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ABSTRACT the second category use direction of arrival (DOA) measurements.
Direction of arrival estimates are extracted by computing phase
differences between signals received by spatially remote sensors,
based on the Received Signal Strength (RSS) measurements of & d are particularly useful for locating sources emitting narrowba_nd
nals emitted by the sources. Also, all processing is performed atdnals [2]. On the other hand, TDOA measurements offer the in-
the sensor nodes in a decentralized fashion, and hence no “Fusioff€@sed capability of localizing broadband sources [3]. The above
Center” is required. techniques, however, have two major requirements, i.e. : (a) the

The proposed cancellation-based multiple-source localizatiorN@0g signals arriving at each sensor should be sampled in a syn-
(CBMSL) technique relies upon a proper iterative application €hronized fashion, and (b) the sampling rate at which the analog sig-
o Nal is being sampled should be high enough to capture the features

of a new dominant-source localization (DSL) algorithm. More ''< R e . : .
Pf interest, which, in turn, implies using high frequency electronics

specifically, in the initial stage, the DSL estimates the location an X - J
power of the dominant source within the area of the network. Onc&nd increased bandwidth for communicating the measurements.

the parameters of the dominant source have been estimated, they are Recently [4], a new approach for source localization was pro-
broadcast to the network. Nodes receiving this message adjust thejosed, that utilizes received signal strength (RSS) measurements.
measurements by cancelling appropriately the components due ore specifically, based on the fact that in free space, acoustic en-
the dominant source. This cancellation implies that another sourc@rgy decays at a rate that is inversely proportional to the distance
becomes the dominant one in the area of the sensor network. Basg@m the source, the energy measurements at individual sensors ar
on the adjusted measurements, the dominant-source localization alombined to yield an estimate of the source location. In [5], the
gorithm can be executed once again, to estimate the next dominajitelihood function for multiple-source localization based on RSS
source, and so forth. Thus the above “successive cancellationmeasurements is formulated, the Cramer-Rao bound is derived and
procedure can be used to estimate all sources in the network aregarious optimization algorithms are proposed to yield a solution.
Efficient algorithms for all the above steps have been derived.  |n [6], the authors proposed a distributiedtremental subgradient
Extensive simulation results have shown that the proposed tecldgorithm to yield the source location estimate iteratively. In [7],
nique could be a promising alternative for the problem at hand.  source location estimates that are robust to erroneous modelling of
the energy decay function are derived.

1. INTRODUCTION - . . .
Similarly to the algorithms proposed in [5], the source localiza-
The emergence of low-cost electronic devices that integrate sengion algorithm proposed in this work is able to estimate the loca-
ing, processing and wireless communication capabilities has fosion of multiple sources. In contrast however to [5], the proposed
tered a growing interest in developing wireless ad-hoc sensor netigorithm has smaller computational complexity and can be imple-
works. The design, implementation, and operation of such networkgented in a decentralized fashion. Furthermore, compared to the al-
requires the confluence of many disciplines, including signal progorithms appearing in [4],[6] and [7], the proposed algorithm offers
cessing, networking, and distributed algorithms [1]. Furthermoreincreased capability of localizing more than one sources. The idea
wireless sensor networks must operate using minimum resourcesf using a single-source localization algorithm to perform multiple-
typical sensor nodes are battery powered and have limited processource localization, has also appeared in [9]. However the algorithm
ing ability. The aforementioned constraints impose new challengegresented therein does not involve RSS measurements.
for algorithm development, and imply that application specific al-

gorithms should be used in the several network layers. The rest of this work is organized as follows: In Section 2,

In many applications, ranging from environmental monitoring {he energy decay model of [4] is presented and several assump-
to manufacturing, source localization and tracking is of major im-iions are made. In Section 3, the proposed cancellation-based
portance. Indeed, the availability of location data about objectgnultiple-source localization technique is developed. In Section 4,
and human beings is critical in many applications, such as trackinff!® dominant-source localization algorithm, which is a constituent
of valuable business assets and monitoring individuals with specidfo't Of the CBMSL technique, is derived. Section 5 discusses the
needs. In this work, we focus on the localization of multiple source&liStributed implementation of the proposed technique. Section 6

that emit signals whose energy is measured by the nodes of a sen gsents some typical simulation results verifying the performance

network that has been developed over a territory of interest (e.gp, ome proposed algorithm and, finally, Section 7 concludes the

vehicles transmitting acoustic signals due to the operation of thelf"
engines).

Most of the source localization methods fall mainly into two
broad categories. The algorithms of the first category utilize time

delay of arrival (TDOA) measurements, whereas the algorithms of 2. ATTENUATION MODEL AND ASSUMPTIONS

This work is part of the 03ED910 research project, implemenigan First, we assume that the signal strength measurements received by
the framework of the “Reinforcement Programme of Human Reseassh M the sensor nodes behave according to a non-reverberant far-field
power” (PENED) and co-financed by National and EC Funds model [4], [5]. More specifically, the measurement of serisatr
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time instant is assumed to be given by: Input: k,yi(t),ri,  1=12...,n
Output:xj,Aj j=12,... .k
k A i=1....n FORg=1TON
GiAj (t) T FORT=1TOk
yiy=S — I8 N
V=2 o ™Y g Fa-y
Yo =yt - _
wherek is the number of sources/targetsis the number of sen- Elect the CPA nodepay atrepa, USINg 1

Set-up a cluster of nod&be using 92,

sor nodesA|(t) denotes the power of theth source at time, as ELSE

measured at 1 meter distansg(t) is the vector of the source’s co-

ordinatesy; is the vector of the coordinates of tivh sensor and v (1) = yi(t) - ™
w;(t) denotes a white Gaussian noise process with positive mean END

o2 and variance &4 /M [4], [5]. M denotes the number of samples Estimatext, A using %3
averaged during the time periddbefore a measurement is finally Broadcaskz, Ar
acquired. Since the sensor nodes are not in general well calibrated END

between each other, we have introduced the paranmgtetsnoting END

the gains (i.e. sensitivity) of the sensors. The paranfe&tands for

the rate at which the energy of the signal emitted by a target deca: . . . T
with distance from that target. Finally, the operafor|| denotes yIsable 1: Cancellation-Based Multiple-Source Localization in terms

Euclidean distance of its constituent algorithms?,, %2,, and %23

Assuming that the sources remain static at least for a period
of time during the execution of the localization algorithm, we can
drop the time indexin their location vectors. Similarly, we assume Using the above “effective” energy readings (denoted via super-
that the power of each source does not change significantly overscripte), a distributed algorithm, so-calle;, is executed in or-
short period of time, thus, we also drop the time index fulytt). der to elect the sensor node with the maximum effective reading,
Furthermore, the following reasonable assumptions are made:  assuming that this is th€losest Point of ApproacfCPA) sensor
e All sensor nodes know the location of all other nodes in theirnode, i.e. the nearest node to the target of interest [4]. This node,
vicinity. denoted agpa;, will play a leading role in estimating the target
o There exists a mechanism for “announcing” a message to all o¥hich is in the vicinity of its location. _
the nodes in the network. In the following, we will call this _ After the election oftpa;, a distributed algorithm, so-called

mechanism a “broadcast” message, although in practise it mafZ’ is initiated in order to select thosenodes in the proximity of
be implemented via a flooding algorithm. odecpa; which receive a relatively “clear” signal, that is a signal

« We assume that the the number of targeissknown in advance with small amount of interference.The nodes that are selected define

pa( - . . . .
In [8], an algorithm for counting the targets present in the areathe selin which will be formally defined in subsection 4.2.

in » -
of the network was presented. Once the cluster of nodes has been setup, another distributed
e For the derivation of the localization algorithm, we assume tha

élgorithm, so-called??3, takes over in order to provide estimates
all sensors are well calibrated (ig.— 1) and tha = 2. Insec- A andx; of the target poweA; and locationx;. These estimates,
tion 6 we examine how the developed algorithm operates wheR"C€ computed, are transmitted to the network, via a broadcast mes-
the above assumptions do not hold. sage. Thus, all nodes receiving this message, can compute their new
effective readings.

The algorithms27,, £, and £73 constitute the dominant-
source localization algorithm and will be discussed in detail in Sec-
tion 4. Once the above dominant-source localization - cancellation
K procedure has estimated &ltargets, the whole procedure can be
(0 _ Z Aj =12 n @ restarted. At this time, for each targetthe effective energy read-

! i1 |Iri — x| |2 e ings are computed taking into account all the otherl targets that
1= have been estimated either in the current or in the previous iteration,

Obviously, in a single-source localization scenario, the interferencg'at IS

Furthermore, when targetis the one to be localized, the signal
component due to the other targets is consideremhtasference
The interference term at theh node is given by:

signal is equal to zero. When the locatiofjsand powerd\; are not yi(e) ) =vi(t) - Ii(T"k> i=12...,n (5)
known exactly, anét < k sources have been estimated, the estimategh general,N iterations can be executed as indicated in Table 1,
valuesx andA; are used in (2), which is rewritten as: where at each iteration the interference signal is computed using
X the latest available estimates andA for the locations and pow-
NTR) k Aj ) ers o_f allk—1 targets (i.e., the estimates may c.ome.either from
= Z T — %2 i=12....n (3) iterationq or the previous one). The number of iterations can be
j=1j#r M J selected such that a trade-off between estimation accuracy and total
execution time is achieved. Furthermore, algorithtds and &2,
3. CANCELLATION BASED MULTIPLE SOURCE are executed only at the first iteratigg = 1) and their results are
LOCALIZATION used during all subsequent iterations (static targets assumed).

In Table 1 the whole CBMSL technique is summarized. As alread Of course, such an iterative interference-cancellation procedure
mentioned, the proposed technique performs a multiple-source ﬁlyylll impose propagation of errors, since the erroneous estimation of

calization task by iteratively applying a dominant-source localiza.2 target may be used to localize other targets. The simulation results

tion algorithm. More specifically, assume that- 1 < k sources presented in Section 6, indica_te that W_he_n the number of sensors is
have already been detected and their locations and powers have bé Whe erllougrkl], error propagation has limited effect to the accuracy
estimated. Assume also that these estimates are known by all sfl-te algorithm.

sor nodes. Then, before estimating the next targetach sensor

node may adjust its energy reading by cancelling the influence of 4. DOMINANT SOURCE LOCALIZATION

the sources already estimated, that is Dominant-source localization is performed in three steps: (a)
N 1 Coarse estimation, (b) Cluster setup and (c) Fine estimation. These
YOO =y 1Y i=12....n (4)  steps correspond to the algorithm#;, 2, and 25 respectively,
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that are explained in the sequel. Details regarding the distributed
implementation of#;, 42, and #73, are discussed in Section 5.

4.1 Coarse Estimation: CPA Election (algorithm £7;)

At the first iteration of the CBMSL technique and for each target
7, the sensor node with the maximum effective reading is elected

as CPA node, that i;pa; = argmax{yi(t) — (""" Y}. Thus, as-
suming that the dominant source is in the vicinitycgig;, a coarse
estimate for the location of this dominant sourcedg,, .

: Figure 1: The sum of the measurements of the nodes in the dashed
4.1.1 Analysis of CPA accuracy area, gives a measure of the interference in this direction, relative to
Let us consider thah sensor nodes are uniformly deployed over the other directions. Here = 1,1 = 8

a region of ared&E. We may define thespatial densityof such a

network asd = n/E. Consider also that a target is placed in the

same region, and define a circular aRaf radiusp around the  the circle isc, that isd = 1/c/(d7r) and the parameter is a positive

target. Define also the random variabeas the dis@ance between cgnstant in(0,1] that controls the “bias” of the clusters away from
the target and the closest sensor node. Then, it follows that th][eCpar in each direction. Clearlgpa, € §pa Vi=0,... -1

probability that the closest sensor node lieis given by: According to the discussion above, a measure of the relative
interference in cluste™* would be

P{Y <p} = Pr{(number of nodesiR) > 1}
1— Pr{(number of nodes iR) = 0} F(SP%) = yj(t) (10)
_ g (1_ndp2})”. ©) i —repa [ . j€S
n that is, the sum of the measurements of the cluster nodes whose dis-

tance fromrcpg, is larger thard, provides a measure of the relative
interference in that cluster. Figure 1 demonstrates the concept of
cluster interference. The nodes in the cluster of minimum interfer-

PY <p}=1-e ™", (7)  ence
par ; pa;
0= arg min{ .# (11)
Differentiating the above cumulative density with respegptave n S"’a’n{ (S: )
™ . . . 2
get the probability density function of as fy (p) = 2mdpe ™P" . il collaborate in the sequel, for estimating the target parameters.
The expected value of, which may be viewed as the expected

error of the coarse estimation algorithm for the case of single sourcg3 Fine Estimation: Greedy Search (algorithm #23)
localization, is thus found to be

Thus, asn andE = n/d tend to infinity, we have that

Assuming that the cluster of nodes (selected as in the previous step)

oo 1 receives measurements due to one target solely, the cost function
=E[Y :/ - f dp=—. 8 that must be minimized is
H=E[]= | p-fv(p)dp NG ®)
2
A
This parameter, will be used in the sequel to initialize the search J(0) = (y§e> t)—o2— ﬁ) (12)
step of the algorithm presented in subsection 4.3. jeSmh 16 il

4.2 Cluster Selection (algorithm £2,) In order to minimize the above cost function, we use a greedy search

A simple approach to selectsensor nodes in the vicinity of node 2/gorithm similar to the Expectation - Maximization solution pro-
cpar would be to choose the firstnodes which are closest to the P0Sed in [5]. The knowledge of the nodeay, that is the closest
leadercpa;. However, some of the nodes in such a cluster migh odeto ;he source of interest, can be exploited so as to avoid a costly
receive a relatively large interfering signal from a nearby target. T¢:Xnaustive search.

avoid taking into account such nodes we suggest testing a number 'N€ cost function in (12), requires knowledge of the source
of different clusters aroundpa;, each one “biased” along a cer- powerA; and thus, cannot be evaluated directly. To circumvent this

tain direction around the leader, and select the one with minimurRfoP/eém, one may first estimate the parameferthat minimizes
interference. the cost function for fixedd, and then evaluate the modified cost

A measure of the involved interference can be derived by obfUnction
serving that nodes that are equally away from a target should have A 2
the same measurements, if that target was the only one in that area. Je) = <y(e) (t)— 02— Ac ) (13)
On the other hand, if two nodes are equally away from a target of J-e%bar ) |8 —r; |2
interest, and only one of them is close to another target, then this "
one should have a greater energy measurement. Assuming that there

coarse estimate of the dominant source is close to the actual source yge> t)—a2
location, distances from the target can be considered as distances A Yjesra Te=x,7 (14)
from Tcpa, - T . 1 :
pa;I'hus, an algorithm to implemen#, can be: Create clusters 2 e o=
i=0,..., =1, by selecting the nodes inside the circle cen-y; can pe easily seen that (12) and (13) have the same global mini-
tered at mum.
ol Thus, the search algorithm sets the initial estimeate="r¢pa,
pP* —repa +0a-8 Z(i)nsgzg'il//l)) } i=0,...,1—-1 (9) (or,ingeneral, the best current estimate of the location of the corre-
sponding source, fag > 1) and in the sequel, at sub-iteratfoinit
with radiusd. More specifically,ﬁcpa‘ ={j: HpiCpa‘ —rj|[ < 8}, 1The iterations of the search algorithm are denoted as suliitns so

whered can be selected such that the expected number of sensorsas not to be confused with the iterations of the CBMSL
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evaluates the above cost function at theoints based on its energy measurement. Then, the probability that node
j is the CPA node is equal to the probability that no sensor node

() A _ cog2m- j/L ) exists in a circle of radiup;j, and is given by the second term of
9] =Xr+ag [ sir?((zyr. j//L)) } j=0....L-1 (15 equation (7). More specifically, for a nodewith measurement
B

—md—2—,
. . . . R yj(t) the respective probability ism(y;(t)) =€~ mpf _ g 0ok
that lie on a circle of radiug; q around the current estimatg.” If for yi(t) > 02. Of course, nodes with measurementd) < o2
for some point the cost function takes a lower value than the cur: Yj we ’ NE) < o

rent minimum value, the algorithm sets this point as the currenf'® far away from the target and do not participate in CPA election.

estimatex;. The minimum cost s inialy set equal 1 a large oy e Dl SRS e 08 REER U TR e
number. The step sizg q used at sub-iterationand iterationqg, P ’ y

should be a monotonically decreasing sequence with respect to/arnying value for given by
andg. For the first sub-iteration of the first iteration, it is rea-

. . . Bm_1 Successful transmission at stot- 1
sonable to usey 1 = W, since this is the expected distance of the — ] Bm1/G No node transmitted at slot— 1 (17)
source from the CPA node (see eq.(8)). As for the following sub- ~™ G”_‘El A collision occured at slom— 1
iterations/iterations, it was experimentally observed that a step size m-1
of the forma; g = % yields good resullts. initialized at an arbitrary value fd8,, with G > 1 being a constant.
5. DISTRIBUTED IMPLEMENTATION 5.2 Algorithm 27,
5.1 Algorithm 22, Cluster set-up, can be implemented in a decentralized fashion, as

hoosi h ith . soon as the CPA node is elected. More specifically, when the CPA
Choosing the sensor node with maximum measurement as the, e js elected, nodes in the vicinity of the CPA node (that may
leader node, is a problem closely related to the problem of “leadejye redetermined, for all possible CPA nodes) start computing the

election” [10]. However, in this case, the sensor measurements c&lyms defined by equation (10). Each one ofithedes that finishes
be exploited so as to develop a specific election algorithm. In thighe computation of the sum, reports the value computed to the CPA
section, based on the theory of randomized algorithms [11], we d

as \ . fode. Thus, the CPA is abl he mini |
velop a distributed algorithm which employs broadcast messages Qgggrdingut% (tlle).C node is able to compute the minimum value

detect the node of maximum measurement.
The idea of the algorithm, is that every nogde the network at- 53 A|gorithm 275

tempts to elect itself as leader by sending, with a given probability, a

broadcast message containing its measurement. More specificallyiS interesting to note, that since boatrh (13) and (14) involve summa-
we assume that sensor nodes are equipped with uniform randoens over the nodes of the clus&g;,y, they can be computed ina
generators, that produce independent pseudo-random numbersdistributed fash_lon where ea_ch node in th_e cl_uster receives a partial
[0,1]. Within a predetermined time period, termed as time-slot, eac§UM from a neighbor, adds its own contribution, and forwards the
sensor draws a random number, and if this number is smaller tha#W Partial sum to the next node. Thus, two circles are required for

its probability of broadcast, then it sends a relevant message. Leétsting one poin19<(i>, one for computing the corresponding value

us denote a;;)m(yﬁe) (t)) the probability assigned to nodewhere  A; and one for evaluating the cost function in (13). If the algorithm
m is the time-slot. Functiomm(-) should give higher probabili- performsN’ sub-iterationsN’ - L points are tested and R’ L cir-

ties of transmission to the nodes of higher measurements. SuchCtes are required for each target, for every iteration of the CBMSL.
function will be discussed later on in this subsection. Of course, inThe value ofA; computed by nodepa; at the end of every first
such a scenario, collisions of messages may occur, and also thesigcle, should be communicated to all the nodes in the cluster.

is a probability that none of the sensor nodes transmits. Successful Generally, the CBMSL algorithm requires- Bl - k broadcast
transmission occurs when only one node transmits at a time. In thimessages for announcing the coordinates and amplitude (2D case)
case, all nodes that receive this message compare the received meftargets, plus those required B¢;. &2, requiresk- (1 +1-c) local
surement with their own measurement, and if their measurement imessages, and’; requires 2N’ -k-N-L-(c— 1) local messages.
smaller, they stop broadcasting by sett'mg(yge) (t)) = 0. Clearly, The complexity of the algorithm is mainly due #3, which evalu-

: : . tes (13) foN-k-N’-L times. As a comparison, note that Maximum
the algorithm stops when the node of maximum measurement is t ) Pl . ’ :
only one succeeding to transmit. ikelihood (ML) estimation [5] is based on exhaustive search over

; : . grid. For a 2D grid of size x s, s evaluations are required. Fur-
© Assur?;)ng an orderl(r;? of the nodes in th? network Such_thaﬁwrmqre, in (13), onlyc measurements are involved whereas for
yi () >y, (t) > ... > yn" (t), then we can define the probability ML estimation alln measurements should be used.
wm that the node of higher measurement is the only one that trans-

mits in time-slotm as 6. SIMULATION RESULTS
© n © In order to assess the performance of the proposed CBMSL tech-
W = Pm(y; (1)) I_L(l— pm(y;” (1)) (16)  nique, some typical numerical simulations were conducted. In the
J:

following, we assume that the target association is done properly so
) ) ] that the sum of the location estimation errors is the minimum of the
Obviously, since at each time-slot, some of the nodes of smallefyo possible assignments.

measurementj > 2) may setpm(y§e> (t)) =0, we have thatom >

wy. Thus, the probability that the algorithm stops within the first

K time-slots, is given a€ > 1— (1— )X since(1— )X is In this experiment, a sensor network was used to localize two iden-

an upper bound of the probability that the “stoping message” is ndtical (A = A = 10000) sources. Two different sensor densities

transmitted within the firskK time-slots. were examined, correspondinge= 50 andn = 100 nodes over
Concerning now the functiopm(-), the optimal choice is the an area of 10& 100 meters, and the number of sensor nadkst

one that maximizes the probability,. However, in case of single- collaborated in each case was set equal to 20 and 45 respectively.

source localization where a source of known po®es presentin ~ The two sources were placed(atD/2,0) and(D/2,0) where point

the network, a reasonable choice is to set it equal to the probabilit{d,0) corresponds to the center of the sensor deployment field. The

that each node is the CPA node. Since the power of the source iBean of the noise was set equaldp = 40 and the rest of the pa-

known, each nodg can estimate its distangg from the source rameters used atd = 100,N =5, | = 10,a= 0.6, N’ = 10 and

6.1 Discriminating two identical sources
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T T
—6— First Target, ML estimate, n=50, 510 grid
—#— Second Target, ML estimate, n=50, 5x10 grid

—o6— First target, CBMSL estimate, n=50, c=20 |7
—&— Second target, CBMSL estimate, n=50, c=20
— © — First target, CBMSL estimate, =100, c=45 | |
— B — Second target, CBMSL estimate, n=100, c=45

RMS localization error, meters

15
Distance between targets, meters

Figure 2: Localization error

T T
—6— First target, ML estimate, n=50, 5x10 grid
—+— Second Target, ML estimate, n=50, 5x10 grid
—o— First target, CBMSL estimate, n=50, c=20 ||
—e— Second target, CBMSL estimate, n=50, c=20
— © —First target, CBMSL estimate, n=100, c=45
— & — Second target, CBMSL estimate, n=100, c=45| |
—+— Actual power of both targets

Average estimated target power

15 20 30
Distance between targets, meters

Figure 3: Estimated power

Configuration | es(m) | o1 | &M | o
05=0,Ag=0,Ar=0,=2 | 353 | 567 | 448 | 6.70
05=40,Ag=0,Ar=0,3=2 | 452 | 712 | 7.09 | 10.68
02=80,Ag=0,Ar=0,=2 | 6.25 | 10.44| 951 | 13.54
02=0,Ag=02Ar=0,8=2 | 399 | 524 | 548 | 6.80
05=0,Ag=06,Ar=0,=2 | 554 | 561 | 828 | 8.64
05=0,Ag=0,Ar=18=2| 390 | 522 | 576 | 7.48
05=0,Ag=0,Ar=28=2| 474 | 559 | 6.69 | 7.64
02=0,Ag=0,Ar=0,=25| 419 | 524 | 586 | 801
02=0,Ag=0,Ar=0,=3 | 516 | 566 | 7.28 | 9.26

Table 2: CBMSL accuracy under various parameters

algorithm parameters were as in the previous experiment. From Ta-
ble 2, we note that the proposed CBMSL algorithm is quite robust

with respect to various perturbations of the energy decay model. Lo-
calization error for the first target is smaller comparedtomainly

due to the fact that the first target emits more power.

7. CONCLUSION

In this work, a multiple-source localization algorithm for sensor net-
works, amenable to distributed implementation, has been proposed.
Extensive simulation experiments have been conducted in order to
assess the performance of the new technique, showing that it ex-
hibits promising performance characteristics.

Further work will focus on aspects such as the effects of error
propagation, analysis of the messages required for algorithm
as well as a study on how the various parameters of the algorithm
can be selected to guarantee certain accuracy.
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over an area of 10Q 100 meters and two unequal power sources[9]
(A1 = 1000QA, = 5000) were randomly (uniformly) placed over
the central 56« 50 area to avoid boundary effects. Here, the source
with powerA; is considered as the first one. Table 2 presents the
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