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ABSTRACT Classical source number determination techniques are
Qased on eigen-decomposition of the observed spatial cor-
elation matrix. Under ideal conditions (i.e. high Signal t
oise Ratio and a large number of uncorrelated data sam-
ples) the eigenvalues corresponding to the noise subspace a
equal and the number of sources present is easily determined
the number of non-equal eigenvalues.
The most well known of these source number determina-
on techniques are the Akaike Information Criterion (AIC)
] and Rissanen’s Minimum Description Length (MDL) [7].
However, due to the difficult operational conditions encoun
red in meeting recordings they are no longer accurate, as
en at high Signal to Noise Ratio (SNR), they continuously
ver-estimate the number of sources present [1].

Detection of overlapping speech in meeting recordings is
challenging problem due to both the nature of the convers
tion itself and the surrounding environment. Accurate iden
tification of these sections of the recording is a cruciat firs
step for speech recognition techniques as their non-detect
leads to severe degradation in performance. A possible aS-S
proach to solving this problem is the use of source number
estimation techniques based on the ordered profile of the sp
tial correlation matrix eigenvalues.

In this paper we propose two approaches for detectin
overlapping speech based on the Exponential Fitting Te
(EFT) a source number estimation technique proposed in [1
Firstly we propose a frequency domain implementation o . . ;
the EFT, which is more appropriate when dealing with thed Recently an Exponential Fitting Test (EFT) was intro-

broadband speech signals encountered in meetings. We th yiced for determining the number of speakers present in a
P 9 . ; ngs. ﬁﬁldly reverberant environment [1]. This method exploits
propose a second approach in which a correction factor

. he exponential profile of the ordered noise eigenvalues dis
added to allow for the presence of reverberation. The perforCgased in [8]. Under the assumption of white noise the profile

e of e bropesed schemes are evauated and comeeffihe nosc-any cgenalues 15 predicte using s expo-
" nential model together with the smallest eigenvalue, whiich
assumed to be a noise eigenvalue.
1. INTRODUCTION When the observed eigenvalues are compared to this pre-
dicted profile, the noise eigenvalues match the predicted va

Analysis of meetings and multi-party conversations isargli Ei I dina to the sianal sub
on accurate identification of overlapping segments of sfpeecues‘ Igénvalues corresponding 1o the signal subspace are

[2]. These segments occur frequently in natural conversar'e" €asily identified as the values causing a break from the
tions and result in severe degradation of automatic sp&ech PrEd'CtEd p_roflle. . . .

text transcription. However, accurate detection of oyerla . !N [1] this method is applied for controlied experiments
ping speech segments is a difficult problem due to both thwith a fixed number of sources, for which case the EFT is

nature of the speech and the environmental effects such agown to correctly determine the number of sources present

background noise, echo and reverberation [3]. Moreovgr, anVIth @ probability of 55%- 75%. However, we show here
suitable algorithm should be computationally simple, in or (N3t under the operational conditions encountered in meet-
der to allow for real-time implementation [4], and the ampun IN9S the performance of the EFT is no longer adequate. In
of training data required should be minimal. particular the presence of reverberation results in a large

Previously suggested methods of detecting overlappin&rease in the probability of false alarms, as discussedcin se

speech segments include the use of Support Vector Regre on 6.

sion [5], which detects abqut 50% of th.e overlapping speec_:{he number of sources must be estimated in the presence of
;ecg;;nuesrgcis; nath?XtHJer :ﬁ?;;o(%?\;?AC)O[%?U\‘,:VL??;U;EZJ% g:?h\g![reverberation. To this end we propose the use of a correction
each participant has an individual mic’rophone and requirefaCtor which corrects the predicted noise eigenvalue pexofil
training of the classifier for each combination o;‘ features. mf?rr]defr_ t()tcompensate f:)rtohe pr(tar?ence ofthe re;/etrkIJelbtnt a
; , of the first source signal. Once the presence of at least one

An alternative approach to detecting the presence of OVeg, o oy o1 has been dgetermined the c?bserved eigenvalues are
lapping speech is to estimate the number of sources presenfen compared to this corrected profile in order to distiskyui
Any segment containing more than one source signal cajj.

then be classified as overlapping speech.
In some cases the secor]d source present may not actually 2 PROBLEM EORMULATION

be a speech source and might instead be due to laughter or

coughing. However, as these situations also lead to degrad@é/e consider the model of an arrayMfmicrophones located

tion of speech recognition techniques it is likewise impott  in a sound field generated bysources, which are assumed to

to identify such sections of the recording. be non-coherent. Then, taking the short-term Fourier trans

In this paper we therefore consider the situation where

ween single and overlapping speech events.
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form of the signals received by the microphones, we obtain  As R.,,, (w) has a Wishart distribution [8] it is extremely

the following data model: difficult, if notimpossible, to find the decreasing profileisf
eigenvalues. In the EFT this profile is instead approximated
x(w0,T)=A(w,T)s(w,T)+n(w,T), (1) using the first and second order moments of the eigenval-

ues together with an initial assumption of white noise [9].
The smallest observed eigenvalue is assumed to be a noise
eigenvalue, corresponding to a noise subspace dimension of
P = 1. Then letting® = P+ 1 for each subsequent step until

P =M —1, the predicted profile of the noise only eigenvalues

Rox () — E [x(w,T)xH (@,T)] @) is found recursively using:

Then definindRss (w) as the spatial correlation of the source Av_p (@) = (P+1)Jp410 (w)?, (6)
signals;I as theM x M identity matrix; and assuming the
noisen (w, T) is spatially white and uncorrelated from the
sources with powes?; (2) can be re-expressed as: 3 1-rpiN

P+1=

wherew is the frequency under consideratidnis the frame
index,s (w,T) is the source spectrum at tiffeand A (w, T)

is the matrix ofd direct path transfer function vectors. The
spatial correlation matriRyx (w) is therefore defined as:

where:

R (0) = A () Rs (@) A" (0) + 02 (@)1, (3)

1 P
~ 2 . .
The eigenvalues AR« (w) are therefore given by: 0(w) = P+1 go’\""—' (w); (8)
_ a—2a(M,N).
r=e ; 9
AL(00) e Ant (0) = Y (@) + 02 () ...,y () + 02 (), ©)
9 2 and:
0% (w),...,0%(w).
_ _ (4)

Assuming that the source power is greater than that of the 1 15 % Y
background noise, the number of sources present can now l2¢M,N) = | = { MZi2 \/(M2 2)7  N(MZ-1)(M712) }
eazlsily determined as the number of eigenvalues not equal to 2 * (10)
o-.

In practice howeverR, (w) is unknown and an esti- The relative differences between the predicted and ob-

mate is made Usin®xs (@) = & $N_1x (@, T)x" (0, T), served profiles can be found from:

whereN is the number of frames the spatial correlation is
taken over. The “signal eigenvalues” are still identified as A i
the d largest ones. But, with the statistical fluctuations in rm(w) = M
R« (w), evenin the presence of white noise the noise eigen- Am(w)

values are no longer all equal &#. In this case the separa- _ _
tion between them is only clear in the case of high Signal t&ndrm(w) is then compared to a threshold valg(w) in

Noise Ratio (SNR) and low reverberation, when a gap can berder to determine whether or not a break from the noise-only

clearly observed between signal and noise eigenvalues.  Profile has occurred. S
The test described up to this point is a frequency do-

. m=1,..M-1 (11

3. PROPOSED MODIFICATIONSOF THE main implementation of the original EFT and in the follow-
EXPONENTIAL FITTING TEST ing will be referred to as the Frequency Exponential Fitting
Test (FEFT).

3.1 Frequency Exponential Fitting Test (FEFT)

Originally, the EFT was applied to the eigenvalues of the3-2 Corrected Frequency Exponential Fitting Test
time-domain spatial correlation matrix [1]. However, as(CFEFT)

speech signals are broadband in nature the frequency domajp 1 Application of the FEFT in the Presence of Reverber-
spatial correlation matrix is used here as shown in equatiogtjon

(2), and the EFT is then applied at each individual frequencyAS with the EFT, the FEFT is based on the assumption that

value of interest: the background noise can be modelled as spatially and tem-
W= : w (5) porally white noise. This approximation is valid in many
’ practical situations when there are no speakers presekt, ma
wherew anda, are respectively the lowest and highest fre-ing the FEFT suitable for the initial determination of wheth
quency values under consideration. The number of sources not there are any speakers present, in which cage)
at each of these frequencies is determined and the indivigvill be less than the corresponding threshgid w).
ual results are then combined to give an overall decision on  However ifr; (w) > n1 (w), then we know that there is at
whether or not overlapping speech is present in the frame. |east one speaker present. The reverberant tail of thisksign
In order to determine the number of sources at each frehen leads to a violation of the initial assumption of white
quency the EFT predicts the decreasing profile of the eigemoise, leading to an increase in the noise eigenvalueselat

values of the noise spatial correlation mati,, (w) = to the predicted white noise values.
ﬁz%\-‘:ln(w,T)nH (0, T), and compares the profile of the In this case the noise eigenvalue profile predicted from
observed eigenvalues to this predicted profile. equations (6)-(10) will be lower than that of the observed
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noise eigenvalues, resulting in frequent mis-classificadif

single speech segments as overlapping speech, which we call X X Observed Eigenvalue Profile
false alarms. L ® FEFT Noise Eigenvalue Profile

Therefore once it is known that speech is presentinthe | A CFEFT Noise Eigenvalue Profile
signal the presence of the reverberant tail means that the %
white noise approximation no longer holds and it is neces- E
sary to apply a correction factor to the predicted profile in E
order to account for the increase in the noise eigenvaluesdu g
to reverberation. [

The test resulting from the application of the correction .
factor to the predicted profile (at each frequency compgnent A A |
is called the Corrected Frequency Exponential Fitting Test : . ? x A A A2
(CFEFT) in the fOIIOWing. Eigenvalue Index

) ) (a) Single speech segment

3.2.2 Calculation of the Correction Factor
In order to calculate a suitable correction factor the eigen ‘ ‘ ‘ ‘
values of the estimated reverberation correlation matrix, X X Observed Eigenvalue Profile
M¥(w),..., A (w), are found. These values are then :\ FEFT Noise Eigenvalue Profile
used to find the corresponding predicted noise eigenvalues o CFEFT Noise Eigenvalue Profile
A% (w),..., Ay (w) as described in section 3.1. 2 L

The difference between the predicted and observed pro-  $
files, relative to the largest observed eigenvalue, is thlkeert s v
as a correction factor: 5 A

R e &
/\rev(w)_)\re\/(w)
Cfm(w) = =0 M= m=2..,M. (12 L e & & & & 4

rev
)‘1 (w> Eigenvalue Index

b) Overlapping speech segment.
Once the presence of at least one source has been de- ®) PPIng P 9

tected the correction factor is then used to modify the erigi

nally predicted noise eigenvalue profile: Fig. 1. Ordered Profiles of the observed and predicted eigen-

values.

A4 (09) = (1+ cfm(w)) Az (w). (13)
Fiqure 1 shows a comparison of the eigenvalues of the oh- It is important to note that the correction factor is found
'gu Shows pans Igenvalues t?1ere from an estimate of the reverberation correlation ma-

served spatial correlation matriu (w) with the noise iy taken before the meeting begins (during a period with no

In figure 1(a) we consider the case where a single speaker
is present and therefore only the first observed eigenvalue, 4. APPLICATION OF FEFT AND CEEET
A1, should be greater than the corresponding predicted noise '
eigenvalue (it should be noted that the correction factor i8ased on the tests described in the previous section we now
only added toA,,...,Ay, not to A7). In the case of the propose an algorithm for detection of overlapping speech
FEFT the increase in the observed noise eigenvalues due segments. The proposed tests are identical except forthe in
the presence of reverberation means the predicted noise priooduction of the correction factor in the CFEFT. Therefore
file is too low, leading to the incorrect detection of a 2ndletting cfn(w) =0, form=2,...,M in the FEFT and find-
source. However, it can be seen that the corrected profile afig cfyn(w) as described in section 3.2.2 for the CFEFT, the
the CFEFT compensates for this increase and the predictedsulting algorithm is the same for both tests.
noise eigenvalues accurately model the observed noise-eige  In this paper we are concerned with distinguishing be-
values allowing for correct determination of a single seurc tween single and overlapping speech events, which is done

Figure 1(b) depicts the situation where two speakers arby comparingrm(w) and nm(w) for m=1,2. The deci-
present In this case bothy and A, should be greater than sions made across the frequency ranpe « : w, are then
the predicted profiles, as is the case for both the FEFT ancbmbined to produce an overall decision on whether or not
the CFEFT. It can therefore be seen that while the correctiomultiple sources are present. The test is easily extended to
factor increases the predicted noise profile, thisincrdass  determine the total number of sources present by comparing
not mask the signal eigenvalues and detection of overlgppinrm (w) andnm(w) forallm=1,... .M —1.
segments of the conversation is still possible.

Once again the predicted and observed profiles are com-1 Threshold Selection

pared by finding their relative difference: The performance of the test is dependent on finding a suitable

5 od thresholdnm, form=1,...,M — 1. These threshold values
(mod () — Am (@) =A™ (w) (14) areselected from the distribution of the relative differefor
m = . ; X
each frequency component when there is only noise present
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at that frequency. )
The initial threshold is calculated based on the first Sampling Frequency 16000Hz
750ms of the recording, which we assume are known to con-
tain noise only. As a brief delay between the beginning of
the recording and the beginning of the conversation is ysual FFT Length 512
this assumption is not thought to be restrictive. This ahiti
estimate of the background noise is then updated during pe-

riods of silence for each frequency component throughaut th FFT Shift 128
meeting.

The choice of thresholds represents a compromise be-
tween the desired number of false alarms, i.e. the number of Frequency Range | 500-4000Hz

times that overlapping speech is mistakenly detected tend t
rate of non-detection of overlapping speech. Depending on
the proposed application of the test, errors due to falsenala Block Length 0.5s
may be more serious than non-detection errors, or vice versa
Non-detection of overlapping speech segments can lead
to severe degradation of subsequent speech recognition at- Block Overlap 0.25s
tempts. However, very high false alarm rates mean that large
sections of the recording will be needlessly discarded, and
the resulting lack of data may then make transcription of the Table 1. Experimental Parameters
meeting impossible.
The threshold)m (w) is found form=1,...,M andw = ) _ )
@ : &, as the value greater than a pre_defined percentage Eb'he Spatlal correlation value for each block is then fOUr_]d by
the Q previous noise-only relative difference valugg(w).  averaging across the results from each frame. A full list of
In the following we call this percentage the “threshold &tep the experimental parameters used is given in table 1.
The value of) corresponds to the “memory” of the algorithm

and can be increased or decreased depending on the variation 6. RESULTS

of the background noise. In this case we @se 50. The performance of the three tests was compared based on
) . the calculation of the Recall Rak; the Precision RatRp;

4.2 Silence Detection the False Alarm Rat&s; and the F-measure; as defined be-

In order to avoid the propagation of errors due to poor thresHow [5]:
old selection, the data blocks used to update the threshold

are selected independently of their eigenvalue distidouti _ Number of Correctly Detected Overlaps

Instead the noise estimate for each frequency is found by = ,  (16)
comparing the corresponding energy to the energy threshold Total Number of Overlaps Present
for that frequency [10]. This energy threshold is updated fo
each block and is given by: _ Number of Correctly Detected Overlaps (17)
¥ (w,K) = BE (w,k—1): (15) P~ Total Number of Overlaps Detected
wherek is the block index, (withN frames in a block).
E (w,k— 1) is the energy of the previous noise at the given _ Number of Incorrectly Detected Overlaps (18)
frequency, angB is a constant value lying betweerbland f Total Number of Overlaps Detected’
2.5, which in this case is equal to7l
_ ZRRe 19
5. EXPERIMENTAL SETUP R +Rp' (19)

The EFT (as proposed in [1]), the FEFT and the CFEFT As the F-measure is the harmonic mean of the precision
were then tested using recordings of a Japanese market mad recall, this score can be taken as the most important mea-
search meeting where one interviewer and five intervieweesure of each test.
were positioned around a table. Throughout the meeting the The performance of each of the tests is dependent on the
interviewer asked questions which the interviewees then reselection of a suitable threshold step, and therefore we com
sponded to in a discussion-type manner. pare the evolution of the F-measures of the three testssacros
The meeting was conducted in a middle sized meetinghe range of possible threshold steps in order to find the best
room with a reverberation time of 588. A circular mi-  threshold step for each test.
crophone array with a diameter of &8 and consisting of From the results shown in figure 2 it can be seen that the
8 microphones was placed in the middle of the table an€FEFT offers a significant improvement in the maximum F-
the distance from the centre of the array to the participantsmeasure that can be achieved. Using these optimum thresh-
was approximately .0 — 1.5m, allowing for the assumption olds the corresponding;, R, and R; values are then re-
of far-field sources to be made. ported in table 2. It can be clearly seen that the CFEFT offers
The recorded signals are broken into overlapping blockthe best overall performance. The CFEFT results also show
of length 50@ns, and for processing in the frequency domaina significant improvement compared to those previously re-
these blocks are further divided into frames of lengtin®2 ported in literature [5].
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Fig. 2. F-measure for the CFEFT, FEFT and EFT as the
threshold step is increased.

(3]

RO| Rp | Rf | F
[4]
EFT | 0.84| 0.18| 0.82| 0.29
FEFT | 0.71| 0.36 | 0.64| 0.48 5]
CFEFT| 0.69 | 0.54 | 0.46 | 0.61

Table 2. Results [6]

The correction factor used here for the CFEFT is based![/]
on an initial estimate of the reverberation present. As the
spatial correlation of the reverberation changes througho  [8]
meeting, updating this estimate of the reverberation wbald
expected to result in improved performance of the test.

Analysis of the results indicates that false alarms occur
in blocks where there is a change over between speakers and
there is a pause before the next speaker begins. This may b
due to the presence of some remaining speech or noise signal
from the previous speaker.

7. CONCLUSION

be seen that this approach offers a significant increasen pe
formance compared to both the other tests and previously re-
ported results.
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