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ABSTRACT

Detection of overlapping speech in meeting recordings is a
challenging problem due to both the nature of the conversa-
tion itself and the surrounding environment. Accurate iden-
tification of these sections of the recording is a crucial first
step for speech recognition techniques as their non-detection
leads to severe degradation in performance. A possible ap-
proach to solving this problem is the use of source number
estimation techniques based on the ordered profile of the spa-
tial correlation matrix eigenvalues.

In this paper we propose two approaches for detecting
overlapping speech based on the Exponential Fitting Test
(EFT) a source number estimation technique proposed in [1].
Firstly we propose a frequency domain implementation of
the EFT, which is more appropriate when dealing with the
broadband speech signals encountered in meetings. We then
propose a second approach in which a correction factor is
added to allow for the presence of reverberation. The perfor-
mances of the proposed schemes are evaluated and compared
to that of the original EFT using real meeting recordings.

1. INTRODUCTION

Analysis of meetings and multi-party conversations is reliant
on accurate identification of overlapping segments of speech
[2]. These segments occur frequently in natural conversa-
tions and result in severe degradation of automatic speech to
text transcription. However, accurate detection of overlap-
ping speech segments is a difficult problem due to both the
nature of the speech and the environmental effects such as
background noise, echo and reverberation [3]. Moreover, any
suitable algorithm should be computationally simple, in or-
der to allow for real-time implementation [4], and the amount
of training data required should be minimal.

Previously suggested methods of detecting overlapping
speech segments include the use of Support Vector Regres-
sion [5], which detects about 50% of the overlapping speech
segments; and the extraction of acoustic features for use with
a Gaussian Mixture Model (GMM) [3], which assumes that
each participant has an individual microphone, and requires
training of the classifier for each combination of features.

An alternative approach to detecting the presence of over-
lapping speech is to estimate the number of sources present.
Any segment containing more than one source signal can
then be classified as overlapping speech.

In some cases the second source present may not actually
be a speech source and might instead be due to laughter or
coughing. However, as these situations also lead to degrada-
tion of speech recognition techniques it is likewise important
to identify such sections of the recording.

Classical source number determination techniques are
based on eigen-decomposition of the observed spatial cor-
relation matrix. Under ideal conditions (i.e. high Signal to
Noise Ratio and a large number of uncorrelated data sam-
ples) the eigenvalues corresponding to the noise subspace are
equal and the number of sources present is easily determined
as the number of non-equal eigenvalues.

The most well known of these source number determina-
tion techniques are the Akaike Information Criterion (AIC)
[6] and Rissanen’s Minimum Description Length (MDL) [7].
However, due to the difficult operational conditions encoun-
tered in meeting recordings they are no longer accurate, as
even at high Signal to Noise Ratio (SNR), they continuously
over-estimate the number of sources present [1].

Recently an Exponential Fitting Test (EFT) was intro-
duced for determining the number of speakers present in a
mildly reverberant environment [1]. This method exploits
the exponential profile of the ordered noise eigenvalues dis-
cussed in [8]. Under the assumption of white noise the profile
of the noise-only eigenvalues is predicted using this expo-
nential model together with the smallest eigenvalue, whichis
assumed to be a noise eigenvalue.

When the observed eigenvalues are compared to this pre-
dicted profile, the noise eigenvalues match the predicted val-
ues. Eigenvalues corresponding to the signal subspace are
then easily identified as the values causing a break from the
predicted profile.

In [1] this method is applied for controlled experiments
with a fixed number of sources, for which case the EFT is
shown to correctly determine the number of sources present
with a probability of 55%−75%. However, we show here
that under the operational conditions encountered in meet-
ings the performance of the EFT is no longer adequate. In
particular the presence of reverberation results in a largein-
crease in the probability of false alarms, as discussed in sec-
tion 6.

In this paper we therefore consider the situation where
the number of sources must be estimated in the presence of
reverberation. To this end we propose the use of a correction
factor which corrects the predicted noise eigenvalue profile,
in order to compensate for the presence of the reverberant tail
of the first source signal. Once the presence of at least one
speaker has been determined the observed eigenvalues are
then compared to this corrected profile in order to distinguish
between single and overlapping speech events.

2. PROBLEM FORMULATION

We consider the model of an array ofM microphones located
in a sound field generated byd sources, which are assumed to
be non-coherent. Then, taking the short-term Fourier trans-
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form of the signals received by the microphones, we obtain
the following data model:

x(ω ,T ) = A(ω ,T )s(ω ,T )+n(ω ,T ) , (1)

whereω is the frequency under consideration,T is the frame
index,s(ω ,T ) is the source spectrum at timeT andA(ω ,T )
is the matrix ofd direct path transfer function vectors. The
spatial correlation matrixRxx (ω) is therefore defined as:

Rxx (ω) = E
[
x(ω ,T )xH (ω ,T )

]
(2)

Then definingRss (ω) as the spatial correlation of the source
signals;I as theM ×M identity matrix; and assuming the
noisen(ω ,T ) is spatially white and uncorrelated from the
sources with powerσ2; (2) can be re-expressed as:

Rxx (ω) = A(ω)Rss (ω)AH (ω)+ σ2(ω)I, (3)

The eigenvalues ofRxx (ω) are therefore given by:

λ1 (ω) , . . . ,λM (ω) = γ1 (ω)+ σ2 (ω) , . . . ,γd (ω)+ σ2 (ω) ,

σ2 (ω) , . . . ,σ2 (ω) .
(4)

Assuming that the source power is greater than that of the
background noise, the number of sources present can now be
easily determined as the number of eigenvalues not equal to
σ2.

In practice however,Rxx (ω) is unknown and an esti-
mate is made usinĝRxx (ω) = 1

N ∑N
T=1x(ω ,T )xH (ω ,T ),

whereN is the number of frames the spatial correlation is
taken over. The “signal eigenvalues” are still identified as
the d largest ones. But, with the statistical fluctuations in
Rxx (ω), even in the presence of white noise the noise eigen-
values are no longer all equal toσ2. In this case the separa-
tion between them is only clear in the case of high Signal to
Noise Ratio (SNR) and low reverberation, when a gap can be
clearly observed between signal and noise eigenvalues.

3. PROPOSED MODIFICATIONS OF THE
EXPONENTIAL FITTING TEST

3.1 Frequency Exponential Fitting Test (FEFT)

Originally, the EFT was applied to the eigenvalues of the
time-domain spatial correlation matrix [1]. However, as
speech signals are broadband in nature the frequency domain
spatial correlation matrix is used here as shown in equation
(2), and the EFT is then applied at each individual frequency
value of interest:

ω = ωl : ωh, (5)

whereωl andωh are respectively the lowest and highest fre-
quency values under consideration. The number of sources
at each of these frequencies is determined and the individ-
ual results are then combined to give an overall decision on
whether or not overlapping speech is present in the frame.

In order to determine the number of sources at each fre-
quency the EFT predicts the decreasing profile of the eigen-
values of the noise spatial correlation matrixRnn (ω) =
1
N ∑N

T=1n(ω ,T )nH (ω ,T ), and compares the profile of the
observed eigenvalues to this predicted profile.

As Rnn (ω) has a Wishart distribution [8] it is extremely
difficult, if not impossible, to find the decreasing profile ofits
eigenvalues. In the EFT this profile is instead approximated
using the first and second order moments of the eigenval-
ues together with an initial assumption of white noise [9].
The smallest observed eigenvalue is assumed to be a noise
eigenvalue, corresponding to a noise subspace dimension of
P = 1. Then lettingP = P+1 for each subsequent step until
P = M−1, the predicted profile of the noise only eigenvalues
is found recursively using:

λ̂M−P (ω) = (P+1)JP+1σ̂ (ω)2
, (6)

where:

JP+1 =
1− rP+1,N

1− (rP+1,N)P+1 ; (7)

σ̂ (ω)2 =
1

P+1

P

∑
i=0

λM−i (ω) ; (8)

r = e−2a(M,N); (9)

and:

a(M,N) =

√
1
2

{
15

M2+2
−

√
225

(M2+2)
2 −

180M
N(M2

−1)(M2+2)

}
.

(10)
The relative differences between the predicted and ob-

served profiles can be found from:

rm (ω) =
λm (ω)− λ̂m (ω)

λ̂m (ω)
, m = 1, . . . ,M−1, (11)

andrm (ω) is then compared to a threshold valueηm (ω) in
order to determine whether or not a break from the noise-only
profile has occurred.

The test described up to this point is a frequency do-
main implementation of the original EFT and in the follow-
ing will be referred to as the Frequency Exponential Fitting
Test (FEFT).

3.2 Corrected Frequency Exponential Fitting Test
(CFEFT)

3.2.1 Application of the FEFT in the Presence of Reverber-
ation

As with the EFT, the FEFT is based on the assumption that
the background noise can be modelled as spatially and tem-
porally white noise. This approximation is valid in many
practical situations when there are no speakers present, mak-
ing the FEFT suitable for the initial determination of whether
or not there are any speakers present, in which caser1 (ω)
will be less than the corresponding thresholdη1 (ω).

However ifr1 (ω) > η1 (ω), then we know that there is at
least one speaker present. The reverberant tail of this signal
then leads to a violation of the initial assumption of white
noise, leading to an increase in the noise eigenvalues relative
to the predicted white noise values.

In this case the noise eigenvalue profile predicted from
equations (6)-(10) will be lower than that of the observed
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noise eigenvalues, resulting in frequent mis-classification of
single speech segments as overlapping speech, which we call
false alarms.

Therefore once it is known that speech is present in the
signal the presence of the reverberant tail means that the
white noise approximation no longer holds and it is neces-
sary to apply a correction factor to the predicted profile in
order to account for the increase in the noise eigenvalues due
to reverberation.

The test resulting from the application of the correction
factor to the predicted profile (at each frequency component)
is called the Corrected Frequency Exponential Fitting Test
(CFEFT) in the following.

3.2.2 Calculation of the Correction Factor

In order to calculate a suitable correction factor the eigen-
values of the estimated reverberation correlation matrix,
λ rev

1 (ω) , . . . ,λ rev
M (ω), are found. These values are then

used to find the corresponding predicted noise eigenvalues
λ̂ rev

1 (ω) , . . . , λ̂ rev
M (ω) as described in section 3.1.

The difference between the predicted and observed pro-
files, relative to the largest observed eigenvalue, is then taken
as a correction factor:

c fm (ω) =
λ rev

m (ω)− λ̂ rev
m (ω)

λ rev
1 (ω)

, m = 2, . . . ,M. (12)

Once the presence of at least one source has been de-
tected the correction factor is then used to modify the origi-
nally predicted noise eigenvalue profile:

λ̂ mod
m (ω) = (1+ c fm (ω))λ1 (ω) . (13)

Figure 1 shows a comparison of the eigenvalues of the ob-
served spatial correlation matrix,̂Rxx (ω) with the noise
eigenvalue profiles predicted by the FEFT and the CFEFT.

In figure 1(a) we consider the case where a single speaker
is present and therefore only the first observed eigenvalue,
λ1, should be greater than the corresponding predicted noise
eigenvalue (it should be noted that the correction factor is
only added toλ2, . . . ,λM, not to λ1). In the case of the
FEFT the increase in the observed noise eigenvalues due to
the presence of reverberation means the predicted noise pro-
file is too low, leading to the incorrect detection of a 2nd
source. However, it can be seen that the corrected profile of
the CFEFT compensates for this increase and the predicted
noise eigenvalues accurately model the observed noise eigen-
values allowing for correct determination of a single source.

Figure 1(b) depicts the situation where two speakers are
present In this case bothλ1 andλ2 should be greater than
the predicted profiles, as is the case for both the FEFT and
the CFEFT. It can therefore be seen that while the correction
factor increases the predicted noise profile, this increasedoes
not mask the signal eigenvalues and detection of overlapping
segments of the conversation is still possible.

Once again the predicted and observed profiles are com-
pared by finding their relative difference:

rmod
m (ω) =

λm (ω)− λ̂ mod
m (ω)

λ̂ mod
m (ω)

. (14)

1 2 3 4 5 6 7 8
 

 

 

 

 

 

 

 

 

 

 

 

Eigenvalue Index

E
ig

en
va

lu
e 

P
ro

fil
e

 

 

Observed Eigenvalue Profile
FEFT Noise Eigenvalue Profile
CFEFT Noise Eigenvalue Profile

(a) Single speech segment
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(b) Overlapping speech segment.

Fig. 1. Ordered Profiles of the observed and predicted eigen-
values.

It is important to note that the correction factor is found
here from an estimate of the reverberation correlation ma-
trix taken before the meeting begins (during a period with no
speech) and is not updated during the meeting.

4. APPLICATION OF FEFT AND CFEFT

Based on the tests described in the previous section we now
propose an algorithm for detection of overlapping speech
segments. The proposed tests are identical except for the in-
troduction of the correction factor in the CFEFT. Therefore
letting c fm (ω) = 0, for m = 2, . . . ,M in the FEFT and find-
ing c fm (ω) as described in section 3.2.2 for the CFEFT, the
resulting algorithm is the same for both tests.

In this paper we are concerned with distinguishing be-
tween single and overlapping speech events, which is done
by comparingrm (ω) and ηm (ω) for m = 1,2. The deci-
sions made across the frequency rangeω = ωl : ωh are then
combined to produce an overall decision on whether or not
multiple sources are present. The test is easily extended to
determine the total number of sources present by comparing
rm (ω) andηm (ω) for all m = 1, . . . ,M−1.

4.1 Threshold Selection

The performance of the test is dependent on finding a suitable
thresholdηm for m = 1, . . . ,M − 1. These threshold values
are selected from the distribution of the relative difference for
each frequency component when there is only noise present
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at that frequency.
The initial threshold is calculated based on the first

750ms of the recording, which we assume are known to con-
tain noise only. As a brief delay between the beginning of
the recording and the beginning of the conversation is usual,
this assumption is not thought to be restrictive. This initial
estimate of the background noise is then updated during pe-
riods of silence for each frequency component throughout the
meeting.

The choice of thresholds represents a compromise be-
tween the desired number of false alarms, i.e. the number of
times that overlapping speech is mistakenly detected, and the
rate of non-detection of overlapping speech. Depending on
the proposed application of the test, errors due to false alarms
may be more serious than non-detection errors, or vice versa.

Non-detection of overlapping speech segments can lead
to severe degradation of subsequent speech recognition at-
tempts. However, very high false alarm rates mean that large
sections of the recording will be needlessly discarded, and
the resulting lack of data may then make transcription of the
meeting impossible.

The thresholdηm (ω) is found form = 1, . . . ,M andω =
ωl : ωh as the value greater than a pre-defined percentage of
theQ previous noise-only relative difference values,rm (ω).
In the following we call this percentage the “threshold step”.
The value ofQ corresponds to the “memory” of the algorithm
and can be increased or decreased depending on the variation
of the background noise. In this case we useQ = 50.

4.2 Silence Detection

In order to avoid the propagation of errors due to poor thresh-
old selection, the data blocks used to update the threshold
are selected independently of their eigenvalue distribution.
Instead the noise estimate for each frequency is found by
comparing the corresponding energy to the energy threshold
for that frequency [10]. This energy threshold is updated for
each block and is given by:

ψ (ω ,k) = β E (ω ,k−1) ; (15)

where k is the block index, (withN frames in a block).
E (ω ,k−1) is the energy of the previous noise at the given
frequency, andβ is a constant value lying between 1.5 and
2.5, which in this case is equal to 1.7.

5. EXPERIMENTAL SETUP

The EFT (as proposed in [1]), the FEFT and the CFEFT
were then tested using recordings of a Japanese market re-
search meeting where one interviewer and five interviewees
were positioned around a table. Throughout the meeting the
interviewer asked questions which the interviewees then re-
sponded to in a discussion-type manner.

The meeting was conducted in a middle sized meeting
room with a reverberation time of 500ms. A circular mi-
crophone array with a diameter of 15cm and consisting of
8 microphones was placed in the middle of the table and
the distance from the centre of the array to the participants
was approximately 1.0−1.5m, allowing for the assumption
of far-field sources to be made.

The recorded signals are broken into overlapping blocks
of length 500ms, and for processing in the frequency domain
these blocks are further divided into frames of length 32ms.

Sampling Frequency 16000Hz

FFT Length 512

FFT Shift 128

Frequency Range 500-4000Hz

Block Length 0.5s

Block Overlap 0.25s

Table 1. Experimental Parameters

The spatial correlation value for each block is then found by
averaging across the results from each frame. A full list of
the experimental parameters used is given in table 1.

6. RESULTS

The performance of the three tests was compared based on
the calculation of the Recall RateRr; the Precision RateRp;
the False Alarm RateR f ; and the F-measure; as defined be-
low [5]:

Rr =
Number of Correctly Detected Overlaps

Total Number of Overlaps Present
, (16)

Rp =
Number of Correctly Detected Overlaps

Total Number of Overlaps Detected
, (17)

R f =
Number of Incorrectly Detected Overlaps

Total Number of Overlaps Detected
, (18)

F =
2RrRp

Rr + Rp
. (19)

As the F-measure is the harmonic mean of the precision
and recall, this score can be taken as the most important mea-
sure of each test.

The performance of each of the tests is dependent on the
selection of a suitable threshold step, and therefore we com-
pare the evolution of the F-measures of the three tests across
the range of possible threshold steps in order to find the best
threshold step for each test.

From the results shown in figure 2 it can be seen that the
CFEFT offers a significant improvement in the maximum F-
measure that can be achieved. Using these optimum thresh-
olds the correspondingRr, Rp and R f values are then re-
ported in table 2. It can be clearly seen that the CFEFT offers
the best overall performance. The CFEFT results also show
a significant improvement compared to those previously re-
ported in literature [5].
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Fig. 2. F-measure for the CFEFT, FEFT and EFT as the
threshold step is increased.

Rr Rp R f F

EFT 0.84 0.18 0.82 0.29

FEFT 0.71 0.36 0.64 0.48

CFEFT 0.69 0.54 0.46 0.61

Table 2. Results

The correction factor used here for the CFEFT is based
on an initial estimate of the reverberation present. As the
spatial correlation of the reverberation changes throughout a
meeting, updating this estimate of the reverberation wouldbe
expected to result in improved performance of the test.

Analysis of the results indicates that false alarms occur
in blocks where there is a change over between speakers and
there is a pause before the next speaker begins. This may be
due to the presence of some remaining speech or noise signal
from the previous speaker.

7. CONCLUSION

In this paper we present two methods for detecting overlap-
ping speech in meeting recordings based on the Exponen-
tial Fitting Test (EFT), a model order determination test pro-
posed in [1].

Firstly we proposed a frequency domain implementation
of the EFT, the Frequency Exponential Fitting Test (FEFT),
which results in a dramatic increase in the probability of cor-
rectly detecting overlapping speech. However this approach
also results in an increase in the probability of false alarm,
making it unsuitable for practical applications.

The second test proposed here, the Corrected Frequency
Exponential Fitting Test (CFEFT), is similar to the FEFT.
However, in this case a correction factor is introduced to al-
low for the effects of reverberation. From the results it can

be seen that this approach offers a significant increase in per-
formance compared to both the other tests and previously re-
ported results.
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