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ABSTRACT

In this paper, we address the issue of ground clutter repadidr
the detection of slowly moving targets in a non sidelookiN§L()
array configuration airborne radar. The classical spacewi adap-
tive processing (STAP) such as the SMI or the eigencandedised
methods are computationally costly and require the estonaof
the clutter covariance matrix from secondary data. Howewer
monostatic STAP airborne radar, the main consequence anhttie
nation of the array is the range dependency of the clutteadence
matrix. Several compensation methods exist but they arpuiam
tionally complex or require the knowledge of the radar paeaens.
We here investigate the use of range recursive subspaestladgo-
rithms of linear complexity inspired by existing time resiue array
processing and we show that they are able to track the rangerde
dency (non stationarity) of the data.

1. INTRODUCTION

A main issue in airborne radar signal processing is the teteand
the tracking of slowly moving targets. Indeed, a low velptérget

can be masked by the ground clutter generated by the radar pla

form speed. Space-time adaptive processing (STAP) mayowepr
this detection by rejecting the ground clutter [1]. The aamional
fully adaptive STAP known as the sample matrix inversion (EM
method as well as the subspace-based eigencanceller azetaot
ally used in practice because of their prohibitive comporel cost
which prevents their real-time implementation [1]. Thawisy we
here focus on adaptive algorithms which may recursively mae
a subspace-based STAP rejector directly from the data witlkear
complexity. We here consider the context of a monostatlwoaire
radar in a non sidelooking configuration. The radar antearani
uniformly spaced linear array antenna composed\ dfalf wave-
length spaced elements which is not aligned with the platfoe-
locity vector and transmits a train ® pulses at a constant pulse
repetition frequency (PRF). samples for each pulse repetition in-
terval (PRI) are collected to cover a range interval. A daiaecis
constructed with bidimensional (sensor, pulse) snapsitadgfer-
ent ranges and is exploited to calculate with a STAP algorithe
weights of the clutter rejection filter. In a sidelooking fignra-
tion, the clutter covariance matrix involved in convenab®TAP
algorithms is range independent and can then be estimated fr
the secondary range cells. In a non sidelooking configuratioe
velocity misalignment changes the nature of the clutter corse-
quently the techniques of rejection. Several compensatietnods
exist (see [2] and the reference in it) but they are compuriatly
complex or require the knowledge of the radar parametershépé
propose, as an alternative, to use range recursive subbpaed al-
gorithms of linear complexity and we show that they are capab
tracking the range dependency of the data. Next sectionridesc
the signal model, the non sidelooking configuration and dtsse-
quences. In section 3, the investigated range recursiitiims
are presented. Simulation results and a discussion are givsec-
tion 4. Concluding remarks are in section 5.
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2. SIGNAL MODEL AND NON SIDELOOKING
CONFIGURATION

2.1 Signal Model

A space time snapshot at ranigin the presence of a target is given
by

x(k) = atvt +Xi1n(K)

whereat is the unknown target amplitude; is the target steering
vector andki+n(K) is the interference plus noise signal vector. Here
the Doppler is supposed to be unambiguous. The ground rcistte
here the only interference component and it is supposed bigam
ous in range. The target steering vector is defined by

vi =b(@)®a(%) ()

where

b(m) = [1;e}2@; . ;elM-12ma @)
is the temporal steering vector with the target spatial frequency
o a(9) = [1;e/7; el (N-1)2rdy (3)

is the spatial steering vector wiih the target Doppler frequency.
The interference plus noise,n, = X¢ + Xn is composed of a noise
vector X, supposed to be spatially and temporally white and a
ground clutter component

Ne
Xe=Y QiVe (S, @)
i; I I

a;j is the amplitude of thé&h azimuth clutter patch and; is defined
in the same way as (1), (2) and (3) withandw being the Doppler
and spatial frequencies respectively. The optimum weightbe

interference plus noise rejection filter is given by [1],

-1
Wopt = KR - it

K is a scalar of normalization aridj., = E {Xi+nXiH+n} =Rc¢+
Ry is the interference plus noise covariance matrix whege=
E {xcxy} andR,, = ¢l are the clutter and the noise space-time
covariance matrices, respectively.

In practiceR; is unknown and must be estimated from the
snapshots. The well-known SMI (sample matrix inversiomsists
in an estimation of the matrix by averaging over the secondgarge

cells,
N

Rien(k) = %. > @)
=TT+

wherek is the test range cell arilis the number of secondary range
cells. The SMI weight vector is then

p-1
Wsmi= KR vt
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In a sidelooking configuration, the clutter covariance irasrrange This then implies a kind of non-stationarity of the data sat th
independent and can then be estimated from the secondagg ranthe classical estimator (4) of the clutter covariance magino
cells. This property is however no longer true in anotheffigoma-  longer valid. Several methods of compensation ([2] and #fe r
tion. erence within) have been proposed in the literature but ¢itéyer
are too complex or require the knowledge of the radar paenset
2.2 Geometry of the NSL configuration We investigate in the following section an alternative aggh of

Figure 1 represents the considered system [1]. The rademamis "€ problem.

positioned on an airborne platform at the altitudand move with

constant velocitya. The ground clutter is split in rings of constant 3. RANGE RECURSIVE STAP ALGORITHMS
rangeR; from the radar which are split themselvesNp patches ) . ) )
(hereN; = 180). Each clutter patch is described by its azimgth ~Adaptive-recursive algorithms have been used for a long fim
and its elevatiorg.. In the non sidelooking configuration, the plat- Many areas of signal processing such as filtering, spectatysis,

form velocity vectowva is not aligned with the radar antenna axis in- 12y processing, prediction, etc. and in many applicatirch as
volving a crab anglegs. This configuration illustrates the majority channel equalization, noise cancellation, speech caating,They

of the practical cases, as for example, radars using rgtatitenna,  COnSsist in recursively updating a weight vector at tiknfom the
forward-looking airborne radars, etc. Also when side-ntedran- ~ Weights vector obtained at tinte 1 and by taking account of the
tenna are used, an aircraft crab is used to mitigate the vifadte ~ cUrrent snapshot. These algorithms generally involve desspu-

[1]. tational operations than their block counterparts and aoevk to
The clutter spatial frequency and the normalized Doppler ca be able to track some kind of non-stationarity of the dataoAive
then be written here propose to apply some adaptive recursive subspaed-ala®-
d-coq6) . rithms already tested in array processing and spectraysingB],
Jo = TS'”(%) ®) [4], [5] and [7] in order to reduce the computational burdenthe

range dependent above mentioned STAP problem. In thisosecti
and T, we briefly recall the key idea of each considered algorithoh the

W = ; Lcos(a) resulting code of it.

respectively, wherel is the inter-element spacing, is the radar 3.1 PAST algorithm

wavelength andy is the PRI. Letor be the cone angle L N .
For the PAST (Projection Approximation Subspace Trackialg)

_ 6.)si 6 gorithm [3], a basis of the interference subspace is obdadasethe
cos(ar) = cos(8e) sin(¢ + ) © solution of the unconstrained minimization problem :

cos(a) is the direction cosine between th@xis and the unit vector

pointing from R to the clutter scatterer S. We obtain okl Ho 2

Iw) = 3 B -wwoxi|T @y
. cos( ) - cos(a k=1
sin(@) = %iy @)
¢ wherex is the observed data vector akd is the estimated inter-
where ference subspace basis ghié forgetting factor, &< 3 < 1. Using
the following approxim_atiorW(t_)Hx(i) ~W(i— 1)Hx(i)_ (11)is re-
- cos(a) zcog( . cos(a) 2+Sin2( ) duced to the exponentially weighted least square minircizat
Y=\ \ cos(@y) %)=\ Cos(6e) L ,

t .
J(W(t)) = _ZBH X (1) = W (t)y(i)|?
When usingsin(6c) = & and (5) , (7) gives i=

2 With y(i) = W (i — 1)"x(i) this cost function has a global minimum
e = d cos(a) cos( @) £ sin(@,) 1/1— (ﬁ) —co2(a) which yields a non orthonormal basis of the interferencespabe
A Rc and which may be attained by a RLS adaptive algorithm given in
®) table 1.

Furthermore the normalized Doppler frequency is )
3.2 OPAST algorithm

0 = Ecos(a) 9) The Orthogonal Projection Approximation Subspace Tragkin
A (OPAST) algorithm [4] is an orthonormalized version whicloias
the complex Gram-Schmidt orthonormalization and yiel@saigo-

With (6) and (9), (8) gives the relation which links the cautspatial rithm of table 1

frequency and the normalized Doppler
3.3 API and FAPI algorithms

2
¢ = mCoS(@n) + %sin(qod) 1- (Rﬂ) — 4 (10)  The Approximated Power lteration (API) and Fast Approxiedat
¢ Power Iteration (FAPI) algorithms [5] derive from the power
Method [6]. A less restrictive approximation than for PASTused.
'Indeed it concerns the projection on the estimated subspsiEad
C¥%f the estimated subspace itself:

It appears from (10) that, in the sidelooking configuration
@, = 0°, the relation between the Doppler and the spatial frequen
is independent of the rangR¢. In the non sidelooking configura-
tion, however, a range dependency is observed. Conseguitetl ) H ) ) H
interference plus noise space time covariance matrix & raisge W(IHW(i)" ~W(i—1)W(i —1)
dependent. This is illustrated in Figure 2 where the cluitiges,
which represent the space-time repartition of the clutbevgy, are  The obtained subspace is found to be orthonormalized. THd FA
composed of a set of ellipses for different ranBe#nstead of being  algorithm is a fast implementation of API ( see [5]). AP ansFF
a straight line independent &¢. codes are exhibited in table 2.

©2007 EURASIP 2081 EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

3.4 NIC algorithm too fast. That's why the ideal case is a good range resol(kien

The Novel Information Criterion (NIC) algorithm [7] consisin ~ 'Ween 1 and 3m). These algorithms must thus be used in case of
maximizing non sidelooking configuration with any crab angle and forath

or C-band radars.

JW) = % (tf {'09 (WH FQxxW) } —tr {WHW}> Table 1 PAST and OPAST Algorithms

Initialization : W (0) < Imxn , Z(0) < InxN
whereRy = E {xx" }. This criterion presents a single global max-  for k= 1 to Nbr snapshatio

imum % > qlog(Ai —n) whereAq, ..., An are the eigenvalues of the PAST main section

interference subspace. The corresponding RLS algorithgivén y(k) =W (k—1)H -x(k)

in table 3. h(k) =Z(k—1)-y(k)
(9= geyming

3.5 remark 9= By ATk

e(k) = x(k) —W(k—1)-y(k)

The above-mentioned algorithms have been selected amoidga w PAST secondary section

class of linear complexity subspace-based algorithm feir dpood

behavior in a previous work on array processing [9]. As it ban Z(k) = % (Z(k=1)—g(k) (k" -Z(k-1))
viewed on tables 1, 2, 3, the complexity burder®igVN) instead W (k) =W (k—1) +e(k) - g(k)I
of O((MN)32) for SMI or eigencanceller. To run these algorithms, OPAST main section

the rank of the clutter space time covariance matrix is sspgdo
be known. In a sidelooking configuration, according to Bearis
rule [1] it is equal toN + (M — 1). In a non sidelooking case, this
rank is about doubled [1].

(k) = : 1 -1
4. SIMULATION RESULTS Ingo* (\/L32+|v(l<>-e<l<>|2|h<k>|Z )

V() = grywram
( —g(k)-y(H-Z(k—1))

We here transpose the time recursive above-mentionedithigsr P (k) = 5T(W(k—1)h(k) + (Bz+ (k) Hh(k)”2> v(k)e(k)
to range recursive STAP in order to show whether they arebtapa W(K) =W (k—1)+ Lp: (k) -h(k)H
of compensating some range dependence (some non statipoéri end for B
the data. We discuss the performance of these algorithnesrimst
of their SINR loss defined as follows.
2 |wHy. 12 -
SINRIoss o ]W Vt‘ Table 2 APl and FAPI Algorithms
0S$= ———p——— — 7
NM- WP Rj nw Initialization : W (0) < Iyxn » Z(0) — InxN

for k=1 to Nbr snapshaio
PAST main section(see Algorithm 1)
API| main section

wherew is the weight vector calculated (according to each algo-
rithm). The optimum SINR loss is

2 Hp-1 0Kk) =
SINRIoSspt = %W ® mmne ) 1709900 )
Z(k) = g5-(1=9(k) - (") Z(k—1)O(K)~
For the analysis, a pulsed Doppler airborne monostatia iadar- W (k) = ( (k—1)+¢e( )g(k)"') (k)
ward looking configuratiorp, = 9C° is considered. The platform FAPI main section
has an altitude of 9 km and is moving with a velocity of 100 m/s. g2(k) = Hx(k)\lz— I (k)Hz
The operating frequency of the radar is 10 GHz with a PRF of 13 (k) — e2(K)

kHz. The radar bandwidth is 100 MHz. The array is composed of

; . 1+e2(k 20 /142K lg(k) |1
12 uniformly spaced elements. 10 pulses are transmittadglar Fe0latl ﬂ/ Fe9llgl

CPl. n(k) = 1-1(k) (k)|
Figures 3 to 6 show a slice of SINR loss at spatial frequency Y (k) = n(k)y( ) 1(k)g(k)
0 degree versus the normalized Doppler frequency empl®4ity h k) =Z(k-1H ’( k)

training data (it correspond to 2NM) for the figures 3 and 4 480 (
(4NM) for the figures 5 and 6. The secondary data are chosenebef

the range test cell. The results are averaging over 20 Moatk C Z( k)
trials. In the first and third simulationB; is equal to 9000 m. Itin-

volves a nearly constant gap between the clutter ridgesharscthe ( k) = n(k)x(k) - W,(t -1y ( k)

non stationarity can be qualified of severe. In the two otliisset W(k) =W (k—1)+e (k) -g(k"

to 15000 m; the gap between the clutter ridges decreasegrmver _end for

simulation. Thus the non stationarity is lower. The rangeadrsive

algorithms outperform the SMI algorithm in any case. Théed#nt

tested. algorllthms are globally equ!valent.. However we daouss 5. CONCLUSION AND EUTURE WORK

of their relative merits. We can differentiate the perfontes of

these algorithms according to the degree of non statignamitase  The non sidelooking configuration involves different kiradgprob-

of a severe non stationarity (figures 3 and 4), PAST and OPAST alem including the range dependency. In this paper, we shalsgd
gorithms are outperformed by NIC, APl and FAPI algorithms O we can mitigate this problem by using range recursive algos

the contrary, in case of a light stationarity (figures 5 and\BL al-  which can estimate recursively the weights of the cluttgFatéon
gorithm is outperformed by the others. In conclusion, wittiiese  filter and thus track this non stationarity through the medaf the
algorithms FAPI and API algorithms outperformed the othd@itse  forgetting factor. We have presented the good performamae o
forgetting factor is chosen to be ideal for these non statities  number of adaptive recursive subspace-based algorithrtiseair
equal to 0.8. More generally the range-recursive algostehowed  complexity under simulation of a case of a very severe non sta
good performance when the range dependence does not decredéisnarity and in comparison with the SMI algorithm and wittet

!

(
k) = £ (Z (k= 1)g(k) — (' (K)g(K))g(K)
5(Z (k=1 —g(kh (k" +e(kg)™)

m

/
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Table 3NIC Algorithm
Initialization : W (0) « Imxn , & small positive integer ,
Z(0) «— & Inxn , W(0) « nul matrix

for k=1 to Nbr snapshado

y(k) =W(k—1)" -x(K)
h(k) = Z(kh—kl) -y(k)
9(k) = AT
Z(k) = 5-(Z(k=1)—g(k)-y(" - Z(k—1))
e(k) = x(k) =W (k— )" -y(k)
W (k) = W(k—1) +e(k)-g(k)H
W(K) = (1-n)-W(k—-1)+n -W(k)
end for

optimal filter. Furthermore, they present a very low compoteal
complexity. That’s why these algorithms can be considesedra
economical approach in comparison with the other techsiqOeir
purpose was here to test the capability and the limits ofethasge
recursive algorithms to track this form of non stationaritighout
the help of compensation method. The future investigatisitis
be the use of a variable forgetting factor which can be adaate
each iteration to the non stationarity degree and the useropen-
sation methods to further outperforming these results. Weabso
studying a comparison of the proposed algorithms with corsge
tion methods as Lapierre algorithms [2] and with other méshas
the linear prediction of the inverse clutter covariancerirdf0].
The bistatic configuration is also under consideration.
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Figure 1: Geometry of the monostatic non sidelooking coméigu
tion
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Figure 2: Examples of clutter ridges. No velocity misaligam(a)
; velocity misalignment of 19(b), velocity misalignment of 90(c)
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Figure 3: Slice of SINR loss at spatial frequeney0® with 240  Figure 5: Slice of SINR loss at spatial frequeney0® with 480
secondary range cells aft = 9000m (Monte Carlo simulations secondary range cells aft = 9000m (Monte Carlo simulations
over 20 simulations) over 20 simulations)
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Figure 4: Slice of SINR loss at spatial frequeney0® with 240  Figure 6: Slice of SINR loss at spatial frequeney0® with 480
secondary range cells aiRd = 15000n (Monte Carlo simulations secondary range cells af§ = 15000n (Monte Carlo simulations
over 20 simulations) over 20 simulations)
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