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ABSTRACT

A low-complexity technique for multiple-source localization by
wireless sensor networks is presented. The proposed technique is
based on the Received Signal Strength (RSS) measurements of sig-
nals emitted by the sources. Also, all processing is performed at
the sensor nodes in a decentralized fashion, and hence no “Fusion
Center” is required.

The proposed cancellation-based multiple-source localization
(CBMSL) technique relies upon a proper iterative application
of a new dominant-source localization (DSL) algorithm. More
specifically, in the initial stage, the DSL estimates the location and
power of the dominant source within the area of the network. Once
the parameters of the dominant source have been estimated, they are
broadcast to the network. Nodes receiving this message adjust their
measurements by cancelling appropriately the components due to
the dominant source. This cancellation implies that another source
becomes the dominant one in the area of the sensor network. Based
on the adjusted measurements, the dominant-source localization al-
gorithm can be executed once again, to estimate the next dominant
source, and so forth. Thus the above “successive cancellation”
procedure can be used to estimate all sources in the network area.
Efficient algorithms for all the above steps have been derived.

Extensive simulation results have shown that the proposed tech-
nique could be a promising alternative for the problem at hand.

1. INTRODUCTION

The emergence of low-cost electronic devices that integrate sens-
ing, processing and wireless communication capabilities has fos-
tered a growing interest in developing wireless ad-hoc sensor net-
works. The design, implementation, and operation of such networks
requires the confluence of many disciplines, including signal pro-
cessing, networking, and distributed algorithms [1]. Furthermore,
wireless sensor networks must operate using minimum resources:
typical sensor nodes are battery powered and have limited process-
ing ability. The aforementioned constraints impose new challenges
for algorithm development, and imply that application specific al-
gorithms should be used in the several network layers.

In many applications, ranging from environmental monitoring
to manufacturing, source localization and tracking is of major im-
portance. Indeed, the availability of location data about objects
and human beings is critical in many applications, such as tracking
of valuable business assets and monitoring individuals with special
needs. In this work, we focus on the localization of multiple sources
that emit signals whose energy is measured by the nodes of a sensor
network that has been developed over a territory of interest (e.g.,
vehicles transmitting acoustic signals due to the operation of their
engines).

Most of the source localization methods fall mainly into two
broad categories. The algorithms of the first category utilize time
delay of arrival (TDOA) measurements, whereas the algorithms of
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the second category use direction of arrival (DOA) measurements.
Direction of arrival estimates are extracted by computing phase
differences between signals received by spatially remote sensors,
and are particularly useful for locating sources emitting narrowband
signals [2]. On the other hand, TDOA measurements offer the in-
creased capability of localizing broadband sources [3]. The above
techniques, however, have two major requirements, i.e. : (a) the
analog signals arriving at each sensor should be sampled in a syn-
chronized fashion, and (b) the sampling rate at which the analog sig-
nal is being sampled should be high enough to capture the features
of interest, which, in turn, implies using high frequency electronics
and increased bandwidth for communicating the measurements.

Recently [4], a new approach for source localization was pro-
posed, that utilizes received signal strength (RSS) measurements.
More specifically, based on the fact that in free space, acoustic en-
ergy decays at a rate that is inversely proportional to the distance
from the source, the energy measurements at individual sensors are
combined to yield an estimate of the source location. In [5], the
likelihood function for multiple-source localization based on RSS
measurements is formulated, the Cramer-Rao bound is derived and
various optimization algorithms are proposed to yield a solution.
In [6], the authors proposed a distributedincremental subgradient
algorithm to yield the source location estimate iteratively. In [7],
source location estimates that are robust to erroneous modelling of
the energy decay function are derived.

Similarly to the algorithms proposed in [5], the source localiza-
tion algorithm proposed in this work is able to estimate the loca-
tion of multiple sources. In contrast however to [5], the proposed
algorithm has smaller computational complexity and can be imple-
mented in a decentralized fashion. Furthermore, compared to the al-
gorithms appearing in [4],[6] and [7], the proposed algorithm offers
increased capability of localizing more than one sources. The idea
of using a single-source localization algorithm to perform multiple-
source localization, has also appeared in [9]. However the algorithm
presented therein does not involve RSS measurements.

The rest of this work is organized as follows: In Section 2,
the energy decay model of [4] is presented and several assump-
tions are made. In Section 3, the proposed cancellation-based
multiple-source localization technique is developed. In Section 4,
the dominant-source localization algorithm, which is a constituent
part of the CBMSL technique, is derived. Section 5 discusses the
distributed implementation of the proposed technique. Section 6
presents some typical simulation results verifying the performance
of the proposed algorithm and, finally, Section 7 concludes the
work.

2. ATTENUATION MODEL AND ASSUMPTIONS

First, we assume that the signal strength measurements received by
the sensor nodes behave according to a non-reverberant far-field
model [4], [5]. More specifically, the measurement of sensori at
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time instantt is assumed to be given by:

yi(t) =
k

∑
j=1

giA j (t)

||ri −x j (t)||β
+wi(t)

i = 1, . . . ,n

t = T
2 , 3T

2 , . . .
(1)

wherek is the number of sources/targets,n is the number of sen-
sor nodes,A j (t) denotes the power of thej-th source at timet, as
measured at 1 meter distance,x j (t) is the vector of the source’s co-
ordinates,ri is the vector of the coordinates of thei-th sensor and
wi(t) denotes a white Gaussian noise process with positive mean
σ2

w and variance 2σ4
w/M [4], [5]. M denotes the number of samples

averaged during the time periodT before a measurement is finally
acquired. Since the sensor nodes are not in general well calibrated
between each other, we have introduced the parametersgi , denoting
the gains (i.e. sensitivity) of the sensors. The parameterβ stands for
the rate at which the energy of the signal emitted by a target decays
with distance from that target. Finally, the operator|| · || denotes
Euclidean distance.

Assuming that the sources remain static at least for a period
of time during the execution of the localization algorithm, we can
drop the time indext in their location vectors. Similarly, we assume
that the power of each source does not change significantly over a
short period of time, thus, we also drop the time index fromA j (t).
Furthermore, the following reasonable assumptions are made:
• All sensor nodes know the location of all other nodes in their

vicinity.
• There exists a mechanism for “announcing” a message to all of

the nodes in the network. In the following, we will call this
mechanism a “broadcast” message, although in practise it may
be implemented via a flooding algorithm.

• We assume that the the number of targetsk is known in advance.
In [8], an algorithm for counting the targets present in the area
of the network was presented.

• For the derivation of the localization algorithm, we assume that
all sensors are well calibrated (i.e.gi = 1) and thatβ = 2. In sec-
tion 6 we examine how the developed algorithm operates when
the above assumptions do not hold.
Furthermore, when targetτ is the one to be localized, the signal

component due to the other targets is considered asinterference.
The interference term at thei-th node is given by:

I (τ)
i =

k

∑
j=1, j 6=τ

A j

||ri −x j ||2
i = 1,2, . . . ,n (2)

Obviously, in a single-source localization scenario, the interference
signal is equal to zero. When the locationsx j and powersA j are not
known exactly, and̂k≤ k sources have been estimated, the estimated
valuesx̂ j andÂ j are used in (2), which is rewritten as:

Î (τ,k̂)
i =

k̂

∑
j=1, j 6=τ

Â j

||ri − x̂ j ||2
i = 1,2, . . . ,n (3)

3. CANCELLATION BASED MULTIPLE SOURCE
LOCALIZATION

In Table 1 the whole CBMSL technique is summarized. As already
mentioned, the proposed technique performs a multiple-source lo-
calization task by iteratively applying a dominant-source localiza-
tion algorithm. More specifically, assume thatτ − 1 < k sources
have already been detected and their locations and powers have been
estimated. Assume also that these estimates are known by all sen-
sor nodes. Then, before estimating the next targetτ, each sensor
node may adjust its energy reading by cancelling the influence of
the sources already estimated, that is

y(e)
i (t) = yi(t)− Î (τ,τ−1)

i i = 1,2, . . . ,n (4)

Input: k,yi(t),ri , i = 1,2, . . . ,n
Output:x̂ j , Â j j = 1,2, . . . ,k
FORq = 1 TON

FORτ = 1 TOk
IF (q = 1)

y(e)
i (t) = yi(t)− Î (τ,τ−1)

i
Elect the CPA nodecpaτ atrcpaτ usingP1
Set-up a cluster of nodesScpaτ

min usingP2
ELSE

y(e)
i (t) = yi(t)− Î (τ,k)

i
END
Estimatex̂τ , Âτ usingP3

Broadcast ˆxτ , Âτ
END

END

Table 1: Cancellation-Based Multiple-Source Localization in terms
of its constituent algorithmsP1, P2, andP3

Using the above “effective” energy readings (denoted via super-
script e), a distributed algorithm, so-calledP1, is executed in or-
der to elect the sensor node with the maximum effective reading,
assuming that this is theClosest Point of Approach(CPA) sensor
node, i.e. the nearest node to the target of interest [4]. This node,
denoted ascpaτ , will play a leading role in estimating the target
which is in the vicinity of its location.

After the election ofcpaτ , a distributed algorithm, so-called
P2, is initiated in order to select thosec nodes in the proximity of
nodecpaτ which receive a relatively “clear” signal, that is a signal
with small amount of interference.The nodes that are selected define
the setScpaτ

min , which will be formally defined in subsection 4.2.
Once the cluster of nodes has been setup, another distributed

algorithm, so-calledP3, takes over in order to provide estimates
Âτ andx̂τ of the target powerAτ and locationxτ . These estimates,
once computed, are transmitted to the network, via a broadcast mes-
sage. Thus, all nodes receiving this message, can compute their new
effective readings.

The algorithmsP1, P2 and P3 constitute the dominant-
source localization algorithm and will be discussed in detail in Sec-
tion 4. Once the above dominant-source localization - cancellation
procedure has estimated allk targets, the whole procedure can be
restarted. At this time, for each targetτ, the effective energy read-
ings are computed taking into account all the otherk−1 targets that
have been estimated either in the current or in the previous iteration,
that is

y(e)
i (t) = yi(t)− Î (τ,k)

i i = 1,2, . . . ,n (5)

In general,N iterations can be executed as indicated in Table 1,
where at each iterationq the interference signal is computed using
the latest available estimates ˆx j andÂ j for the locations and pow-
ers of all k− 1 targets (i.e., the estimates may come either from
iterationq or the previous one). The number of iterations can be
selected such that a trade-off between estimation accuracy and total
execution time is achieved. Furthermore, algorithmsP1 andP2
are executed only at the first iteration(q = 1) and their results are
used during all subsequent iterations (static targets assumed).

Of course, such an iterative interference-cancellation procedure
will impose propagation of errors, since the erroneous estimation of
a target may be used to localize other targets. The simulation results
presented in Section 6, indicate that when the number of sensors is
large enough, error propagation has limited effect to the accuracy
of the algorithm.

4. DOMINANT SOURCE LOCALIZATION

Dominant-source localization is performed in three steps: (a)
Coarse estimation, (b) Cluster setup and (c) Fine estimation. These
steps correspond to the algorithmsP1, P2 andP3 respectively,
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that are explained in the sequel. Details regarding the distributed
implementation ofP1, P2 andP3, are discussed in Section 5.

4.1 Coarse Estimation: CPA Election (algorithm P1)

At the first iteration of the CBMSL technique and for each target
τ, the sensor node with the maximum effective reading is elected

as CPA node, that is,cpaτ = argmaxi{yi(t)− Î (τ,τ−1)
i }. Thus, as-

suming that the dominant source is in the vicinity ofcpaτ , a coarse
estimate for the location of this dominant source isrcpaτ .

4.1.1 Analysis of CPA accuracy

Let us consider thatn sensor nodes are uniformly deployed over
a region of areaE. We may define thespatial densityof such a
network asd = n/E. Consider also that a target is placed in the
same region, and define a circular areaR of radiusρ around the
target. Define also the random variableY as the distance between
the target and the closest sensor node. Then, it follows that the
probability that the closest sensor node lies inR is given by:

Pr{Y < ρ} = Pr{(number of nodes inR) ≥ 1}
= 1−Pr{(number of nodes inR) = 0}

= 1−
(

1−πdρ2 1
n

)n

. (6)

Thus, asn andE = n/d tend to infinity, we have that

Pr{Y < ρ} = 1−e−πdρ2
. (7)

Differentiating the above cumulative density with respect toρ , we
get the probability density function ofY as fY(ρ) = 2πdρe−πdρ2

.
The expected value ofY, which may be viewed as the expected
error of the coarse estimation algorithm for the case of single source
localization, is thus found to be

µ = E[Y] =
∫ +∞

0
ρ · fY(ρ)dρ =

1

2
√

d
. (8)

This parameter, will be used in the sequel to initialize the search
step of the algorithm presented in subsection 4.3.

4.2 Cluster Selection (algorithm P2)

A simple approach to selectc sensor nodes in the vicinity of node
cpaτ would be to choose the firstc nodes which are closest to the
leadercpaτ . However, some of the nodes in such a cluster might
receive a relatively large interfering signal from a nearby target. To
avoid taking into account such nodes we suggest testing a number
of different clusters aroundcpaτ , each one “biased” along a cer-
tain direction around the leader, and select the one with minimum
interference.

A measure of the involved interference can be derived by ob-
serving that nodes that are equally away from a target should have
the same measurements, if that target was the only one in that area.
On the other hand, if two nodes are equally away from a target of
interest, and only one of them is close to another target, then this
one should have a greater energy measurement. Assuming that the
coarse estimate of the dominant source is close to the actual source
location, distances from the target can be considered as distances
from rcpaτ .

Thus, an algorithm to implementP2 can be: Create clusters
Scpaτ

i i = 0, . . . , l −1, by selecting the nodes inside the circle cen-
tered at

p
cpaτ
i = rcpaτ +α ·δ

[

cos(2π · i/l)
sin(2π · i/l)

]

i = 0, . . . , l −1 (9)

with radiusδ . More specifically,Scpaτ
i = { j : ||pcpaτ

i − r j || ≤ δ},
whereδ can be selected such that the expected number of sensors in

δ

p
cpaτ

0

p
cpaτ

1

p
cpaτ

2

p
cpaτ

3

p
cpaτ

4

p
cpaτ

5

p
cpaτ

6

p
cpaτ

7

δ

rcpaτ

Figure 1: The sum of the measurements of the nodes in the dashed
area, gives a measure of the interference in this direction, relative to
the other directions. Hereα = 1, l = 8

the circle isc, that isδ =
√

c/(dπ) and the parameterα is a positive
constant in(0,1] that controls the “bias” of the clusters away from
rcpaτ in each direction. Clearlycpaτ ∈ Scpaτ

i ∀ i = 0, . . . , l −1.
According to the discussion above, a measure of the relative

interference in clusterScpaτ
i would be

F (Scpaτ
i ) = ∑

j:||r j−rcpaτ ||>δ , j∈Scpaτ
i

y j (t) (10)

that is, the sum of the measurements of the cluster nodes whose dis-
tance fromrcpaτ is larger thanδ , provides a measure of the relative
interference in that cluster. Figure 1 demonstrates the concept of
cluster interference. The nodes in the cluster of minimum interfer-
ence

Scpaτ
min = arg min

Scpaτ
i

{F (Scpaτ
i )} (11)

will collaborate in the sequel, for estimating the target parameters.

4.3 Fine Estimation: Greedy Search (algorithm P3)

Assuming that the cluster of nodes (selected as in the previous step)
receives measurements due to one target solely, the cost function
that must be minimized is

J(θ) = ∑
j∈Scpaτ

min

(

y(e)
j (t)−σ2

w− Aτ
||θ −r j ||2

)2

(12)

In order to minimize the above cost function, we use a greedy search
algorithm similar to the Expectation - Maximization solution pro-
posed in [5]. The knowledge of the nodecpaτ , that is the closest
node to the source of interest, can be exploited so as to avoid a costly
exhaustive search.

The cost function in (12), requires knowledge of the source
powerAτ and thus, cannot be evaluated directly. To circumvent this
problem, one may first estimate the parameterAτ that minimizes
the cost function for fixedθ , and then evaluate the modified cost
function

Ĵ(θ) = ∑
j∈Scpaτ

min

(

y(e)
j (t)−σ2

w− Âτ
||θ −r j ||2

)2

(13)

where

Âτ =
∑ j∈Scpaτ

min

y(e)
j (t)−σ2

w

||θ−r j ||2

∑ j∈Scpaτ
min

1
||θ−r j ||4

. (14)

It can be easily seen that (12) and (13) have the same global mini-
mum.

Thus, the search algorithm sets the initial estimate ˆxτ = rcpaτ
(or, in general, the best current estimate of the location of the corre-
sponding source, forq > 1) and in the sequel, at sub-iteration1 i it

1The iterations of the search algorithm are denoted as sub-iterations so
as not to be confused with the iterations of the CBMSL
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evaluates the above cost function at theL points

θ (i)
j = x̂τ +ai,q

[

cos(2π · j/L)
sin(2π · j/L)

]

j = 0, . . . ,L−1 (15)

that lie on a circle of radiusai,q around the current estimate ˆxτ . If
for some point the cost function takes a lower value than the cur-
rent minimum value, the algorithm sets this point as the current
estimate ˆxτ . The minimum cost is initially set equal to a large
number. The step sizeai,q used at sub-iterationi and iterationq,
should be a monotonically decreasing sequence with respect toi
and q. For the first sub-iteration of the first iteration, it is rea-
sonable to usea1,1 = µ , since this is the expected distance of the
source from the CPA node (see eq.(8)). As for the following sub-
iterations/iterations, it was experimentally observed that a step size
of the formai,q = µ

i·q yields good results.

5. DISTRIBUTED IMPLEMENTATION

5.1 Algorithm P1

Choosing the sensor node with maximum measurement as the
leader node, is a problem closely related to the problem of “leader
election” [10]. However, in this case, the sensor measurements can
be exploited so as to develop a specific election algorithm. In this
section, based on the theory of randomized algorithms [11], we de-
velop a distributed algorithm which employs broadcast messages to
detect the node of maximum measurement.

The idea of the algorithm, is that every nodej in the network at-
tempts to elect itself as leader by sending, with a given probability, a
broadcast message containing its measurement. More specifically,
we assume that sensor nodes are equipped with uniform random
generators, that produce independent pseudo-random numbers in
[0,1]. Within a predetermined time period, termed as time-slot, each
sensor draws a random number, and if this number is smaller than
its probability of broadcast, then it sends a relevant message. Let

us denote aspm(y(e)
j (t)) the probability assigned to nodej, where

m is the time-slot. Functionpm(·) should give higher probabili-
ties of transmission to the nodes of higher measurements. Such a
function will be discussed later on in this subsection. Of course, in
such a scenario, collisions of messages may occur, and also there
is a probability that none of the sensor nodes transmits. Successful
transmission occurs when only one node transmits at a time. In this
case, all nodes that receive this message compare the received mea-
surement with their own measurement, and if their measurement is
smaller, they stop broadcasting by settingpm(y(e)

j (t)) = 0. Clearly,
the algorithm stops when the node of maximum measurement is the
only one succeeding to transmit.

Assuming an ordering of the nodes in the network such that

y(e)
1 (t) > y(e)

2 (t) > .. . > y(e)
n (t), then we can define the probability

ωm that the node of higher measurement is the only one that trans-
mits in time-slotmas

ωm = pm(y(e)
1 (t))

n

∏
j=2

(1− pm(y(e)
j (t))) (16)

Obviously, since at each time-slot, some of the nodes of smaller

measurement( j ≥ 2) may setpm(y(e)
j (t)) = 0, we have thatωm ≥

ω1. Thus, the probability that the algorithm stops within the first
K time-slots, is given asΩK ≥ 1− (1−ω1)

K since(1−ω1)
K is

an upper bound of the probability that the “stoping message” is not
transmitted within the firstK time-slots.

Concerning now the functionpm(·), the optimal choice is the
one that maximizes the probabilityω1. However, in case of single-
source localization where a source of known powerB is present in
the network, a reasonable choice is to set it equal to the probability
that each node is the CPA node. Since the power of the source is
known, each nodej can estimate its distanceρ j from the source

based on its energy measurement. Then, the probability that node
j is the CPA node is equal to the probability that no sensor node
exists in a circle of radiusρ j , and is given by the second term of
equation (7). More specifically, for a nodej with measurement

y j (t) the respective probability ispm(y j (t)) = e−πdρ2
j = e

−πd B
yj (t)−σ2

w

for y j (t) > σ2
w. Of course, nodes with measurementsy j (t) ≤ σ2

w
are far away from the target and do not participate in CPA election.

Furthermore, in the cases where the powerB is not known
and/or there are multiple sources to be located, one may use a time
varying value forB given by

Bm =

{

Bm−1 Successful transmission at slotm−1
Bm−1/G No node transmitted at slotm−1
G·Bm−1 A collision occured at slotm−1

(17)

initialized at an arbitrary value forB1, with G > 1 being a constant.

5.2 Algorithm P2

Cluster set-up, can be implemented in a decentralized fashion, as
soon as the CPA node is elected. More specifically, when the CPA
node is elected,l nodes in the vicinity of the CPA node (that may
be predetermined, for all possible CPA nodes) start computing the
sums defined by equation (10). Each one of thel nodes that finishes
the computation of the sum, reports the value computed to the CPA
node. Thus, the CPA node is able to compute the minimum value
according to (11).

5.3 Algorithm P3

It is interesting to note, that since both (13) and (14) involve summa-
tions over the nodes of the clusterScpaτ

min , they can be computed in a
distributed fashion where each node in the cluster receives a partial
sum from a neighbor, adds its own contribution, and forwards the
new partial sum to the next node. Thus, two circles are required for

testing one pointθ (i)
j , one for computing the corresponding value

Âτ and one for evaluating the cost function in (13). If the algorithm
performsN′ sub-iterations,N′ ·L points are tested and 2·N′ ·L cir-
cles are required for each target, for every iteration of the CBMSL.
The value ofÂτ computed by nodecpaτ at the end of every first
circle, should be communicated to all the nodes in the cluster.

Generally, the CBMSL algorithm requires 3· N · k broadcast
messages for announcing the coordinates and amplitude (2D case)
of targets, plus those required byP1. P2 requiresk·(l + l ·c) local
messages, andP3 requires 2·N′ · k ·N ·L · (c−1) local messages.
The complexity of the algorithm is mainly due toP3, which evalu-
ates (13) forN ·k·N′ ·L times. As a comparison, note that Maximum
Likelihood (ML) estimation [5] is based on exhaustive search over
a grid. For a 2D grid of sizes×s, s2k evaluations are required. Fur-
thermore, in (13), onlyc measurements are involved whereas for
ML estimation alln measurements should be used.

6. SIMULATION RESULTS

In order to assess the performance of the proposed CBMSL tech-
nique, some typical numerical simulations were conducted. In the
following, we assume that the target association is done properly so
that the sum of the location estimation errors is the minimum of the
two possible assignments.

6.1 Discriminating two identical sources

In this experiment, a sensor network was used to localize two iden-
tical (A1 = A2 = 10000) sources. Two different sensor densities
were examined, corresponding ton = 50 andn = 100 nodes over
an area of 100×100 meters, and the number of sensor nodesc that
collaborated in each case was set equal to 20 and 45 respectively.
The two sources were placed at(−D/2,0) and(D/2,0) where point
(0,0) corresponds to the center of the sensor deployment field. The
mean of the noise was set equal toσ2

w = 40 and the rest of the pa-
rameters used areM = 100, N = 5, l = 10, a = 0.6, N′ = 10 and
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Figure 2: Localization error

5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Distance between targets, meters

A
ve

ra
ge

 e
st

im
at

ed
 ta

rg
et

 p
ow

er

First target, ML estimate, n=50, 5x10 grid
Second Target, ML estimate, n=50, 5x10 grid
First target, CBMSL estimate, n=50, c=20
Second target, CBMSL estimate, n=50, c=20
First target, CBMSL estimate, n=100, c=45
Second target, CBMSL estimate, n=100, c=45
Actual power of both targets

Figure 3: Estimated power

L = 4. Figures 2 and 3 summarize the localization errors obtained
and the target power estimates respectively, as a function of the tar-
gets distanceD. For comparison purposes, the performance of the
Maximum Likelihood [5] estimation algorithm is also presented.
To minimize experimentation time for ML estimation, we used a
5× 10 grid close to the actual locations of the sources. For both
of the algorithms examined, we consider the source with maximum
estimated power as the first one.

From Figure 2, we note that the CBMSL technique provides
quite accurate estimates for the location of the first target that are
comparable to the estimates of ML. The location estimate for the
second source is quite poor when the targets are close to each other,
but as target spacing increases better performance is obtained, again
close to the performance of ML estimation. Of course, an increase
in the sensor network density improves the ability of the CBMSL
algorithm to distinguish the two targets dramatically. From Figure
3, we note that when the two sources are close to each other, both
algorithms estimate a source with very high power and another one
with very small power.

6.2 Robustness against perturbation of parameters

In this experiment, 50 sensors were placed randomly (uniformly)
over an area of 100× 100 meters and two unequal power sources
(A1 = 10000,A2 = 5000) were randomly (uniformly) placed over
the central 50×50 area to avoid boundary effects. Here, the source
with powerA1 is considered as the first one. Table 2 presents the
results of the CBMSL algorithm in terms of the localization error
for the first sourcee1, the error for the second sourcee2 and the re-
spective estimated standard deviationsσ1 andσ2, as the average of
1000 independent runs.∆g = x means that the sensor gainsgi were
uniformly chosen to lie in[1−x,1+x], and∆r = x means that the
sensor coordinates contain uniform error in[−x,x]. The rest of the

Configuration e1 (m) σ1 e2 (m) σ2

σ2
w = 0,∆g = 0,∆r = 0,β = 2 3.53 5.67 4.48 6.70

σ2
w = 40,∆g = 0,∆r = 0,β = 2 4.52 7.12 7.09 10.68

σ2
w = 80,∆g = 0,∆r = 0,β = 2 6.25 10.44 9.51 13.54

σ2
w = 0,∆g = 0.2,∆r = 0,β = 2 3.99 5.24 5.48 6.80

σ2
w = 0,∆g = 0.6,∆r = 0,β = 2 5.54 5.61 8.28 8.64
σ2

w = 0,∆g = 0,∆r = 1,β = 2 3.90 5.22 5.76 7.48
σ2

w = 0,∆g = 0,∆r = 2,β = 2 4.74 5.59 6.69 7.64
σ2

w = 0,∆g = 0,∆r = 0,β = 2.5 4.19 5.24 5.86 8.01
σ2

w = 0,∆g = 0,∆r = 0,β = 3 5.16 5.66 7.28 9.26

Table 2: CBMSL accuracy under various parameters

algorithm parameters were as in the previous experiment. From Ta-
ble 2, we note that the proposed CBMSL algorithm is quite robust
with respect to various perturbations of the energy decay model. Lo-
calization error for the first target is smaller compared toe2, mainly
due to the fact that the first target emits more power.

7. CONCLUSION

In this work, a multiple-source localization algorithm for sensor net-
works, amenable to distributed implementation, has been proposed.
Extensive simulation experiments have been conducted in order to
assess the performance of the new technique, showing that it ex-
hibits promising performance characteristics.

Further work will focus on aspects such as the effects of error
propagation, analysis of the messages required for algorithmP1,
as well as a study on how the various parameters of the algorithm
can be selected to guarantee certain accuracy.
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