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ABSTRACT

An ego-motion detection system has been developed,
where edge features are extracted from an image and ana-
lyzed to detect any motion from the camera holder instead of
using the conventional method of comparing pixel intensities.
Such edge-based feature representation scheme reduces the
computational complexity and increases the accuracy, thus
being better suited to hardware implementation due to its
simplicity. In this paper we have enhanced the reliability and
flexibility of the system by introducing a new pre-processing
scheme in edge detection and an automatic speed adapta-
tion capability in local motion detection. The pre-processing
improves the local motion detection accuracy by only high-
lighting the apparent general contour edges, while filtering
out insignificant features in the background which may lead
to misjudgement. The automatic speed adaptation capabil-
ity improves the system and renders it more flexible to ac-
commodate to more complex motion patterns with variable
speeds. The system performance has been demonstrated by
simulation experiments and the robustness against disturbing
moving objects in the scene has also been shown.

1. INTRODUCTION

For human being, motion recognition is an essential ability
in understanding the environment for survival. Therefore a
number of studies have been carried out to understand the
mechanisms of motion recognition. The motion recognition
is usually considered to be composed of two steps, i.e.,mo-
tion detectionand motion analysis. Motion detection is a
technique to detect the movement of a specific object using
visual information, and a number of algorithms have been
proposed in this area[1, 2, 3, 4, 5, 6].

Among these studies, ego-motion detection is one of the
hottest topics used in such applications as automatic vehi-
cle navigation, robot control, and security surveillance. Be-
ing different from general motion detection which aims at
tracking a certain object, ego-motion detection identifies the
global motion path of an observer by analyzing the infor-
mation in its visual field. However, most of the existing al-
gorithms found in literatures estimate the motion models by
solving some complex equations with floating-point calcu-
lations. Therefore they are computationally very expensive
and not compatible to real time applications.
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Figure 1:Flowchart of ego-motion detection.

In the previous work [7], a hardware friendly algorithm
for ego-motion detection was proposed. All operations are
executed with 1-bit or integer operations, i.e. in fixed-point
calculation, thus being easy to implement with compact hard-
ware circuitry, which is crucial in building real time systems.

However, in the previous system, the reliability and flexi-
bility are not sufficient and improvements in the performance
have been awaited. For example, in local motion detection,
insignificant features abundant in the background sometimes
confuse local motion detection, resulting in the misjudge-
ment of the system in certain cases. The other problem is that
the system has been adapted to constant-speed motions, thus
being not compatible to irregular motions including abrupt
motion changes.

In this paper, we have introduced two new schemes to
the system, namely thevariable graduation methodandau-
tomatic speed adaptation schemein order to resolve these
problems. In the former, it is aimed to promote the advan-
tage of the edge-based feature representation to larger ex-
tent. Only the salient contour in the edge map is retained and
emphasized by discarding insignificant details in the back-
ground. The basic idea of the speed adaptive scheme is an
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Figure 2: Directional Edge Histogram Matching (DEHM)
utilized for detecting horizontal motion component of the im-
age in a 32x32-pixel block. Edge maps are taken from image
pairs at timet and t + ∆T. Then histograms are generated
by projection of edge flags. The best matching in the search
area yields the horizontal motion component.

automatic adjustment of the frame interval that determines
the accuracy in local motion detection. This has improved
the quality of global motion representations, thus enhancing
the accuracy of the following template matching step to de-
termine ego-motion patterns.

The paper is organized as in the following. Firstly,
in Section 2, the proposed ego-motion detection system is
presented referring to the previous work, and the two new
schemes introduced in the present work are described. Then,
the simulation experiments and the results of performance
evaluation are presented in Section 3, and conclusions are
given in Section 4.

2. EGO-MOTION DETECTION BASED ON EDGE
HISTOGRAM MATCHING

2.1 System overview

The processing flow in the previous system is shown in Fig.
1, which is carried out in five steps.

Step 1: Input data are given as a sequence of motion
pictures. Horizontal and vertical edges are extracted from
each frame according to Projected Principal-Edge Distribu-
tion (PPED) scheme [8, 9, 10].

Step 2: As the result of Step 1, horizontal and vertical
edge maps are generated. Then, two edge maps att and
t + ∆T are utilized to detect local motions based on Direc-
tional Edge Histogram Matching (DEHM) scheme, which is
explained in detail in Fig. 2. Local motions are detected in
the array of 10x6 local blocks.

Step 3: Local motions are grouped into nine separate ar-
eas in a 3x3 form. Local motions within each area are sum-
marized and an area motion is determined. The set of mo-
tions in the array of 3x3 areas represents a motion field.

Step 4: Then an 18-element motion vector is generated
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Figure 3:Procedure of variable graduation method. Original
image and edge map without pre-processing (a). Generation
of vertical edge map with pre-processing (b). Edge detec-
tion is operated four times with separate parallel graduation
filters. Final edge map is generated by ‘AND’ operation. Per-
formance comparison for an indoor scene (c).

by collectingx andy components of the nine area motions.
Step 5: Finally, ego-motion detection is carried out by

template matching. Four types of motions, i.e., moving ver-
tically, moving horizontally, zooming, and rotating are pro-
vided as motion patterns and one of them is selected.

2.2 Variable intensity graduation image pre-processing
for highlighting contour edges

In this work, it is aimed to detect the global motion tendency
in the visual field, rather than the details. For example, an
image sequence of a galloping horse with its hair flowing in
the wind, the information contained in the areas displaying
flowing hair is of no use to determine the global motion, but
can have a negative impact. Humans understand the environ-
ment by only relying on salient features in the scene. For
example, seamen can recognize a coastline from very little
visual information, although the field of view is dominated
by monotonous water and sky. Most of the information is
contained in the boundary regions between the sky and the
water, or the water and the land. Namely, apparent contour
features present in the scene play an essential role. In order to
retain only essential contour features while discarding super-
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fluous information, we have introducedvariable graduation
method, which is explained in the following.

The original grayscale image and its vertical edge map
generated following the PPED scheme [8, 9, 10] are shown
in Fig. 3(a). Numerous edge flags are detected in the re-
gion of water and sky, which include the edges arising from
camera noises, JPEG block noises, etc. The reason for such a
numerous edge detection is due to the PPED algorithm which
has been designed and adapted to detect all delicate edge in-
formation from a grayscale image in order to use them in
medical radiograph analysis and diagnosis. Certainly such
edges degrade the performance of local motion detection by
DEHM. To overcome this problem, a variable graduation
pre-processing scheme, applied before edge detection, is pro-
posed for highlighting only the most significant features. The
algorithm is explained in Fig. 3(b).

By gradually reducing the graduation, less significant
features are filtered out and only the essential general con-
tour edges are retained, and then used for motion detection.
In this process, pixels with similar intensities are converged
into the same group. We reduce the graduation of image in-
tensity to filter out unimportant details.

Although image is smoothed in the operation, the promi-
nent edge features are left, while the areas without obvious
variance of intensity are flattened. In the present work, the
full-scale 8b intensity graduation (0, 1, 2,· · · 255) has been
reduced to (0, 20, 40,· · · 240), for instance. Here, 20, 40,
etc. represent the intensity boundaries in the reduced gradu-
ation. In Fig. 3(b), four vertical edge maps generated from
the original image in Fig. 3(a) with four different intensity
graduation boundaries are shown. Then, ‘AND’ operation
is carried out on these four edge maps. Namely, edge flags
are retained only at the pixel sites in which edge flags are all
present in four maps. The resultant edge map is also shown
in Fig. 3(b) as the convergence result. It is interesting to
observe that all superfluous edges are filtered out, and only
essential contour features are retained.

To confirm the effectiveness of the pre-processing, an-
other experiment was carried out for an image sequence of
an indoor scene in Fig. 3(c). As shown in the figure, the con-
tours of building structures come out more clearly with the
pre-processing scheme.

2.3 Automatic speed adaptive scheme

In the previous ego-motion detection system, two frames of
images sampled at two different times are used for operating
motion detection. This algorithm has achieved a high level
of accuracy when the camera is moving at a uniform speed.

When the camera moves with a variable speed, the con-
stant interval of sampling image pairs result in a different
amount of motion. Therefore, considering an actual ego-
emotion in which speed variation is inevitable, a stationary
interval setting in the previous algorithm will lead to incor-
rect results in local motion detection.

In local motion detection by DEHM shown in Fig. 2,
search area is located±8 pixels offset from the original block
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Figure 4: Image sequences of smooth motion (Case A) and
abrupt motion (Case B) (a) and resultant motion fields (b).
Distributions of matching residues for Case A and Case B
(c).

location.
When a sudden large motion is encountered not fitting

to the frame interval of image pair sampling, the object mo-
tion is out of the±8 pixels range and erroneous local motion
detection occurs. However, such an unexpected abrupt mo-
tion can be easily eliminated using the technique illustrated
in Fig. 4.

Two types of camera motions are illustrated in Fig. 4(a).
A smooth camera motion in Case A and an abrupt camera
motion in Case B. Motion fields generated from these two
motion types are also given in Fig. 4(b). In Fig. 4(c) are
given block matching residues for Case A and Case B. The
matching residues are the Manhattan distances yielding the
best match of edge histograms in local motion detection.

If correct local motions are detected from the smooth mo-
tion, their residue average is small. But if an abrupt mo-
tion occurs as in Case B, the average value of the matching
residue increases. By setting the threshold for the average
residue at 120, such abrupt motions can be eliminated very
effectively.

A speed-adaptive scheme has been introduced to the al-
gorithm to make the system more flexible and capable of an-
alyzing more complex motion patterns. The procedure is ex-
plained in Fig. 5. The camera’s global displacement is de-
termined by calculating movement of the five largest motion
areas, while the frame interval is fixed at a constant value.
Once the camera’s global displacement has reached the pre-
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Figure 5: Automatic speed adaptation procedure. (a) Tem-
poral image sequence used for motion vector generation. (b)
Camera’s global displacement is determined as the average
of five largest area motions. (c) Threshold condition to deter-
mine the timing of motion vector generation.

determined threshold, the motion field is used to generate a
motion field vector. In our simulation the threshold of 15
pixels was employed.

3. EXPERIMENTAL RESULTS

Figure 6 shows the local motion vectors detected from an im-
age sequence taken by a camera on a boat with (a) or without
(b) the image pre-processing phase using the variable gradu-
ation method. Without any pre-processing, erratic local mo-
tions appear due to some superfluous edges coming from the
background. However, with the pre-processing phase, most
of the background noise is eliminated, resulting in more con-
sistent local motion vectors. As a result, it is determined that
the observer is moving to upper-left, the correct result due to
the floating motion of the boat.

The reason for including a speed adaptive scheme is to ef-
ficiently extract and make use of the motion information from
the video sequence. It optimizes the procedure for selecting
frame pairs used to detect motion, thus reducing the proba-
bility of producing invalid motion vectors. Figure 7 shows
the advantage of using this technique. Figure 7(a) shows the
result of speed adaptation for the frame sequence shown in
Fig. 5(a). As the frame sequence progresses, the adapted
frame interval changes a lot. It effectively reveals the irreg-
ular motion speed. In Figs. 7(b) and (c), the result of mo-
tion detection without or with the speed adaptation scheme
are shown, respectively. When the speed adaptation is not
executed, the result includes more than 60% invalid motion
vectors produced due to abrupt motions. On the other hand,
with the speed adaptation, the occurrence of invalid motion
detection is effectively suppressed.

Also the singular result is displayed as a motion field in
the figure. When the ship is moving diagonally due to the
floating boat motion, motion is explained as moving down
correctly, while it is interpreted as rotation without speed
adaptation.

The performance of the system against disturbing mov-
ing object is given in Fig. 8. The effect of another ship
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Figure 6: Illustration of performance of pre-processing.
Edge maps and resultant motion fields detected with or with-
out pre-processing are shown.

moving in the foreground is shown. The obstructing ship
is passed over the sequence and the scale of the obstruction
was varied from 0 to 1. The scale of 1 means the height of
the ship image is equal to the height of the original image
sequence. It is seen that the accuracy decreases drastically
when the scale of the disturbance overrides 50% of the back-
ground. The reason for this is that only the sky and sea which
include few features are left for detecting motions. However,
such an illusion is also very likely to happen for human ob-
servers.

4. CONCLUSIONS

The performance of the ego-motion detection system pro-
posed in [7], based on directional edge histogram matching,
has been enhanced by introducing two new schemes. First
a new pre-processing phase prior to edge detection and sec-
ondly an automatic speed adaptive processing phase. The
pre-processing improves the local motion detection accu-
racy by only highlighting the apparent general contour edges,
while filtering out insignificant features in the background
which may lead to misjudgement. The automatic speed adap-
tation capability makes the system more flexible when inter-
preting more complicated motion behavior. The system per-
formance has been verified by simulation experiments and
the robustness against disturbances caused by moving objects
in the scene has also been demonstrated.
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