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ABSTRACT

This paper presents our work on extending artificial neu-
ral networks use for real-time task scheduling to heteroge-
neous System-on-Chip architectures. The Hopfield model is
the neural network model considered in this study. We intro-
duce new constructing rules to design neural network so that
architecture heterogeneity can be considered. We show that
these new rules ensure the network stabilization on states
that take into account the architecture heterogeneity while
meeting the imposed task constraints.

1. INTRODUCTION & RELATED WORKS

Many scheduling algorithms have been developed for real-
time systems. Most of these algorithms take into consid-
eration a very specific and homogeneous set of constraints.
They take into account periodic, sporadic or aperiodic tasks,
which may or may not allow preemption, on mono or mul-
tiprocessor architectures, but rarely combine them. In ad-
dition, optimality in finding solutions for these problems is
even more difficult to obtain.

Several propositions addressing multiprocessor schedul-
ing have been developed [1} [14}, [11]]. The PFair algorithm
presented in these papers proposed an optimal solution for
periodic tasks on homogenous multiprocessor. A particular
solution has been declined to ensure partitioning on multipro-
cessor systems [2, [3]. The main idea of the PFair algorithm
is to assign each task on a processor with a uniform and fixed
execution rate by breaking tasks into quantum-length sub-
tasks. Preemptions and migrations are completely free with
this scheduling algorithm, and this can increase execution
time due to first-level cache misses. Another major limitation
of this solution concerns the targeted multiprocessor which
must be homogeneous, and it is now admitted that System-
on-Chip (SoC) architectures are always built with heteroge-
neous execution blocks. Furthermore, we can note also that
defining on-line Pfair scheduling is still a difficult problem.
In [IL1], the authors propose an approximate solution to re-
duce global complexity and to design hardware implementa-
tions.

On the other hand, the increasing complexity of nowa-
days applications, such as, signal and image processing al-
gorithms, and the need to accelerate their execution, have led
designers to investigate new hardware architectures. These
SoCs generally integrate heterogeneous processing units,
among other hardware components, on a same chip. They
operate in parallel and heterogeneity is due to the fact that
they can have different processing powers and execution
times for the same code portion. This new kind of archi-
tectures requires adapted tools and mechanisms to take into
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account their specificities. Hence, some studies, especially
on task scheduling, have been proposed [8} 4} 112].

Many solutions based on off-line scheduling algorithms
have been proposed. They are often complex, and are not
appropriate to real-time systems [7]]; they are generally time
costly and do not consider application dynamic behavior. In
this context, approximated methods have been developed to
solve this problem, such as genetic algorithms, simulated an-
nealing or Artificial Neural Networks (ANN).

In this paper, we propose an on-line scheduling algorithm
for heterogeneous multiprocessor architectures. We propose
to extend Cardeira and Mammeri’s work [5] on the ANNs
use, particularly the Hopfield model [9]], for on-line real-time
task scheduling. These authors utilize the results obtained by
Tagliarini and al. [[15)] who used the ANN theorical basis for
optimization problems introduced by Cohen and Grossberg
[L5]. The main contribution of Tagliarini and al. was the in-
troduction of a design rule that facilitates the construction of
time evolution equations describing network behavior. This
rule specifies the connection weights and external inputs that
will enforce constraints expressed as equalities or inequali-
ties.

Hence, the efficiency of applying ANNs for on-line task
scheduling is demonstrated in [5]. The concerned soft-
ware/hardware architectures can have different cumulated
constraints, such as timing constraints (periods, ready times,
deadlines, etc.), preemption and non-preemption constraints,
precedence constraints, on mono or multiprocessor architec-
tures. The ability to take into account numerous and different
constraints is made possible by the additive character of the
Hopfield model. The results of the application of this ap-
proach for real-time scheduling have shown their efficiency
[I5, 6], since it is a progressive approach and it offers inter-
esting convergence speed which makes it suitable for on-line
utilization.

As the work in [5] only considers homogeneous multi-
processor, the extension to heterogeneous multiprocessor ar-
chitectures is investigated in this study. The paper is orga-
nized as follows. First, we present the Hopfield model and
the main results obtained for this model, namely, Tagliarini
and al.’s construction rule. Then, the application of this
model to real-time task scheduling is shown. Finally, we ex-
plain how these results can be extended to take into account
processor heterogeneity on the considered architecture.

2. HOPFIELD’S NEURAL NETWORK MODEL

Many studies on ANNs utilization have been investigated
since Cohen and Grossberg [[15]] have proposed ANN mod-
els. The main characteristics to ensure the convergence to-
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ward a valid solution are the following ones: i) the neuron
connection weight matrix is symmetric, ii) its diagonal ele-
ments are all equal to zero, iii) and all the elements of the
matrix are non-positive.

Hopfield’s model is one of the models considered by their
study. Hopfield proved the existence of a Lyapunov func-
tion, called energy function [9]], and derived from Cohen and
Grossberg’s results, so that the ANN will evolve to a stable
state without increasing this function which has the follow-
ing form:
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where T;; is the connection weight between neurons i and j,
x; is the state of neuron i and J; is the external input of neuron
i.

The idea of Hopfield is that, since an ANN will tend to
minimize the energy function while evolving to stable states,
one can construct a network that tends to minimize this func-
tion. This will be done by associating the optimization prob-
lem variables to the function variables, i.e. putting the “cost
function” of the problem into an equivalent form to equation
[

The different steps needed to solve optimization prob-
lems using Hopfield ANN are the following. First find an
ANN topology in which neural outputs are interpreted as a
solution to the problem. Then, put the “’cost function” of the
problem into a form equivalent to equation |1} in which the
minima correspond to the best solutions for the problem, and
finally, calculate the connection weights and external inputs.
The ANN corresponding to the optimization problem is now
found. One just has to let the ANN evolve to a stable state
corresponding to the minima of the function. The ANN evo-
lution is made by computing the activation function for each
neuron, I; + T;jx;. If its value is less than 0, the neuron is set
inactive, elsewhere it is set to an active state.

3. APPLICATION TO REAL-TIME TASK
SCHEDULING

The use of Hopfield ANNs for solving on-line real-time task
scheduling problem has been first proposed in [5]. By mak-
ing a good choice of the Hopfield ANN topology, and by cal-
culating the energy function corresponding to the model con-
straints imposed, it is shown how this ANN can evolve to a
stable state representing a solution (if it does exist) to the task
scheduling while meeting the imposed real-time constraints.
Most of approximate methods for scheduling problem solv-
ing considers a set of restrictive constraints. However, ANNs
offer the possibility to deal with scheduling problems with
heterogeneous constraints. A progressive and systematic
method allows them to modelize problem and to built spe-
cific ANN. This later offers as well remarkable convergence
speed to stable state, which makes it very attractive for on-
line use. The following representation scheme for the net-
work has been adopted (see figure|[I)):

e Neurons are arranged in a matrix form, where lines cor-
respond to tasks and columns correspond to time units.
The scheduling length is generally supposed equal to the
least common multiple of the task periods.

e An active neuron will indicate that the corresponding task
is being executed at the corresponding time unit.
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After this scheme construction, the energy function cor-
responding to the problem must be calculated which will al-
low to obtain the different connection weights and external
inputs of the neurons. This function is the sum of the dif-
ferent energy functions corresponding to the different con-
straints to be taken into consideration.

Time (1 ... 5)

. O O O O Task 1 has the processor

at time t;

O O . . O Task 2 has the processor

at time t; and t,

O . O O . Task 1 has the processor

at time t, and tg

Task 1

Task 2

Task 3

Tasks | WCET | Dealine
T1 1 2
T2 2 4
T3 2 5

O inactive neuron

@ active neuron

Figure 1: Hopfield ANN evolution result for an example of
preemptive tasks using one processor at 100%.

To solve the scheduling problem, Tagliarini and al.,[15]],
introduce the k-out-of-N rule. This rule allows the construc-
tion of a network with N neurons for which the evolution
leads to a stable state with “exactly k active neurons among
N’ (an active neuron is a neuron with an output equal to one).
The following cost function

N
E=(k— ¥ x) )
i=1

is minimal when the active neuron sum is equal to k, and is
positive in the other cases. After applying some mathemati-
cal transformations, a function equivalent to equationis of
the form:

1 N N N
E:—EZZT,-] Xi-xj— Y I x; 3)
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with &; ; is the inverse of Kronecker function and is equal to
zero if i = j, and one otherwise.

The ANN corresponding to these results respects all the
convergence criteria, and can then be used.

Since the Hopfield model is additive, the k-out-of-N rule
can be applied to several sets of neurons at a time in order to
take into account different types of optimization constraints.
The new weights and inputs imposed by each constraint can
be directly added to those already existing (since the model
is additive). The ANN will evolve to a state satisfying all the
constraints simultaneously (if such a state does exist). In this
case, the energy function is minimal (equals zero). It is dif-
ferent from zero if the ANN is blocked on a local minimum
of this function, or if there is no solution for this problem.

Figure [l| shows the result of the k-out-of-N rule to
the scheduling problem of three preemptive tasks 7 (C; =
1,D; =2), h(C, =2,D; =4) and T3(C3 = 2,D3 = 5) on
a monoprocessor architecture, where C; represents the worst
case execution time of task 7; and D; its deadline. First, the
k-out-of-N rule is applied for each task (for each line of the
neuron matrix). For example, for task 77, the rule is applied
to the first two neurons (since D = 2) of the first line with
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k=1 (since C; = 1). Finally, to ensure processor use at each
time unit in a mutually exclusive manner, the k-out-of-N rule
is applied to each column with k = 1.

The simulation results of the technique application for
different task configurations are given in [3]. These results
show that the ANN-based scheduling algorithm can be re-
executed several times (since the network can reach a stable
state in few milliseconds) when the function is different of
zero, to determine if it is or not a local minima.

4. APPLYING NEURAL NETWORKS TO TASK
SCHEDULING IN HETEROGENEOUS
MULTIPROCESSOR ARCHITECTURES

The on-line scheduling problem of a set of real-time tasks
having deadlines on an architecture with m processors (with
m > 2), is a complex problem for which optimal algorithms
does not exist [[13]; it is an NP-Complete problem. In addi-
tion, well known scheduling algorithms, such as EDF (Earli-
est Deadline First) and RM (Rate Monotonic) [[10], used for
task sets executing on a monoprocessor architecture, cannot
be directly applied to the multiprocessor case. Thus, opti-
mal EDF algorithm in a monoprocessor environment, is not
optimal any more in a multiprocessor environment [[7]].

In the following sections, we propose to extend the ANN-
based method to take into account hardware architectures
composed of heterogeneous processors.

4.1 Considered model and hypotheses

The ANN topology proposed in [5] is modified in this pa-
per by extending the ANN with as many plans as processor
types in the system (note that one processor type may contain
multiple homogeneous processors). Thus, each neuron plan
will represent one type of processors, where the lines repre-
sent the tasks and the columns represent the scheduling units
of time. All neurons are obviously totally interconnected in
order to be able to use Hopfield’s results.

Tasks are specified by temporal constraints, essentially,
worst case execution times of each task on each type of pro-
cessor (or plan) it will eventually execute. For example,
a task 7; can be represented by T;(R;,Cio,Ci1, ..., Cim, Di, P}),
where R; is T;’s ready time, C;; the WCET of T; on processor
type j (it is equal to zero if the task cannot be executed on
this processor), D; is T;’s deadline and P its period.

Furthermore, the tasks are supposed to be independent in
order to facilitate the comprehension of this work; the model
can be easily extended later for precedence constraints since
corresponding results already exist [6]. In addition, commu-
nication costs are taken into account within worst case exe-
cution times.

For the scheduler, we assume that it runs on the processor
where the unique operating system manages all the architec-
ture resources, while having a global view of the system state
accessible at any time. Thus, this scheduler will deliver a
global scheduling for tasks arriving to the system and which
have to be dispatched among the different processors, while
meeting their constraints.

In the considered multiprocessor environment, a real-
time task scheduling algorithm is valid if all the deadlines
of the tasks distributed among the processors are met. In ad-
dition, the condition that a processor can execute only one
task at a time, and that a task is treated by only one type of
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processor at a time (i.e. migration between types of proces-
sors is not allowed) are imposed in the considered model.
Migration between processors of the same type are however
allowed.

The task scheduling sequence on the m processors that
enables all the tasks to meet their respective constraints, must
be computed now.

4.2 The approach

To simplify the presentation of the approach, we suppose that
each task 7; occurs once, that D; = P; and R; = 0. The exten-
sion to a model with more general parameters can easily be
made. The constraint model imposed supposes that, during
each task period, this task must be executed on only one type
of processor. First, for all neurons of the period on the differ-
ent plans, the application of k-out-of-N rule is to be applied.
Where £ is equal to the maximum of task WCETSs on the dif-
ferent plans, and N is the set of these neurons, extended with
a number of slack neurons corresponding to the difference
between the maximum and the minimum (other than zero)
among the task WCETs on the different processors. The ap-
plication of this rule ensures that there will be at least one
task execution during its execution period. Slack neurons are
introduced to ’absorb” active states if the number of already
neuron active states on the chosen processor is sufficient, i.e.
corresponds to the execution time of the task on this proces-
Sofr.

Let us take the example of 3 tasks represented in fig-
ure 2l These tasks are executed on an architecture with one
processor by plan (1pbp).

Slack
- neurons

T1(1,2) 0COO000 €000 O

Proc plan 1 Proc plan 2

T22,1) O0000 O000 @

T3(1,3) @®OO0OOO OOOO0O ee

Figure 2: Execution example of 3 tasks on 2 different proces-
sor types. Slack neurons “absorb” undesirable active states.

The network converges towards a stable state respecting
the applied rule. However, in order to make sure that this
execution will be on only one processor (migration is not al-
lowed), all active neurons for a task period must be enforced
to be on the same processor. To do this, the introduction of
a new design rule is necessary. We call it (0-or-k)-out-of-N
rule, and we apply it for the period of each task 7; on proces-
sor type j with k = Cj;.

4.3 The new (0-or-k)-out-of-N design rule

In order to ensure that only O or k neurons will be active
among N neurons, we first extend the N neurons with k slack
neurons, as presented in figure [4]

The N + k neurons must respect the following conditions:

N N-+k N+k
Yxi- ¥ x=0 and (Y x;—k?>=0
i=1 i=N+1 i=1

The first condition ensures exclusion of active states be-
tween “original” neurons and slack ones. The second con-
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dition ensures that k neurons will be active among the N + k
neurons. So the following cost function

N N+k N+k
E=Yx ¥ xi+(Lx—k? @)
i=1 =N+l i=1
is minimal when the active neuron sum is equal to O or k, and
is positive in the other cases. After applying some mathemat-
ical transformations on this function in order to put it in the
form of the energy function I} we obtain

N+k ) 1N+k N+k
E o= —Y (D)2-1Y ¥ (e
#i
N+k | 11\/—}—k N+k
- Y@= x—3) Y (Dxix
i=1 [
j#i
| N N+k
-~ iy (=2)-xi-x; )
=1 j=N+1

Hence, the following neuron parameters are obtained for
the three terms which respect the convergence criteria:

0 ifi=j
. — —4 if i=1...Nand j=N+1...N+k
o —4 if i=N+1...N+kandj=1...N
-2 else
3 .
I, = 2k—§ Vi (6)

These results are added to those presented above (applied
in figure[2). The next step will be to take into account mutual
exclusion in each processor.

4.4 Mutual exclusion

It is important to ensure that a processor is allocated to the
tasks that request it, in a mutually exclusive manner. To do
this, the k-out-of-N rule application to each column repre-
senting a scheduling instant, with k = n (number of proces-
sors of the considered type) and N the task number by col-
umn extended with n neurons is applied. The n extended
neurons allow to ”absorb” the unused cycles. Unused cycles
appear when all tasks have been scheduled in other cycles.
To manage this extension, we create n virtual tasks. Hence,
this step will ensure that we will converge to ”at most n active
neurons by column at a given time”.
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Furthermore, some convergence problems can appear
when the network is composed of more than two processor
plans. To limit these problems, we must ensure that if a task
is allocated on a processor, it can’t be allocated in another
processor. It corresponds to a unique allocation rule. The
formulation of this rule is given as

Z Xi - Z Xioo Z )CiZO.

ieplan; ieplany i€plany

Developing this function until obtaining a form equiva-
lent to Cohen and Grossberg’s energy function, leads to the
following parameters :

0
Tij = { -1

L =0 Vi @)

if i € plany, ;and j € plang with p = q
if i€ plany, and j € plang with p # q

This last rule must be added to the rule given in expres-
sion [6] to built a correct neuron network.

Finally, each line of the network is built as representing
as it is presented to the figure 4]

Global

slack

Proc plan 1 Proc plan p neurons

(0-or-k1)-out-of-N (0-or-kp)-out-of-N

kmax-out-of-N
with kmax= max(k1, k2, ... kp)

Figure 4: Global modelization of scheduling problem

5. APPLICATION EXAMPLE

Several simulations have been conducted to study the effi-
ciency of the proposed solution. We took a set of tasks with
execution times given in table [[Ja. to be executed on two
types of processors. We supposed first that each type con-
tains one computing unit (one processor by plan: / pbp), so
that the solution must deliver a scheduling sequence with a
maximum of one task by processor at a time. And then we
add to each plan one processor (2 pbp).

On table[I] we can observed that the convergence is faster
when the number of processors by plan increases. The num-
ber of possible solutions increases due to the large degree of
freedom to schedule tasks.

For the first case (with one processor by plan), the sim-
ulation of the neuronal network produces solutions as pre-
sented in figure 5]

This figure shows the schedule of all the tasks is correct.
Indeed, for each cycle, only one task is scheduled on each
processor. Nevertheless, we can see that tasks are often pre-
empted during execution. This problem must be solved by
applying specific rule which ensure that active neurons for a
task are cycle grouped (succ-k—-out-of-N rule) [6].
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WCET Average init

Task | Ci1 | Cip | P, Tasknb | 1 pbp | 2 pbp
Ti | 2 120 2 1,73 1,83
T, 2 1 20 3 2,98 2,98
T; 4 2 120 4 5,80 | 5,20
T, 3 5 120 5 16,91 | 6,76
Ts 4 6 |20 6 31,20 | 11,90
T 3 2 120 7 72,43 | 13,98
T; 2 3 20 b)

a)

Table 1: (a) Task execution times on each processor type,
(b) Average number of initializations needed for stabilization
(pbp: processor by plan)

Processor plan 1 Processor plan 2

TS —————m——m—m—m—mm— o e
T6 #-—-——- o fomm e
T7 —mmmmmmmmmm R

time(cycles) — 0to 20 time(cycles) — 0to 20
Figure 5: Result for 7 tasks scheduled on a SoC composed
of two types of processor (# indicates that the corresponding
task is running at this cycle

6. CONCLUSION AND FUTURE WORK

In this paper, the extension of ANNSs utilization for real-time
task scheduling, to heterogeneous multiprocessor architec-
tures, is proposed. New design rules, allowing the calcula-
tion of connection weights and external inputs for neurons
adapted for the system model, is presented. With these ob-
tained neuron parameters the ANN is able to converge to a
stable state meeting the considered system model constraints,
namely, the heterogeneity of processing units on which tasks
can execute. The simulations conducted consider one period
by scheduling length. They led to satisfying results for the
ANN-based scheduling algorithm that show the efficiency
of the new rule introduced in this paper. Extending these
simulations to more general tasks, with multiple periods by
scheduling length, and comparing these results to those of
existing methods for heterogeneous systems is the aim of our
next works.
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