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ABSTRACT

We present a multi-camera system for audio-visual analysis of
dance figures. The multi-view video of a dancing actor is acquired
using 8 synchronized cameras. The motion capture technique of the
proposed system is based on 3D tracking of the markers attached
to the person’s body in the scene. The resulting set of 3D points is
then used to extract the body motion features as 3D displacement
vectors whereas MFC coefficients serve as the audio features. In
the multi-modal analysis phase, we perform Hidden Markov Model
(HMM) based unsupervised temporal segmentation of the audio and
body motion features such as legs and arms, separately, to determine
the recurrent elementary audio and body motion patterns in the first
stage. Then in the second stage, we investigate the correlation of
body motion patterns with audio patterns that can be used towards
estimation and synthesis of realistic audio-driven body animation.

1. INTRODUCTION

Human body motion analysis has been an interesting research topic
in computer vision due to its various applications, such as anima-
tion, athlete training, medical diagnostics, virtual reality, and human-
machine interfaces. In the analysis of human body motion, three
tasks are involved: tracking and estimating the motion parameters,
analyzing the human body structure, and recognizing the motion ac-
tivities. For animation, detailed skeletal body models are commonly
applied.

Motion capture systems have continuously been evolving and
there exist already various techniques and approaches in the litera-
ture, that can be distinguished mainly based on whether they make
use of markers (active or passive), or fully rely on image features,
and the type of motion analysis they employ (model-based or not).
The simultaneous recovery of pose and body shape from video streams
has been considered [1]. Optical flow and probabilistic body part
models were used to fit a hierarchical skeleton to walking sequences
[2].

Much previous work has been done in modeling complex human
motion model and they can be largely categorized into two classes.
The first class is by supervised learning. Mixture motion model is
used for tracking in [3]. But the primitives are pre-defined and seg-
mented manually for training. The second class of approach, un-
supervised or semi-unsupervised human motion modeling, avoids
such tedious and error prone process of manual segmentation. In
[4], HMM(hidden Markov model) is learnt for human locomotion
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(walking, running). But the topology of the HMM is given and it is
difficult to extend it to more complex motion.In [5] HMM is used
to analyze dance figures of a dancing person. In [6], each primitive
follows a different dynamic law (acceleration) which can be used to
differentiate each other. Variable length Markov models (VLMM)
[7] were learnt to model human behavior. However, simple heuris-
tics such as low velocity points at the boundary of two primitives
was employed for segmentation. SLDS (switching linear dynamic
systems) are learnt in [8] for classifying human motion.

In this work audio-visual analysis of dance figures is presented.
3D world points related to 16 human body joints are used to analyze
the correlation between the audio patterns and body motion patterns
according to [9, 5].

2. MULTICAMERA MOTION CAPTURE

Our motion capture technique employs an optical flow method to
record subject’s motion where a set of markers are attached to the
subject and then observed by a number of cameras. These mark-
ers are located at 16 different points on the body as can be seen in
Figure 1. Markers in each video frame are detected by applying
thresholds over their chrominance information. In this setting, the
motion capture system determines the 3D position of each marker at
each frame by triangulation based on the observed projections of the
markers onto each camera’s image plane. The 3D positions of the
markers are tracked over the frames by Kalman filtering where the
filter states correspond to 3D position and velocity of each marker.
The list of 3D points obtained by back-projection of 2D points in
respective camera image planes constitute the observations for this
filter. The list of 3D marker positions over frames is our body model
features that will be used in the analysis and animation process.

3. AUDIO-VISUAL DANCE ANALYSIS

In this section, a two-step analysis framework based on unsupervised
temporal segmentation is considered. The first stage analysis aims
to extract elementary audio patterns and body motion patterns sep-
arately as left leg, left arm, right arm and right leg. The correlation
between these parts are determined by the co-occurrence matrices.
In the second stage analysis, the correlation between audio patterns
and body motion patterns is investigated.

3.1. Body Motion Patterns

Body motion patterns are extracted from 3D displacement vectors of
16 points located on the joints of the person’s body. The displace-
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Fig. 1. Dance scene captured by the 8-camera system available at Koç University. Markers are attached at or around the joints of the body.

ment vectors are calculated relative to the reference frame after sub-
tracting the rotational and translational motions which can be repre-
sented as a transformation matrix for the body as a whole. This trans-
formation matrix is calculated using the torso which is composed of
four points located on the hips, chest and back of the subject. Points
are defined in homogenous coordinates such as ~p− 1 = [x1y1z11].
The transformation matrix is calculated relative to the first frame.
Let M = [~p1~p2~p3~p4] be 4x4 invertible matrix composed of ini-
tial locations of each torso joint. The locations of these points in
ith can be given in a similar matrix format, M i = [~p′1~p

′
2~p
′
2~p
′
3].

The 4x4 transformation matrix Mproj is calculated as Mproj =
(M i − ~m) × (M − ~m)−1 where ~m is the mean of the points lo-
cated on hips and shoulders in the first frame. Each initial point
in the first frame is projected to the current frame by multiplying
with the transformation matrix Mproj and features are calculated as
the differences of original point coordinates and the projected initial
points, i.e., Fb = Mproj × ~p0 − ~pi where ~pi and ~p0 are the location
of points in current and initial frames, respectively.

3.2. Audio Features

The act of dancing is the natural response of the body to the rhythm
of the sound. MFCCs are good choices for representing the audio
features in our scenario since they approximate the human auditory
system’s response to the sound. According to these responses the
movements of the body is shaped and dance figures are generated
that are correlated with the audio.

3.3. Unsupervised Temporal Segmentation

The HMM structure Λ has M parallel branches and N states. The
parallel HMM Λ is composed of M parallel left-to-right HMMs,
{λ1, λ2, . . . , λM}, where each λm is composed of N states, {sm,1, sm,2, . . . , sm,N}.
The state transition matrix Aλm of each λm is associated with a sub-
diagonal matrix of AΛ. The feature stream is a sequence of feature
vectors, F = {f1, f2, . . . , fT }, where ft denotes the feature vector
at frame t. Unsupervised temporal segmentation using HMM model
Λ yields L number of segments ε = {ε1, ε2, . . . , εL}. The lth tem-
poral segment is associated with the following sequence of feature
vectors,

εl = {ftl , ftl+1, . . . , ftl+1−1} l = 1, 2, . . . , L (1)

where ft1 is the first feature vector f1 and ftL+1−1 is the last feature
vector fT . The segmentation of the feature stream is performed using
Viterbi decoding to maximize the probability of model match, which
is the probability of feature sequence F given the trained parallel
HMM Λ,

P(F|Λ) = max
tl,ml

LY

l=1

P({ftl , ftl+1, . . . , ftl+1−1}|λml)

= max
εl,ml

LY

l=1

P(εl|λml) (2)

where εl is the lth temporal segment, which is modeled by the mth
t

branch of the parallel HMM Λ. One can show that λml is the best
match for the feature sequence εl, that is,

ml = argmax
m

P(εl|λm) (3)

Since the temporal segment εl from frame tl to (tl+1 − 1) is associ-
ated with segment label ml, we define the sequence of frame labels
based on this association as,

`t = ml for t = tl, tl + 1, . . . , tl+1 − 1 (4)

where `t is the label of the tth frame and we have a label sequence
` = {`1, `2, . . . , `T } corresponding to the feature sequence F. The
first stage analysis extracts the frame label sequences `b and `a given
the body motion and audio feature streams Fb and Fa.

The parallel HMM structure has two important parameters to set
before the training of the model Λ. The first parameter is the number
of states in each branch, N . It should be selected by considering the
average duration of temporal patterns. N is selected to be NΛb =
10, assuming minimum motion pattern duration is 1

3
sec (10 frames).

On the other hand, the number of temporal patterns for audio is set
to NΛa = 5 states in each branch of the audio HMM model Λa to
model audio patterns.

The second parameter is the number of temporal patterns with
the notation M . Finding an optimum value for M two fitness mea-
sures are checked where the first fitness measure, α, is the proba-
bility of model match and the second, β, is the average statistical
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Fig. 2. Results of iterative approach for selection of M for the body motion patterns, upper left graphics is for for left leg and the upper right
positioned graphics for right leg, left below graphics represents α and β measure for left arm and the graphics located right below represents
for right arm.

separation between two similar temporal patterns. The value deter-
mined for M would be helpful for modeling the body motion pat-
terns. Therefore, the total number of temporal patterns, M , can be
selected in the vicinity of the intersection of the normalized α and β
measures.The definitions for these two measures are given below in
equations.

α =
1

T
log(P(F|Λ)) (5)

β =
1

T

LX

l=1

log(
P(εl|λml)

P(εl|λm∗
l
)
) (6)

where λm∗
l

is the second best match for the temporal segment
εl, that is given as,

m∗
l = argmax

∀m6=ml

P(εl|λm) (7)

3.4. Multimodal Analysis

The first stage analysis defines elementary recurrent body motion
patterns for separate body parts using unsupervised temporal cluster-
ing over individual feature streams. The body motion feature streams
Fb are used to train HMM structure Λb that captures recurrent body
motion patterns εb. Audio feature streams Fa are similarly used to
train HMM structure Λa to capture recurrent audio patterns εa. For
ease of notation, we use a generic notation to represent the HMM
structure which is identical for body motion and audio streams.

In the second stage, we perform a joint analysis of body motion-
audio patterns and extract recurrent co-occurring patterns. This joint

Fig. 3. Results of iterative approach for selection of M for the audio
data.

correlation analysis will be based on the co-occurrence matrix ob-
tained from the co-occurring body motion-audio events.

4. RESULTS

Figure 2 shows the plots obtained for α and β measures of different
body segments. For video, M is set as 3 which is in the vicinity
of the intersection of the normalized α and β measures for separate
body motion patterns. Hence, our HMMs for body motion pattern
analysis consist of 3 branches each. On the other hand, Figure 3
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Table 1. Co-occurrence matrix for Left Arm-Right Arm events in
percentages.

LArma LArmb LArmc

RArma 95.65 0 4.35

RArmb 0 100 0

RArmc 16.67 8.33 75

Table 2. Co-occurrence matrix for Left Leg-Right Leg events in
percentages.

LLega LLegb LLegc

RLega 100 0 0

RLegb 0 100 0

RLegc 0 0 100

shows us that M = 6 in the vicinity of the intersection of the nor-
malized α and β measures for the analysis of audio data.

Table 1 demonstrates the co-occurrence percentages between the
left arm and the right arm motion patterns obtained as a result of our
first stage analysis. Each row in the table displays the co-occurrence
rates of different left arm motion patterns with right arm motion pat-
terns over the whole video. According to this co-occurrence matrix,
the left arm motion pattern La, Lb and Lc highly co-occurs with Ra,
Rb and Rc, respectively. The dance figures related with both arm are
labeled with same labels for similar figures where label a represents
raising the arms up and then lowering them down, b occurs as hold-
ing the arms above the shoulder and c is observed as swinging arms
forward and backward below shoulder.

Table 2 demonstrates the co-occurrence percentages between the
left leg and right leg motion patterns obtained as a result of our first
stage analysis. Similarly we can see that left and right arm are highly
correlated and labels for similar figures are the same. Label a repre-
sents the act of standing at the same place with little bumps of legs,
b occurs as pulling the legs up with big steps and c is observed as
walking slowly. We can see from Table 3 that left leg and left arm
has highly correlated patterns that co-occurs frequently. Neverthe-
less, we observe in Table 4 that right leg and right arm has highly
correlated patterns that co-occurs frequently.

As a result of second stage analysis we investigated the correla-
tion between body motion patterns and audio patterns. Table 5 gives
the co-occurrence percentages of right leg and audio data patterns.
Some motion patterns are highly correlated with audio patterns for
instance RArmc highly co-occurs with audio pattern Aa where Af

is co-occurred with a small percentages with the same pattern.

5. CONCLUSIONS AND FUTURE WORK

The co-occurrence tables tells us that arms are jointly correlated,
legs are jointly correlated and arms and legs are correlated jointly,
as well. The temporal patterns of correlated visual motion and audio
should prove useful for synthetic agents and/or robots to learn dance

Table 3. Co-occurrence matrix for Left Arm-Left Leg events in per-
centages.

LLega LLegb LLegc

LArma 94.6 2.7 2.7

LArmb 0 100 0

LArmc 0 0 100

Table 4. Co-occurrence matrix for Right Arm-Right Leg events in
percentages.

RLega RLegb RLegc

RArma 93.33 3.335 3.335

RArmb 0 100 0

RArmc 0 0 100

figures from audio.
For the future work, the set of Euler angles for each joint can be

used as the feature set instead of the displacements, which will pro-
vide more robustness in calculation of torso rotation and translation
compensation. In addition to MFCCs, other spectral properties such
as ralloff, spectral centroid, spectral flux and zero crossing can be
used to investigate separate beats or rhythm information of the audio
data.
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