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ABSTRACT

This paper presents a novel method for voicing infor-
mation estimation of individual frequency-regions of speech
spectra and its employment in a text-independent speaker
identification system. The voicing information is incorpo-
rated to the system in a form of a mask in a marginalization-
based missing-feature model. Experiments were performed
on speech data from the TIMIT database corrupted by sta-
tionary and real-world noises. The obtained results show
that using the proposed voicing estimation method provides
performance close to using oracle voicing information. The
combination of the voicing information mask with a noise-
estimate mask showed further improvement in the identifica-
tion accuracy and achieved performance close to the oracle
mask obtained using full a-priori knowledge of noise.

1. INTRODUCTION

The performance of automatic speaker/speech recogni-
tion systems degrades rapidly when speech signal is cor-
rupted by a background acoustical noise. There have been
several different ways of improving noise robustness. Speech
signal can be enhanced prior to its employment in the recog-
nizer by techniques such as spectral subtraction [1], Wiener
filtering, e.g., [2], or exploiting higher-order statistics [3].
Assuming availability of some knowledge about the noise,
such as spectral characteristics or stochastic model of noise,
noise-compensation techniques, e.g., [4], can be applied in
the feature or model domain to reduce the mismatch between
the training and testing data.

Recently, the missing feature theory (MFT) has been
used for dealing with noise corruption in speech and speaker
recognition, e.g., [5] [6] [7]. In this approach, each element
of the feature vector is assigned during recognition a label
of its reliability. When using binary reliability values, the
feature vector is split into a sub-vector of reliable and unre-
liable features. The unreliable features are either imputed or
marginalized out. The performance of the MFT method de-
pends critically on the accuracy of feature reliability estima-
tion. The reliability of filter-bank channels can be estimated
based on measuring the local signal-to-noise ratio (SNR) [7]
[8]. Recently, a Bayesian classifier, which in addition to the
local SNR estimation exploits some characteristic properties
of speech signals, was proposed for this estimation [9].

It is generally recognized that some parts of speech signal
provide more discriminative information for speaker recog-
nition than others. This has been demonstrated by sev-
eral studies presenting the speaker discrimination proper-
ties of individual phonemes, e.g., [10]. These studies con-
cluded that nasals and vowels provide the best performance
for speaker identification in clean speech. Similar analysis

presented in [11] showed that in speech contaminated by
noise, the unvoiced speech phonemes exhibit significantly
lower speaker discriminating properties than voiced speech
phonemes, which can be attributed to their lower energy and
hence being prone to be affected by noise.

We have recently introduced a novel method that enables
to estimate the voicing information (i.e., voiced/unvoiced) of
individual frequency-regions of speech spectra [12]. It has
been demonstrated that the voiced frequency-regions cor-
rupted by White noise at 10dB local SNR can be detected
at below 5% false acceptance and false rejection rate. In
this paper, we present an employment of the voicing infor-
mation obtained by this method in a missing-feature based
text-independent speaker identification system. It is shown
that the employment of the voicing information of indi-
vidual frequency-regions provides substantial performance
gains over the voicing information of entire frame. The
MFT model using the estimated voicing mask of individ-
ual frequency-regions is found to achieve very close perfor-
mance to the one obtained by using oracle voicing mask. We
also analysed the effect of marginalizing the delta features
on the identification accuracy. Finally, the estimated voicing
mask is combined with a mask obtained based on the noise-
estimate in order to utilize the reliable features among the
unvoiced features. The experimental results show that using
the combined mask improves over the individual voicing and
noise-estimate masks, and indeed provide performance close
to using the oracle mask constructed based on full a-priori
knowledge about the noise. All the presented experiments
are performed on the TIMIT database corrupted by station-
ary and non-stationary noises at various SNR levels.

2. ESTIMATING THE VOICING INFORMATION
OF FILTER-BANK CHANNELS

This section presents a summary of steps of the algorithm
employed for estimation of the voicing information of a sig-
nal for each filter-bank channel. This algorithm, introduced
in [12] where various experimental evaluations and further
analysis were also presented, exploits the quasi-periodicity
of voiced speech signals and the effect of short-time process-
ing – due to these, the shape of short-time magnitude spec-
tra of voiced speech around each harmonic frequency should
follow approximately the shape of the magnitude spectra of
the frame analysis window. Note that this method does not
require any information about the fundamental frequency.

Below are the steps of the method:

1) Short-time magnitude-spectra calculation:
A frame of a time-domain signal is weighted by a frame-

analysis window function, expanded by zeros and the FFT is
applied to provide a short-time magnitude-spectra.
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2) Voicing-distance calculation:
For each peak of the signal short-time magnitude-spectra,

a distance, referred to as voicing-distance and denoted by
vd(k), between the spectra around the peak and magnitude-
spectra of the frame-analysis window is computed, i.e.,

vd(kp) =
[

1
2M +1

M

∑
m=−M

(
|S(kp +m)|− |W (m)|

)2
]1/2

(1)

where kp is frequency-index of a spectral peak and M de-
termines the number of components of the spectra at each
side around the peak to be compared. The spectra of the sig-
nal, S(k), and frame-window, W (k), are normalized to have
magnitude value equal to 1 at the peak prior to their use in
Eq. 1. The range of practical values for the FFT-size (i.e.,
frame length plus appended zeros) and M can be found in
[12]. Here we used FFT-size of 512 points and M = 3.

3) Voicing-distance calculation for filter-bank channels:
The voicing-distance for each filter-bank channel is cal-

culated as a weighted average of the voicing-distances within
the channel, reflecting the calculation of filter-bank energies
that are used to derive features for recognition, i.e.,

vd f b(b) =
1

Y (b)
·

kb+Kb−1

∑
k=kb

vd(k) ·Gb(k) · |S(k)|2 (2)

where Gb(k) is the frequency-response of the filter-bank
channel b, and kb and Kb are the lowest frequency-component
and number of components of the frequency response, re-
spectively. The Y (b) = ∑kb+Kb−1

k=kb
Gb(k)|S(k)|2, i.e., the over-

all filter-bank energy value. The Eq. 2 requires voicing-
distance values for each frequency component. These can
be estimated, for instance, by using a linear interpolation
between voicing-distance values corresponding to adjacent
peaks.

4) Postprocessing of the voicing-distances: The voicing-
distance obtained from Eq. 1 and Eq. 2 may accidentally
become of a low value for a unvoiced region or vice versa.
This can be improved by filtering of voicing-distance val-
ues. Based on the results presented in [12], the filtering was
performed on both the interpolated vd(k) and vd f b(b) values,
and 2D median filters of size 5×9 and 3×3 (the first number
being the number of frames), respectively, were employed.

An example of a spectrogram of noisy speech and the
corresponding voicing distances for filter-bank channels are
depicted on Figure 1.

3. MISSING-FEATURE GMM-BASED SPEAKER
IDENTIFICATION

3.1 Marginalisation-based missing-feature model

The missing feature theory has been successfully applied
to automatic speech and speaker recognition, e.g., [6] [7]. In
this paper, we study the employment of the method for esti-
mation of the voicing information presented in the previous
section within the MFT model for a text-independent speaker
identification.

We consider that each speaker is modelled by a Gaussian
mixture model (GMM) whose parameters are obtained using
all features from the clean training data. In recognition, it
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Figure 1: An example of spectrogram of speech utterance
corrupted by White noise at 15dB (a) and corresponding
voicing distance for filter-bank channels (b).

is considered that a feature vector consists of elements that
are not affected (or affected only little) by the noise, referred
to as reliable, and elements that are strongly corrupted by
noise, referred to as unreliable. Considering Gaussian den-
sities with a diagonal covariance matrix, the probability of
the feature vector yt being generated by the speaker model λ
consisting of L mixtures is

P(yt |λ ) =
L

∑
l=1

P(l|λ ) ∏
b∈rel

P(yt(b)|l,λ ) ∏
b∈unrel

P(yt(b)|l,λ )

(3)
where P(l) is the weight of the lth mixture component, and
P(yt(b)|l) is the probability of the bth element of the fea-
ture vector given mixture l. The marginalization-based MFT
model eliminates the contribution of the unreliable features
from the overall probability by integrating them out, hence
the product over the unreliable features in Eq. 3 equals to
one and the overall probability is then calculated as

P(yt |λ ) =
L

∑
l=1

P(l|λ ) ∏
b∈rel

P(yt(b)|l,λ ). (4)

In order to apply the MFT marginalization model, the
noise-corruption needs to be localised into several features.
This makes the full-band cepstral coefficients, i.e., apply-
ing DCT over the entire vector of log filter-bank energies
(logFBEs), unsuitable parameterization. The logFBEs may
be used, however, they suffer from a high correlation be-
tween the features, which makes the diagonal covariance ma-
trix modelling not appropriate. The parameterizations of-
ten used in the MFT model are the sub-band cepstral coef-
ficients and frequency-filtered logFBEs (FF-logFBEs), e.g.,
[13] [14]. The FF-logFBEs, which are obtained by apply-
ing a (short) FIR filter over the frequency dimension of the
logFBEs, were employed in this paper. These features have
been shown to obtain similar performance as the standard
full-band cepstral coefficients [15], while having the advan-
tage of retaining the noise-corruption localized.

3.2 Mask estimation for filter-bank channels

The MFT model described in the previous section re-
quires a mask, each element of which indicates whether the
corresponding feature is reliable or unreliable.

The masks for the static features which were evaluated
in this paper are presented in the following sections. It is
considered that the X , Y and N denote an FBE of the clean
speech, noisy speech and noise, respectively.
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We analysed three ways of dealing with the delta fea-
tures: using all delta features, strict and majority delta masks.
Based on the strict and majority delta-mask a delta feature is
defined as reliable only if all and majority of the static fea-
tures used for computing the delta feature are reliable, re-
spectively.

3.2.1 Oracle mask

Oracle mask is derived based on full a-priori knowledge
of the noise and clean speech signal. As such, oracle mask
indicates an upper bound performance, and signifies the qual-
ity of a mask obtained by an estimation method. It is con-
structed, by comparing the FBEs of clean speech and noise,
as

mOracle(t,b) = 1 if 10log
(
X(t,b)/N(t,b)

)
> γ. (5)

Threshold γ was set to 0dB, which corresponds to the mask
value being 1 when a filter-bank (FB) channel is dominated
by the speech signal rather than noise – it has been demon-
strated that such mask is related to the human auditory mask-
ing phenomenon [16].

3.2.2 Voicing masks

It has been demonstrated in [12] that the voicing distance
vd f b is related to the local SNR of a voiced FB-channel cor-
rupted by white noise. Based on this, the voicing distance
can be used to define the voiced-feature mask as

mVoicedFeat(t,b) = 1 if vd f b(t,b) < β (6)

where the threshold β was set to 0.21 based on the analysis
presented in [12].

In order to evaluate the quality of the voiced-feature
masks estimated by the proposed method, i.e., the effect of
errors in the voicing information estimation on the speaker
identification performance, we defined voiced-oracle mask
for an FB-channel as 1 if and only if the channel is estimated
as voiced on clean data and its oracle mask is 1 on noisy data.

In order to analyse the significance of estimating the
voicing information of each FB-channel, we also performed
experiments using the voicing information only about an en-
tire frame. To do this, we defined a voiced-frame mask as
1 for all features when the frame is voiced; a frame was as-
signed as voiced if there are at least three FB-channels de-
tected as voiced by the proposed method (as this gave best
results in overall).

3.2.3 Noise-estimate-based masks

Noise-estimate masks were obtained based on the esti-
mate of the mean vector of FBEs of noise, denoted as µN .
Two methods for estimation of µN were used. In the first
method (noiseEst1) the µN was estimated based on the first
ten frames of each utterance which do not contain speech
signal. In the second method (noiseEst2) the noise mean for
each FB-channel was adapted at each frame of the utterance
using a similar procedure as proposed in [17]; the adaptation
was performed only when Y (t,b) < β µN(t −1,b) by

µN(t,b) = αµN(t −1,b)+(1−α )Y (t,b) (7)

where the α and β was set to 0.9 and 2, respectively. In
both noise-estimate masks, an FB-channel was then assigned

a mask value based on

mNoiseEst(t,b) = 1 if 10log
(
Y (t,b)/µN(b)

)
> γ (8)

where the threshold γ was set to 3dB.

4. EXPERIMENTS AND RESULTS

The experimental evaluation of the above-mentioned sys-
tems was performed for a speaker identification task.

4.1 Experimental set-up

Experiments were performed on the TIMIT database,
down sampled to 8kHz. Hundred speakers (consisting of
64 male and 36 female) from the test subset were selected
in an alphabetical order. The training data for each speaker
comprised of eight sentences (‘si’ and ‘sx’). The testing was
performed using two (‘sa’) sentences corrupted by Gaussian
white noise and Subway noise from Aurora2 database, at
global SNRs equal to 20dB, 15dB, 10dB and 5dB, respec-
tively.

The frequency-filtered logarithm filter-bank energies [15]
were used as speech feature representation, due to their suit-
ability for missing-feature based recognition. These were ob-
tained with the following parameter set-up: frames of 32 ms
length with an overlap of 10 ms between frames were used;
both pre-emphasis and Hamming window were applied to
each frame; the short-time magnitude spectra, obtained by
applying the FFT, was passed to Mel-spaced filter-bank anal-
ysis with 20 channels; the obtained logarithm filter-bank en-
ergies were filtered by using the filter H(z)=z-z−1 [15]. A
feature vector consisting of 18 elements was obtained (the
edge values were excluded). A frequency-filtered (FF) fea-
ture was assigned as reliable only if both of the filter-bank
channels involved in the calculation of the FF-feature were
reliable, and unreliable otherwise. In order to include dy-
namic spectral information, the first-order delta parameters
were added to the static FF-feature vector.

The speaker identification system was based on Gaussian
mixture model (GMM) with 32 mixture-components for each
speaker, which was constructed using the HTK software [18].
The GMM for each speaker was obtained by using the MAP
adaptation of a general speech model, which was obtained
from the training data from all speakers.

4.2 Experimental results

4.2.1 Analysis of the delta masks

Here we analyse the effect of marginalizing the delta fea-
tures on the speaker identification performance. This was
performed because it has been observed in speech recogni-
tion task that due to paucity of the reliable static features
the use of the delta mask (and its type) may be task de-
pendent, e.g., using all deltas may perform better than strict
delta mask. Experiments were performed with the MFT
model that marginalizes only static features and uses all the
delta features (denoted as DeltaAll), and models that use the
majority and strict masks for the delta features (denoted as
DeltaMajor and DeltaStrict, respectively). This analysis is
presented here based on using the oracle mask for the static
features, defined in Section 3.2.1. The results of experiments
are presented for clean and noisy speech in Table 1. It can
be seen that, except for Subway noise at 20dB SNR, the both
ways of marginalization of the delta features in addition to
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the static features give substantially better recognition accu-
racy for all noisy conditions. Both the delta-strict and delta-
majority masks produce similar results. The performance of
the baseline model was included for comparison and this can
be seen as performing poorly. Note that similar effect of delta
masks presented here with the oracle static mask were also
observed in tests with using other static masks (as used in the
following sections). Based on these results the delta-strict
mask is used in all the following experiments.

Table 1: Speaker identification accuracy obtained by using
the baseline model and MFT-model employing the oracle
static mask and various delta masks.

Speech SNR Baseline MFT – Delta Mask
type [dB] All Majority Strict
White 20 56.0 75.5 81.0 80.0

15 33.5 53.5 66.5 65.0
10 20.0 40.5 58.5 59.5
5 7.5 18.5 43.5 42.5

Subway 20 58.0 81.0 83.0 80.0
15 36.0 64.0 73.5 74.0
10 20.0 43.5 58.5 61.5
5 5.5 25.5 47.0 48.5

4.2.2 Evaluation of the voicing masks

This section analyses the speaker identification perfor-
mance when the voicing information obtained by the pro-
posed method is employed in the MFT model.

First we analyse the effect of using only a frame-level
voicing information. Experimental results are presented in
Table 2 under the column ‘Frame-level’. It can be seen
that for clean speech marginalizing features corresponding
to frames detected as unvoiced causes only slight decrease in
the performance in comparison to the baseline model using
all frames. For noisy speech, slight positive effect on the per-
formance is observed in the case of White noise, however,
significant improvement is achieved in the case of Subway
noise.

Table 2: Speaker identification accuracy obtained by us-
ing the baseline model and MFT-model employing various
voicing masks: frame-level mask ‘voiced-frame’ and feature-
level masks ‘voiced-feature’ and ‘voiced-oracle’.

Speech SNR Baseline Voiced Mask
type [dB] Frame Feature-level

level Estim Oracle
Clean - 96.0 93.5 83.5 83.5
White 20 56.0 60.5 68.0 71.0

15 33.5 38.5 59.5 62.0
10 20.0 20.5 51.5 58.0
5 7.5 13.0 36.0 40.0

Subway 20 58.0 72.5 71.5 72.5
15 36.0 56.5 64.0 66.5
10 20.0 33.5 55.5 57.0
5 5.5 18.5 44.0 47.5

Now, we explore the effect of having the voicing infor-
mation for individual filter-bank channels. The results of ex-
periments using the feature-level masks, estimated ‘voiced-

feature’ and ‘voiced-oracle’, are presented in the last two
columns of Table 2. First, the performance obtained with
the estimated feature-level voicing mask is compared to the
one with frame-level voicing mask. It can be seen that in
clean speech the performance drops considerably when us-
ing the feature-level voicing mask, which is due to marginal-
izing out the reliable unvoiced features in the voiced frames.
On the other hand, we can see that incorporating the voicing
information of individual filter-bank channels gives substan-
tial improvements in the identification accuracy in the case
of noisy speech (except the 20dB Subway).

Finally, the performance of the estimated feature-level
voicing mask is compared to the one with voiced-oracle mask
(defined in Section 3.2.2). It can be observed that for all
noisy conditions the recognition accuracy achieved by us-
ing the estimated mask is, indeed, very similar to using the
voiced-oracle mask which utilizes full a-priori knowledge
about the noise.

4.2.3 Evaluation of the voicing mask combined with noise-
estimate mask

Comparing the oracle results in Table 1 with the voiced-
oracle results in Table 2, it can be seen that an inclusion of
the reliable unvoiced features can provide a considerable per-
formance improvement (especially at high SNRs). In this
section we attempt to utilize the reliable features among the
unvoiced features. This could be performed, for instance, by
exploiting some characteristic properties of unvoiced speech
signal or based on using noise-estimate. We employed here
the noise-estimate mask in combination with the voicing
mask. Such combined mask could be obtained by a soft
weighting of the contribution of each mask which would
then be considered in a modified probability calculation of
the MFT model. A combined mask is formed, for simplic-
ity, by using all voiced features detected by the voicing mask
and the unvoiced features of the voiced frames detected as
reliable by the noise-estimate mask (noiseEst2). Experimen-
tal results with the combined mask, compared also to other
masks, for noisy speech are presented in Figure 2. Note that
for clarity only the results with noiseEst2 mask are presented
as both masks noiseEst1 and noiseEst2 performed similarly
in the case of White noise, however, the noiseEst2 mask gave
better results (around 5% on average) in Subway noise. It can
be seen that using the combined mask gives similar results to
the noiseEst2 mask at high SNRs in the case of White noise,
however, performs significantly better at low SNRs in both
White and especially Subway noise. Using the combined
mask in comparison to the voiced-feature mask gives sim-
ilar performance at low SNRs while provides improvement
in the high SNRs speech. The results for clean speech (not
presented in the figure) showed an improvement in the iden-
tification accuracy from 83.5% when using only the voiced-
feature mask (see Table 2) to 92.5% when using the com-
bined mask. In future work, we plan to incorporate a more
complex method for detection of the reliable unvoiced fea-
tures.

5. CONCLUSION

In this paper, we presented a novel method for estimation
of the voicing information of frequency-regions of speech
spectra and analysis of employment of the voicing infor-
mation, in the form of a reliability mask, into a missing-
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Figure 2: Speaker identification accuracy obtained by the
MFT-model employing various masks for speech corrupted
by White (a) and Subway (b) noise at various SNRs.

feature based speaker identification system. The experimen-
tal evaluation was performed using the TIMIT database on
clean speech and speech corrupted by a stationary and real-
world non-stationary noises at various SNRs. The employ-
ment of voicing mask estimated by the proposed method
showed identification performance very close to using the or-
acle voicing mask obtained based on the full a-priori knowl-
edge of noise. A combination of the voicing mask with a
noise-estimate mask was explored in order to obtain an es-
timate of reliable unvoiced features and this showed further
improvement in the identification accuracy. The obtained re-
sults are significantly higher than using the baseline model
and, in many cases, noise-estimate-based masks and indeed
considerably close to the upper bound results defined by us-
ing the oracle SNR mask. The performance can still be fur-
ther improved by employing a more accurate estimation of
reliability of unvoiced features, and modifying the probabil-
ity calculation, which is our future work.

This work was supported by UK EPSRC grant
EP/D033659/1.
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[12] P. Jančovič and M. Köküer, “Estimation of Voicing-
Character of Speech Spectra based on Spectral Shape,”
IEEE Signal Processing Letters, vol. 14, no. 1, pp. 66–
69, Jan. 2007.

[13] H. Bourlard and S. Dupont, “A new ASR approach
based on independent processing and recombination of
partial frequency bands,” ICSLP, Philadelphia, USA,
1996.
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