreases, especiallyhir t speech model EURASIP Journ. Appl. Signal Proaol.
a:j:pgtudet_esti{nat?r:s <()jf thye:dz cla_ssthor thi Ri\/ll\/llﬂf]im' o 7, pp. 1110-1126, 2005.

piitude estimators the-dependency Is the weakest, althoug [6] I. Andrianakis, and P. R. White, "MMSE speech spectral
these effects are clearly noticeable for co. For the lowest amplitude estimators with Chi and Gamma speech pri-

values ofv, all estimators sound very similar. ors”, Proc. Int. Conf. Acoust., Speech and Signal Proc.
5.3 Discussion vol. lll, pp. 1068-1071, May 2006.

Amplitude anda priori SNR estimation for the generalized [7] J. S. Erkelens, R. C. Hendriks, R. Heusdens, and J.
Gamma models is based on one and the same prior speech Jensen, "Minimum mean-square error estimation of dis-
distribution (i.e., (2) with the same valuespfndv). This crete Fourier coefficients with generalized Gamma pri-
does not necessarily lead to optimal results. To a gaen ors”, IEEE Trans. Audio, Speech and Language Proc.
priori SNR estimator corresponds a certain measured his- vol. 15, July 2007.

togram of spectral amplitudes. This histogram depends o] R. Martin, "Noise power spectral density estimation
the unknown dynamical and statistical properties of this pa based on optimal smoothing and Minimum Statistics”,

ticular a priori SNR estimator. There is no reason why the IEEE Trans. Speech Audio Processingl. 9, no. 5, pp.
parametric amplitude distribution used in calculating ¢he 504-512, July 2001.

priori SNR estimates should fit accurately to its correspond ]
ing measured amplitude histogram. In fact, we have seen th([ﬁ
an RMM model can fit much better to histograms found with P ;
the generalized gamnaapriori SNR estimator. We have not ag|nf6élE4|E7E5 Tsrin?. ZSOpoegech Audio Prgeol. 11, no. 5,
investigated whether using differgnaind/orv values for the Pp- —a/9, >ept. ' .,
amplitude and priori SNR estimation tasks leads to signif- [10] J. S. Erkelens, J. Jensen, and R. Heusdens, "A data-
icant improvements for the generalized Gamma models. driven approach to optimizing spectral speech enhance-
Many estimators found in literature that are based on Ment methods for various error criterigBpeech Com-
parametric models of the speech prior distribution, inelud ~ Munication, Special Issue on Speech Enhancement
ing the ones presented here, are implicitly assuming tieat th 2007
conditional distributionfa(a|As) has the same shape (except[11] J. S. hErkele?S]J. Jensen, atr']d Rt: Heusgena,] ”Improveld
for a variance scaling) for all values A& This may not be Speech spectral variance estimation uncer thé general-
an accurate assumption for all SNRs, because the properties 126d Gamma distribution’Proc. IEEE BENELUX/DSP
of the a priori SNR estimator depend on the SNR. A data- _Valley Sign. Proc. Symgpp. 43-46, March 2007.
driven approach has been proposed in [12] to deal with thikl2] J. Jensen and R. Heusdens, "A numerical approach for

I. Cohen, "Noise spectrum estimation in adverse envi-
ronments: Improved minima controlled recursive aver-

problem. estimating optimal gain functions in single-channel DFT
based speech enhancemen®toc. EUSIPCQ Sept.
6. SUMMARY AND CONCLUSIONS 2006.

In this paper we have proposed Rayleigh Mixture Models t413] 1. Cohen, "Supergaussian GARCH models for speech
describe measured speech amplitude distributions in the co  signals”,Proc. Interspeectpp. 2053-2056, Sept. 2005.
text of speech enhancement. We have shown that the resuli4] v Ephraim and 1. Cohen, "Recent advancements in

ing amplitude estimators can compete with state-of-the-a speech enhancement’, ifihe Electrical Engineering
estimators. Furthermore, analytical derivation of estora Handbook CRC Press, 2006.

for meaningful distortion measures is relatively simple. ece.gmu.edut yephraim/Papers/crc 2004 enhan ee.pdf

[15] M. Abramowitz and I. A. Stegurilandbook of Mathe-
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