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ABSTRACT 

Accurate characterization of acute myocardial infarction 

(AMI) is crucial for the management of the patient.  In this 

work we present a method for 3-dimensional (3D) velocity 

estimation and object tracking in sequences of ultrasound 

volume scans. Velocity estimation is based on motion 

estimation in 3D with maximum likelihood criteria. Tracking 

is carried out using a data association method based on 

location and velocity. The proposed algorithm has been 

tested on various data sources and on in-vivo 3D volume 

scan of the left ventricle, providing very useful results for the 

characterization of AMIs. 

 

1. INTRODUCTION 

        For patients presenting with a chest pain, rapid 

diagnosis of Acute Myocardial Infarction (AMI) is 

important for further management and possible salvage of 

the myocardial tissue. Ultrasound is an important adjunct to 

the well-accepted diagnostic tools such as ECG and serum 

enzymes, especially when the other predominant signs are 

missing or ambiguous.  Wall motion abnormality is the 

earliest symptom of a nearing AMI, however, specific 

pattern analysis is needed to classify the situation correctly. 

        Ultrasound scans of the heart, including 3D scans at 

high frame rates, are widely available today and used to 

diagnose various heart diseases. Detecting abnormalities in 

the wall motion function has become of major importance 

since reduced motion has correlation with an ischemic 

muscle action. Automatic movement tracking of the heart 

walls and calculating their local velocities can make the 

diagnoses more accurate and useful. 

Estimating local velocities in ultrasound scans presents 

several challenges  [6]. The major difficulty is that 

ultrasound images have high Rayleigh governed speckle 

noise and Gaussian distributed electronic noise, resulting in 

a low signal to noise ratio (SNR). In addition, the tissue 

pattern is varying fast and its motion includes deformation 

in addition to rotation and translation. The resolution of the 

images depends on the ultrasound equipment and it usually 

has high axial resolution and low angular resolution. 

Working with 3D scans instead of 2D images naturally adds 

another complication due to an additional motion 

dimension; however, it eliminates the problem of 'out of 

plane motion' found in 2D scans. 

2. THE PROPOSED ALGORITHM 

We start with the description of the algorithm. 

2.1. Data Acquisition 

In this work we use 3D data and B-mode scans of the 

left ventricle to test the proposed algorithm. The algorithm 

is applied directly to the 3D data without any modifications 

or transformations. 

 

2.2. Maximum likelihood Criteria 

We represent two consecutive scanned volumes by X 

and Y. Let ( )iI x  be the intensity of a macro block at 

coordinates { }i ijkx x X= ∈  and ( )iI y  be the intensity 

of a macro block at coordinates { }i ijky y Y= ∈ , where i 

represents all possible macro blocks and j,k are coordinates 

within the macro block. Let { }i i iv x y= −  be the 

displacement vector between the two macro blocks ix  

and iy . Based on the above notations, the maximum 

likelihood (ML) estimation based on  [2],  [1]is: 
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There are several models describing ultrasound images with 

either multiplicative or additive noise. A common model 

that was used in this work assumes multiplicative Rayleigh 

distributed noise with distribution function given in  [3]: 
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We denote the noiseless value of pixels in macro block i by 

ijks . Assuming statistically independent noise, the model 

for pixels in the macro blocks is: 
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where 
x

ijkη  and 
y

ijkη  are two independent noise elements 

with Rayleigh distribution. Using  (3), we obtain: 
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ijkη  is a division of two independent noise elements with 

Rayleigh distribution given in  (2), having the following 

distribution  [4]: 
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The probability function for this distribution is  [2]: 

)6(    

( )i

2
2

2

p x | ,

2
,

1

ijk

ijk

i i

j k ijk

ijk

j k
ijk

ijk

ijk

x
f

y
y v

y

x

x
y

y

η

  
     = = 
 
  

 
 
 
 

=  
   
 +        

∏∏

∏∏

 

and its maximization is equivalent to maximization of  (1). 

Taking the natural logarithm of both sides of  (4), we obtain 

the following model: 

)7( 

( )
( ) ( )

ln ,

ln , ln .

ijk ijk ijk ijk ijk

ijk ijk ijk ijk

x y where x x

y y

η

η η

= + =

= =

ɶɶ ɶ ɶ

ɶɶ
 

Accordingly, the probability function as in  (6) is given by 

 [4]: 
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This probability function is used in this work in Motion 

Estimation algorithm, as described in following sub-section. 

 

2.3. Motion Estimation (ME) 

The motivation for using ME is to trace movement of 

objects from one ultrasound frame to the next. It is assumed 

that the objects undergo small changes (or none) from 

frame to frame due to high frame rate. Therefore each 

frame is divided into matrix of non-overlapping macro 

blocks such that: 
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Each block in the current frame X is compared with the 

corresponding block at the same coordinates and its 

neighbors in the following frame Y (search window 3D) as 

shown in Fig. 1. 

 
Search window 

Current macro 

block 

 

Figure 1 – Matching a macro block from a current frame to a 

macro block inside the search window in the following frame 
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 (a)              (b) 

Figure 2 – Two consecutive in-vivo scans: (a) scan no.1; (b) scan 

no.2. Each image presents two of the three dimensions: R 

represents the range bins, θ is the out the plane angle and φ is the 

on the plane angle measured in degrees 

In this work we use an Exhaustive Search (ES) 

algorithm for finding the best match  [5]. This algorithm is 

also known as Full Search and searches in all possible 

locations within the 3D search window. Although this 

algorithm is somewhat complex; it provides the most 

accurate results since all the possibilities are examined. The 

cost function used to define the best match is the maximum 

likelihood criterion defined in  (8). A macro block in the 

search window that has the highest maximum likelihood 

value is chosen as the location to which the current macro 
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block has moved (i.e., best match). The output of ME 

function is the displacement in terms of pixels of each 

macro block of the current frame in each of the three 

dimensions.             

 The ME is calculated only for macro blocks that are 

above the mean noise level. This level is calculated here as 

an average value of 1000 samples taken randomly from the 

scanned volume. We based this value on an assumption that 

the scanned tissue occupies only a small part of the volume 

and the rest of it is noise, as can be seen for example in Fig. 

2. By doing so we reduced the number of calculations as 

well as the number of false tracks caused by apparent 

movements of macro blocks that do not include tissue 

information.  

This way the best match is calculated for all the blocks 

in every frame. The displacement vectors are used to build 

tracks of the tissue movement as described in the next 

paragraph. 

 

2.4. Tracking 

Estimation of temporal velocity vectors of different 

macro blocks is not sufficient when the purpose is detecting 

abnormalities in tissue movement. If we wish to diagnose 

tissue condition, we have to examine the velocities for a 

prolonged period of time. We propose to follow the tissue 

movement from frame to frame, or literally track its 

behavior.  

To achieve this goal, the tracks were created by 

connecting sequential displacement of each macro block 

and thus allowing the algorithm to examine tissue 

movement through all the scans.  

No smoothing or prediction were applied, and data 

association, i.e., deciding which macro block belongs to 

which track, is based on the block matching technique 

described in  2.2. 

Let 
1

ix be a macro block in the first frame. Using ME 

with maximum likelihood criteria we find the macro block 

in the following frame, which is the best match for 
1

ix  and 

denote it 
2

ix . We repeat the process for 
2

ix  and the 

following frames to get a vector { }1 2 3, , ,n

i i i ix x x x= … , 

where n represents the frame number, containing 

displacements of the initial macro block 
1

ix  through n 

frames. We repeat the process for all the macro blocks in 

the initial frame. 

3. RESULTS 

The proposed algorithm has been tested first with 

simulated data and then with real in-vivo 3D images, as 

described in the following sub-sections. The simulated data 

was instrumental in comparing the algorithm’s results to the 

characteristics behind the model by which the simulated 

data was generated. 

 

3.1. Simulation 

In order to examine the performance of the ME 

algorithm with ML, simulated data was generated. We 

constructed 3D images with low valued background and 

high valued cubic shaped object. These images were 

multiplied by a Rayleigh distributed noise term. The 

original image with and without noise is shown in Fig 3. 
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(a)                                         (b) 

Figure 3 – The simulated data. Each image presents two of the 

three dimensions: (a) original data; (b) data with Raleigh 

distributed noise 

The 3D data is projected onto two of the three dimensions 

by taking only the maximum intensity for one of the axes 

(range, out the plane angle or on the plane angle). We chose 

this method of presentation due to the difficulties in 

presenting volumetric data in 2D. Shifted versions of the 

original image were created and multiplied by an 

independent Rayleigh distributed noise term. We applied 

the proposed algorithm to the simulated data containing a 

rectangular object moving in two of the three dimensions 

(range and the on the plane angle) and the results for three 

consecutive scans are shown in Fig. 4. The calculated 

movements in every plane are represented by an arrow. As 

can be seen in Fig. 4, the algorithm accurately tracks the 

movement of the object and there are no false motions 

detected due to the background noise since the ME was 

calculated only for macro blocks that are above the noise 

level, as described in  2.3.   

 

3.2. Left ventricle scans 

Having verified that our algorithm works correctly on 

simulated data, we tested it on in-vivo data. In our tests, 8 

sequential scans of the same volume were used to calculate 

tissue displacement and to track the movements of the 

macro blocks during the scans. The scans were divided into 

macro blocks of 5×5×5 pixels. The tracks that contain 

movement for all 8 scans and their initial macro block 
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         (a)                  (b)                                       (c) 

Figure 4 – Three consecutive scans of the simulated data with displacement vectors. Each image presents two of the three dimensions: (a) 

scan no.1; (b) scan no.2; (c) scan no.3 

have passed the noise threshold, as described in  2.3, are 

shown in Fig 5. The calculated movements from frame to 

frame are represented by a single arrow. Connected arrows 

represent single tracks. 

Tissue displacements vectors of the first two 

consecutive scans are presented in Fig 6. The 3D scans are 

projected on two of the three dimensions by taking only the 

maximum intensity for one of the axes, as was done in Fig. 

2 and for the simulated data. Motion vectors in two of the 

three dimensions are plotted over the data. 
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(a) 

 

(b) 

Figure 5 – (a) Tracks built based on consecutive displacements 

using in-vivo data. R represents the range bins, θ is the out the 

plane angle and φ is the on the plane angle measured in degrees; 

(b) zoom-in at the tracks. Due to complex motion of the tissue 

some tacks overlap and zigzag, but other tracks are easy to follow. 
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           (a)                          (b) 

Figure 6 – Two consecutive in-vivo scans with displacement vectors. Each image presents two of the three dimensions: (a) Scan no.1; (b) 

Scan no.2

4. CONCLUSIONS 

Long term tracking and velocity estimation using ME with 

maximum likelihood criteria has been proposed. Our test 

results using real in-vivo data show that this method can be 

used for ultrasound 3D scans in order to analyze tissue 

behavior for prolonged period. This approach is suitable for 

practical use in ultrasound scan of many types of tissues, 

including the myocardium, as in this case. The complexity 

of the proposed algorithm is low and can be easily 

performed in real time, making it instrumental in the 

classification of AMIs. 
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