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ABSTRACT 

A new approach to image interpolation using spatial 

relationships between adjacent pixels is introduced. In its 

first stage, the localized statistical relationships are 

studied based on the sparse version of the image. In the 

second stage, the governing rules of the image are used to 

build an interpolated version. The proposed interpolation 

method is suitable for color single-CCD images for 

demosaicing purposes. The correlation rule is studied 

first for each color component separately, then difference 

images (modified hues) are built to eliminate the color 

correlation, leading to a smoother reconstructed signal. 

 Since in Bayer pattern not all the color components are 

equally represented, the algorithm deals with the major 

green component differently from the red and blue, using 

the green as a basis for the whole image reconstruction. 

Further statistical tools are added to the algorithm to 

improve the visual results. We compare our method to 

presently available demosaicing techniques for single-

CCD color imaging with the major emphasis on reducing 

ghost colors and unreal edges. Our conclusion is that the 

proposed method can significantly improve interpolation 

and demosaicing tasks in image processing.  

 

Key-Words: CCD Image, Bayer pattern, Demosaicing, 

Least square method. 

1. INTRODUCTION 

The Bayer pattern has become a common structure in 

most digital cameras today (Figure 1).  "Demosaicing", in 

which the missing RGB pixels are interpolated, has thus 

become an integral part of those camera systems. The 

most basic method for demosaicing is the bi-linear 

interpolation (BI), which uses the average of the four 

neighboring pixels in the green plane and two neighbors 

in the red and blue planes to reconstruct the missing pixel 

in each color component separately. More complicated 

reconstruction methods, which work on each color 

component, are the bi-cubic and the bi-spline that instead 

of simple average uses polynomials of order 3. 

Another group of reconstruction algorithms are based on 

all the three colors in the neighborhood, however, restrict 

the computational cost for basic hardware 

implementation. One of these methods is the constant 

hue, which is applied as the ratio between red and green 

or blue to green, the green pixels are reconstructed from 

BI and then the hue images are reconstructed also with 

BI. Good results were obtained in [3], which assumes that 

the ratio between colors in the same pixel is constant, and 

uses gradients as a weighted coefficient in the 

reconstruction sum.  

The third group of methods has neither component nor 

computational limitations and is implemented mostly by 

software. This group uses a non-linear interpolation 

scheme and includes methods introduced by Kimmel, 

Gunturk, Muresan, Chung  and others. In Kimmel’s work 

[2], the pixels are interpolated along edges. A gradient-

based function is built to indicate the edge direction. The 

green and the ratios of blue/green and red/green (the 

hues) are interpolated along edges as a weighted sum 

gradients dependent coefficients. To improve the results, 

a correction step is performed on the ratios R/G B/G and 

on the green component using the red and blue values. In 

Gunturk’s work [5], the authors define two types of 

constraint sets; one imposes consistency with the 

observed data, and the other arises from the similarity 

between the high-frequency components of the color 

channels. An initial estimate is projected onto these 

constraint sets iteratively until convergence is achieved. 

In [6], an improvement compared to [2] is performed by 

interpolating the difference components rather than the 

ratios and the interpolation of the green includes a wider 

neighborhood, e.g., a 15x15 grid. This method results in 

missing reconstructed data in the periphery. 

In [7] the missing green samples are first estimated based 

on the variances of the color differences along different 

edge directions. Then the missing red and blue 

components are estimated based on the interpolated green 

plane. The neighborhood region is set to 5x5 for edges 

blocks and to 9x9 for a nonedge blocks thus it also leaves 

missing reconstructed pixels in the periphery.  

Unlike the above methods, in this work we propose a new 

approach, based on statistical information that represents 

the image. As could be shown in the next sections, such 

an approach outperform the existing techniques in many 

cases. 

2. THE ALGORITHM 

The new algorithm is based on 4 steps as follows. 

 

Step I 

The input data is a CCD image as shown in Figure 1. We 

first build from the red and the blue components smaller 
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images each, and from the green component two 

equivalent images (Figure 2). 

We start with the green component InGR.. For each pixel 

pɶ  (Figure 3), there are four green neighbors and another 

four of the red component, denoted { }8

1i i
n

=
. We want to 

consider only non-smooth regions in the model, based 

only on the 4 green neighbors, i.e., { } 1iVar n Th
+ > , where 

Th1 is a variance threshold.  

The non-smooth regions are characterized by different 

edges i.e., vertical, horizontal and diagonal [1]. An edge 

type is related to the four green neighbors’ { }4

1i i
n+

=
 

intensity values. The model accounts for all the possible 

permutations of { }4

1i i
n+

=
, therefore there are 4!=24 

cases/regions i.e., 

(Case + + + +

1 2 3 4
1) ,n n n n> > >  (Case + + + +

1 2 4 3
2) ,n n n n> > >         

...                                 .... (Case + + + +

4 3 2 1
24) n n n n> > > .   

For each pixel that belongs to a non-smooth region, the 

four surrounding green neighbors and the four red 

neighbors, as well as the concerned pixel are stored in an 

array AGR., The entry to AGR is the region/case index r, 

( )1,2,...,24r = according to the four surrounding green 

neighbors { }4

1i i
n+

=
 permutations in the region. 

The same holds for InGB,, except for the blue neighbors, 

which here replace the red. 

From those arrays we find the approximated linear 

relation in each case. Our assumption is that each pixel 

can be reconstructed as the weighted sum of its neighbors  

i i

i

p nα=∑ɶ ,   (1) 

and in each case a different set of coefficients will be 

used i.e., [ ]1 2 8, ,..,r r
α α α=α . To find the 24 sets of 

coefficients{ }24

1
r

r=
α , we use the relations stored in AGR 

based on the original image. 

For each case we write Eq. (1) several times, according to 

the number of times that the case occurred, denoted Q: 
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  (2) 

Or in vector form 

   
x

.
r r r

⋅P = n α    (3) 

Since there are usually more rows than columns in this 

matrix, we use the least square method for each case: 

   
1

x
.

T T

r r r r r

−
 = ⋅ ⋅ ⋅  

α n n n P   (4) 

At this point we have the relation for the green 

components InGR and InGB. This rule is used to reconstruct 

the missing pixels in the sparse green component of the 

CCD image according to (1), while in smooth regions, 

where { } 1i
Var n Th≤ , a plain average of the four green 

neighbors serves as reconstruction.  
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Figure 1  – Bayer pattern. 
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Figure 2 – From left to right: InR , InGR , InGB , InB. 
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Figure 3 – Green reconstruction region 

 

Step II 

We use the reconstructed green component denoted Gɶ  to 

reconstruct the red and the blue components. We first 
subtract the red and blue from the green, i.e., define 

1 1,  
RG CCD BG CCD

R G B G∆ = − ∆ = −ɶ ɶ . This is done to reduce 

the variance and further process smoother signals, which 

can be viewed as modified hues [5]. 

The difference signals 1 1,  
RG BG

∆ ∆ , are naturally not fully 

populated - the missing red and blue pixels account for 

75% of the pixels considered.  In this step we wish to 

reconstruct 25% of the data, those are noted as x-type 

pixels (Figure 3). If i and j are the row and column 

indexes, respectively, then the x-pixels locations in the 

blue component satisfy   

( ) ( )mod( ,2) 0 mod( ,2) 0i AND j≠ = , (5) 

or simply the locations of the known red pixels. In the red 

component, the x-pixels satisfy 

( ) ( )mod( ,2) 0 mod( ,2) 0i AND j= ≠ , (6) 

or the locations of the known blue pixels. As in the first 

step, we build two smaller versions with half the size 

denoted 1 1,
RG BG
δ δ , which are the samples at the red and 

blue known pixels' positions in 1

RG
∆ and 1

BG
∆ , respectively, 

excluding missing pixels. The smoothness effect as a 

result from the subtraction can be observed in Figure 4.  

We now use the same technique as for the green 

reconstruction except that only four neighbors participate 

in the reconstruction, i.e., (2) becomes 
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 (7) 

The results are two difference images 2 2,
RG BG

∆ ∆  with 

reconstructed pixels in the ‘x’ spots. 
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Figure 4 – Components histograms: Top Left - Red (InR), Top 

Right - Reconstructed green in the red locations (InGR), Bottom - 

The difference of the previous two ( 1

RG
δ ). Minimization of the 

variances can be easily observed. 

 

After the primary reconstruction, we further improve the 

results.  The images
2 2,
RG BG

∆ ∆  have the same number of 

pixels, in the same locations. We now subtract them, 
2 2

RB RG BG
∆ = ∆ −∆ , to provide in each location a difference 

between red and blue. In half of these cases, the red is 

reconstructed; in the other half we calculate the blue. 

At this point we start a second pass to reconstruct the 

pixels in the ‘x’ location. Note that in the first pass we 

have studied the relations between the pixels where the 

blue is reconstructed and the red is the original CCD 

value, i.e., satisfying (5). The pixel in the left hand side 

vector of (7) is populated by the pixels in locations where 

the red is reconstructed and the blue is the original. We 

use the concluded relations from the second half where 

the blue is the original and the red is reconstructed, 

satisfying (6) to construct the image 1

RB
∆ . This iteration 

reduces the noise and projects the relations from the red 

onto the blue in the difference image. The next iteration is 

the complementary situation – i.e., the blue is the original, 

used with half of the original red. This step provides a 

difference reconstructed image 2

RB
∆ .  

To return to colors coordination, we use the following: 

1

1

(5) then 

(6) then 

CCD

RB CCD

if R R

if R B

 =


= ∆ +

ɶ

ɶ ɶ
 (7) 

1

1

(5) then 

(6) then 

CCD RB

CCD

if B R

if B B

 = −∆


=

ɶ ɶ

ɶ
 (8) 

Step III 

We reconstruct the additional 50% missing pixels in the 

red and the blue planes. Instead of working on the colors 

planes, we use here again the difference images, 
3 3

1 1
,  

RG BG
R G B G∆ = − ∆ = −ɶ ɶɶ ɶ . The first pass in this step is 

building the smaller images 3 3,  
RG BG
δ δ  in the known pixels 

from 3 3,  
RG BG

∆ ∆  i.e., satisfying (5) or (6). From 3 3,  
RG BG
δ δ  

we conclude the correlation rule and use it to reconstruct 

the missing pixels in the locations: 

( ) ( )mod( , 2) 0 mod( , 2) 0i AND j= =  (9) 

or 

( ) ( )mod( , 2) 0 mod( ,2) 0i AND j≠ ≠    .        (10) 

The outputs are 4 4,  
RG BG

∆ ∆ . The second pass is needed to 

improve the results and emphasize edges. From the 

reconstructed pixels in 4 4,  
RG BG

∆ ∆  (at locations according 

(9) or (10)) we study the rule for the input pixels (present 

in 3 3,  
RG BG

∆ ∆ , satisfying (5) or (6)). Here the left-hand side 

vector in (7) is populated by the input pixels and the 

neighbors in the matrix are reconstructed in the first pass. 

This rule is used for the input pixels to reconstruct again 

the pixels satisfying (9) or (10). This pass preserves the 

original rule that holds in the image and compensates the 

smoothness effect of the first pass reconstruction. 

 

Step IV 
To return to the RGB components, we use the difference 

images and the reconstructed green. The red and blue 

images are formed by 4

2 1RG
R G= ∆ + ɶɶ , 4

2 1BG
B G= ∆ + ɶɶ . 

However, the green component will be modified by the 

data obtained from the red and blue reconstructions, since 

the first green reconstruction shows artificial shapes near 

edges. Thus near edges (high gray level variance) the 

reconstruction is based on 4 4,  
RG BG

∆ ∆  by: 

( )

{ }( )
2

1, 1

1 , 2 2 1
1, 1

4

2 2

4

2 2

if (9) OR (10)  then  

if   then  

else 
if (5)  then  

else 
if (6)  then  

CCD

k l

i k j l
k l

RG

BG

G G

Var G Th G G

G R

G B

= =

+ + =− =−

 =


 < =  
  = ∆ − 
 = ∆ −

ɶ

ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ

  (11) 

  

where Th2 is the threshold for the variance. The output 

image is then composed from
2 2 21
,  ,  R G Bɶɶ ɶ . 

3. STATISTICAL GENERALIZATION 

The goal is to divide regions to sub-regions by statistical 

criteria in order to improve the reconstruction result. Our 

preliminary knowledge on the region is from the available 

neighbors, thus their statistical characteristics are helpful 

for sub-regions division. We use the mean µ and the 

standard deviation (STD)σ of the surrounding neighbors 

as the division criteria, according to the following: 

1

1
,

N

i

i

n
N

µ
=

= ∑                (12) 

( )2

1

1
,

1

N

i

i

n
N

σ µ
=

= −
− ∑                (13) 

where N is the number of known neighbors (8 or 4).  

The mean value µ  of the green component will differ 

between gray level regions, while in the difference 

images, the µ  will differ between regions with different 

©2007 EURASIP 1899

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



hues. A high value of σ  indicates a significant edge, 

while a low σ  indicates a smooth area. 

The mean and STD histograms can be easily observed to 

be invariant to resolution changes (Figs. 5 and 6). The 

complete algorithm is similar to the process of Section 2, 

however, with modification to the permutation procedure 

before obtaining (2) and (7). In each array we examine 

each region and divide it into sub-regions according to its 

statistical moments. The reference values for each sub-

region edges are studied from the small image ensuring 

equal size sub-regions. For each quantized sub-region, (2) 

and (7) are formed to calculate the coefficients, while (1) 

is used in the reconstruction step.  

In the results shown in Figure 7 (image size is 384x256) 

the division is into three mean and two STDs for the 

green component (eight neighbors) and seven mean and 

two STDs for the difference images (four neighbors) sub-

regions provide the best visual results. Consequently, we 

get 24·2·3=144 cases for the green component and 

24·2·7=336 cases for the difference images.  
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Figure 5 – Image STD histograms for the first four regions (out 

of 24). Left - Green components; Right - 
RB∆ . The x-axis is 

STD values. In red - small image, in blue - the large image; the 

gray vertical lines are the limits of the equal size STD sub-

regions. 

4. RESULTS 

We have tested the new algorithm on several commonly 

analyzed images, and compared them to five other known 

techniques considered to be efficient: Bilinear, Kimmel, 

Gunturk, Optimal Recovery, and Variance of Color 

Differences. The numerical values, which were selected 

experimentally to give the best visual results, are Th1=7 

for the green reconstruction, Th1=1 for the delta images, 

and Th2=12 for the green modification. Zoom-in areas 

were selected to illustrate the differences between the 

various methods. The results for the Lighthouse are 

shown in Figure 7. Similar results have been obtained for 

additional commonly used images of “Window”, “Statue” 

and “Sails” using these six demosaicing methods. Table 1 

summarizes the S-CIELab test results [8], [9] for errors 

greater than 20, where the proposed method has achieved 

the best score. 

5. CONCLUSIONS 

We have introduced a new approach to CCD image 

demosaicing using statistical structural relations based on 

the partial sparse components of the masked image. This 

non-linear localized method preserves the relation studied 

from the input image and overcomes the aliasing effect 

produced by the CCD Bayer sampling method. We also 

use a de-correlation tool in the form of difference image 

to allow a straightforward division into neighborhood 

cases. The results show less ghost colors and edge 

preserving compared to presently available methods. Our 

conclusion is that the new approach to color demosaicing 

could be very efficient for digital cameras based on Bayer 

masks. 
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Figure 6 – Mean histograms for the first four regions. Top - 

Green components; Bottom - 
RB∆ . The x-axis on the left is the 

intensity (gray) level. On the right is the ‘hue’ level. In red - 

small image, in blue - the big image; the gray vertical lines are 

the limits of the equal size mean sub-regions. 
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Figure 7 – Comparison of the various methods. Top: Original “Lighthouse” with two areas marked for zoom-in comparison.  

Middle row: Details of the fence reconstructed by (left to right) - Bilinear, Kimmel, Gunturk, Optimal Recovery, Variance of 

Color Differences and by our new algorithm. Bottom: Details of the house, reconstructed by the above methods (same order 

from left to right as for the fence). 

 
Table 1 – S-CIELab results for error >20 

      Method         

      Region

Bilinear Kimmel [2] Gunturk [5]

Optimal  

Recovery   

[6]

Variance 

Differences 

[7]

  Proposed        

    Method           

     [7]

LightHouse 719 517 360 3737 5570 426

Window 130 292 275 5242 5350 25

Statue 131 123 530 5 2357 251

Sails 136 108 413 33 6399 145

average 279.00 260.00 394.50 2254.25 4919.00 211.75  
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