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ABSTRACT

Cepstrum-based features have proved useful in audio and
speech characterisation. In this paper a feature vector of
cepstral polynomial regression is introduced for the detec-
tion and classification of impulse responses. A recursive al-
gorithm is proposed to compute the feature vector. This re-
cursive formulation is appealing when used in a sequential
learning framework. The discriminative power of these fea-
tures to detect and isolate racket hits from the audio stream
of a tennis video clip is discussed and compared with stan-
dard cepstrum-based features. Finally, a new formulation of
the Average Normalised Modified Retrieval Rank (ANMRR)
is proposed that exhibits relevant statistical propertiesfor as-
sessing the performance of a retrieval system.

1. INTRODUCTION

In digital video analysis it is now recognised that audio cues
extracted from a video clip, along with the visual cues can
provide relevant information for the semantic understanding
of the video content [14]. The audio-visual cooperation is
insured through multi-modal conditional density estimation
in [3]. Mel-Frequency Cepstral Coefficients (MFCC) are
used in [7] to identify specific sounds in a baseball game in
order to detect commercials, speech or music using the max-
imum entropy method. Most proposed methods combine au-
dio and visual features within a HMM framework [2, 8]. The
common approach is to consider a large set of audio and vi-
sual features and select the most relevant ones [5] during the
training step.
Working with a high dimensionality feature space requires a
large sample size training set [11]. However there are many
situations where the sample size of the dataset cannot be cho-
sen as large as desired. When a fast decision is to be taken
a sequential classification scheme bearing optimality proper-
ties in terms of required sample size [13], is convenient. In
the process of building up ground truth, the size of the dataset
is small at first and increases in the course of annotation.
The scope of this paper is sequential learning monitored from
the audio stream. In audio-based classification or indexation
homomorphic features are widely used. Homomorphic pro-
cessing was introduced to deconvolve the source and chan-
nel of a system in the cepstral domain [4]. The First Cepstral
Coefficients (FCC) - similar to the MFCC’s computed on the
cognitively relevant mel-frequency scale - encode informa-
tion about the spectral envelope of the analysed signal. In
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speech processing FCC’s or MFCC’s characterise the reso-
nant system created by the mouth and lips of the speaker.
Using the mel-frequency scale, it is usually found that 12
MFCC’s are necessary for signal characterisation (see [14]
for example). Seting the dimensionality of the feature space
to 12 components requires a sufficiently large sample size
learning set. Moreover in the problem of classifying wave-
forms extracted from a single audio stream, the character-
ization of the channel which models the same propagating
medium and recording device is not relevant. Thus again,
FCC’s and MFCC’s are not efficient features for such a clas-
sification problem.
In this paper we introduce a new set of cepstral features based
on a polynomial regression of the cepstrum called Cepstral
Regression Coefficients (CRC). We propose a recursive com-
putation of the CRC’s which potentially enables the con-
venient updating of the dimensionality of the feature space
when the sample size of the training set increases. We fo-
cus on the cepstral characterisation of an impulse response
with low dimensional extracted features since the impulse
response waveform only encodes information about the sys-
tem. The discriminating power of the proposed features is
experimentally evaluated in an experiment of classification
of racket hit waveforms extracted from the audio stream of
a tennis video clip. Assessment is performed using ROC
curves and a new formulation of the Average Normalised
Modified Retrieval Ranking (ANMRR) [9, 10], introduced
for its convenient statistical properties.

2. FEATURE EXTRACTION

2.1 Data model

Consider theN× 1 data representationc = [c1,c2, . . . ,cN]T

indexed by theN×1 vectorq = [q0,q1, . . . ,qN−1]
T such that

c = Q(p)a(p) + ε, (1)

wherea(p) is a(p+1)×1 vector,Q(p) is aN×(p+1) matrix
with elementg j−1(qi−1) on theith row andjth column where
g j are polynomials of orderj, and ε is a N × 1 vector of
random perturbations.

2.2 Proposed features

The minimum mean-square estimation of the so-called vec-
tor of regressive coefficientsa(p) is:

â(p) = R−1
(p)Q

T
(p)c, (2)
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whereR(p) = QT
(p)Q(p) is a(p+1)× (p+1) matrix with el-

ements

r i j =
n−1

∑
k=0

gi−1(qk)g j−1(qk), (3)

on theith row andjth column.
Let the data representationc be the vector of cepstral magni-
tudes of a time sequencee [4]:

c = |FT−1{log(|FT{e}|)}|, (4)

where FT{.} is the discrete Fourier transform. We propose to
take the coefficients ˆa(p) in (2) as descriptors of the cepstrum
content of the detected events.
Figure 1 shows the cepstral magnitudes of a racket hit and
crowd applause extracted from the audio stream of a broad-
casted tennis game. A racket hit can be seen as the im-
pulse response of a system since the source (the ball hitting
the racket) can be modeled by a Dirac impulse although the
source of crowd applause can be modeled by a train of Dirac
impulses. The cepstra are computed over 256 quefrency bins.
Regressions of order 2, 5 and 10 are superimposed. The slope
at the origin of the polynomial of order 2 of the racket hit is
stronger than for the crowd applause. Applause generates a
cepstrum content resembling that of white noise with a sharp
peak centered at the null quefrency. Low order regressions
such as the one presented in this figure are not able to encode
this low quefrency information. However, the regression co-
efficients of the crowd applause are more sensitive to local
variations in the mid-range quefrencies.
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Figure 1: Cepstral regression of order 2 (plain line), 5
(dashed line) and 10 (dash-dotted line) of two typical events
of a tennis rally: a racket hit (a), and crowd applause (b).

2.3 Recursive polynomial regression

Denoteui = ∑n−1
k=0 gi−1(qk)ck the ith element of vectoru(p) =

QT
(p)c. One have the simple recursive concatenation relation:

u(p) = [uT
(p−1),up]

T . (5)

Similarly, the matrix R(p) can be expressed in terms of
R(p−1):

R(p) =

[

R(p−1) rp

rT
p rp+1,p+1

]

, (6)

whererp is the 1× p vectorrp = [r1,p+1, r2,p+1, . . . , rp,p+1]
T

of coefficients (3).
The block-matrix inversion formula (see for example [12])
gives:

R−1
(p) =

[

R−1
(p−1)

+R−1
(p−1)

rps−1
(p)

rT
pR−1

(p−1)
−R−1

(p−1)
rps−1

(p)

−s−1
(p)

rT
pR−1

(p−1)
s−1
(p)

]

,

(7)
wheresp = rp+1,p+1− rT

pR−1
(p−1)

rp is the Schur complement
of R(p−1). By inserting (5) and (7) into (2), the updated esti-
mate of the regression coefficient vector takes the form:

â(p) = R−1
(p)u(p),

â(p) =

[

I +R−1
(p−1)

rps−1
(p)

rT
p −R−1

(p−1)
rps−1

(p)

−s−1
(p)

rT
p s−1

(p)

]

×

[

â(p−1)

up

]

. (8)

First, the orderp= 1 CRC’sâ(1) are computed using (2) from
the estimated magnitude cepstrumc defined in (4). This op-
eration requires the inversion of the 2×2 matrix R(1). In a
later step the computation of the orderp CRC’s is performed
by means of the orderp−1 CRC’s using recursion (8).
The recursive computation of the CRC’s is a fast method
for extracting the proposed cepstral-based features. More-
over the recursive design is well-fitted to sequential schemes
where data are available sequentially.
The next section is devoted to the evaluation of the capabil-
ity of the CRCs to encode the characteristic feature of the
magnitude cepstra of an impulse response.

3. EXPERIMENTAL EVALUATION

To evaluate the efficiency of the CRCs for discriminating
impulse responses, a Biased Discriminant Analysis [15] has
been performed within a supervised learning framework. We
report below the result of the experiment carried on two train-
ing sets of different size in order to show the role played by
the dimension of the feature space and the need to match the
dimension of the feature space to the size of the training set.

3.1 Experimental setup

Two classification experiments were carried using the CRCs
and FCCs. For each set of features the biased discriminant
transform was computed from the training set and applied
to the same set in order to estimate the likelihood function
of the class of impulse response. A Gaussian model was as-
sumed in the transformed feature space. The test set was then
transformed onto the discriminative space and the likelihood
function was computed. ROC curves were computed by suc-
cessive thresholding of the likelihoods.

3.1.1 Dataset

The experiment has been carried on the second, third and
fourth game of A. Agassi and R. Schuettler in the Australian
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Open final tennis game of 2003. The match is played on a
synthetic surface.
Events were detected by a CUSUM test of a change in the
variance of the audio stream [1] assuming white Gaussian
noise for silent segments (see [6] for details). Each seg-
mented event starts at the local maximum of the waveform
and is 20ms long.
In the first experiment the events extracted from the second
game were used as the training set. A total of 203 events
were detected including 20 actual racket hits. This is the
small size training set. In the second experiment, the events
detected in the second and third games were used as thelarge
size training set. This set is composed of 759 events includ-
ing 93 racket hits.
In both experiments the test data was collected from the
fourth game. A total of 561 events were detected by the
CUSUM test including 75 racket hits.
The events detected by performing the sequential test are
racket hits, echoes, ball bounces, shoe shuffles, voice (com-
ments, player’s shouts, umpire speaking), andcrowd noise.
Even though bounces and segmented echoes could be con-
sidered as impulse responses, the aim of the experiment was
to classify racket hits.

3.1.2 Extracted features

The estimated magnitude cepstrac are vectors ofN = 256
normalised quefrency binsqi = i/2N. The CRCs are com-
puted with polynomialsg j(qi) = q j

i indexed by normalised
quefrencies.

3.1.3 Biased discriminant analysis

The objective of the experiment was to assess the capability
of the Cepstral Regression Coefficients (CRC) to discrim-
inate and identify racket hits among the different types of
detected events. For this purpose it is relevant to split the
data set into the class of racket hits and a single class of all
other events. The class of racket hits can be considered as
homogeneous whereas the other class is more likely to be
a compound of heterogeneous subclasses. This is a “1− x”
class problem.
Bias Discriminant Analysis is a modification of Linear Dis-
criminant Analysis proposed by Zhou et al. in [15] to address
1−x class problems. Call the racket hit class thetarget class.
The between-scatter matrixSb and within-scatter matrixSw
are defined as:

Sw = ∑
R

(ak−mr)(a
k−mr)

T , (9)

Sb = ∑
R

(ak−mr)(a
k−mr)

T , (10)

whereak is the vector of CRCs of thekth event1, R is the set
of feature vectors belonging to the target class,R is the set
of all the other detected events andmr is the mean vector of
the CRCs of the target class.
Denote byΛ the diagonal matrix of generalised eigenvalues
of the scatter matrices andV the matrix of the corresponding
generalised eigenvectors defined by:

SbV = SwVΛ . (11)

1For the sake of simplicity of the notation the orderp of the polynomial
regression is dropped here.

The generalised eigenvalues are solutions of the optimization
problem:

Λ = argmax
L

|LTSbL|
|LTSwL|

. (12)

The Biased Discriminant Transform (BDT) is defined by the
operator:

W = VΛ1/2 , (13)

and the transformed feature vector ˜ak of the feature vectorak

is:
ãk = VΛ1/2ak . (14)

Figure 2 shows an example of BDT performed on a 2-
dimension feature space. One can see that the BDT tends
to cluster the target class while keeping away elements of
the other classes. In the transformed feature space the target
class can relevantly be modelled by a single mode proba-
bility density function for further probabilistic or statistical
processing.
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Figure 2: Bias Discriminant Analysis. Target class items are
labeled with circles (◦), other items are labeled with crosses
(+). Original order one CRC space (left) and transformed
CRC space using the BDT computed from the target class
(right).

3.2 ROC curves

Figure 3 shows the Receiver Operating Characteristic (ROC)
curves of the classifier trained with the small training set for
four feature spaces of 4, 8, 12, and 16 dimensions. The train-
ing set is classified in order to provide an upper bound on the
performance of the classifier.
The performance of the classifier applied to the training set
increases with the dimension of the feature space for both
sets of features. Best performance is reached by the 16-
dimension CRCs with a small size training set shown on Fig-
ure 3 where the probability of detectionPd = 1 with a prob-
ability of false alarmPf a = 0. A higher dimensional feature
space provides a better description of the data set. However
the performance of the classifier applied to the test set de-
creases as the dimension increases.
These simultaneous behaviors show that the classifier is
prone to over-fitting at high dimensions. The dramatic de-
crease of the performance whatever the features also show
that a high dimensional feature space is too sparse in regard
to the size of the training set. This is an illustration of the
curse of dimensionality.
Figure 4 shows the ROC curves of the classifier trained with

the large training set.
The performance of the classifier computed with the CRCs
are stable while the dimension of the feature space increases
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Figure 3: ROC curves of the Bias Discriminant Analysis
trained with the small size training set for feature spaces of
various dimensions. Feature vectors are CRC (grey line),
and first cepstral coefficients (black line). The training set
(dashed line) and the test set (plain line) are classified.

although the performances of the classifier computed with
the FCCs decreases as the dimension of the feature space
increases. Note also that apart from the 4-dimension case
where performances are similar irrespective of the size of the
training set, the classifier performs better on the large train-
ing set than on the small training set. This highlights againan
overfitting phenomenon since the large training set contains
more diversity than the small training set.
The somewhat bad performances of the FCCs show that these
features are less robust to noise and cepstral estimation error
than the CRCs. It also shows that discriminating the impulse
responses from other waveforms extracted from the same au-
dio stream cannot be efficiently performed without taking
into account information encoded in the high quefrency co-
efficients.
The CRCs offer better classification performances than the
FCCs irrespective of the dimension of the feature space and
the size of the training set. Moreover, the discrepancy be-
tween the performances of the classifier applied to the train-
ing set and to the test set for both sets of features shows that
the CRCs are subject to less overfitting than the FCCs. A
classifier based on CRCs is less dependent on the training
set. Recursion (8) makes CRCs a good candidate for adap-
tive and sequential classification. The dimension of the CRC
space can be updated to match the size of the ever increasing
training set with no loss of classification performance and a
reduced overfitting.

3.3 Retrieval rank

The analysis of the ROC curves shows that the classification
algorithm is subject to false positives. It can be of interest
to investigate which events belonging to the negative class
produce false positives. We propose here to evaluate the re-
trieval performance of the classifier by computing a measure
of ranking of the likelihood of the events using the Average
Normalised Modified Ranking Retrieval introduced by Man-
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Figure 4: ROC curves of the Bias Discriminant Analysis
trained with the large size training set. See Figure 3 for de-
scription.

junath et al. [9] in the context of MPEG7.
The ANMRR for the topT from a setR of Nr positives as
proposed in [10] is:

r̃ =
1

NNr

[

s(r)−
Nr(Nr +1)

2

]

, (15)

wheres(r) = ∑Nr
k=1 rk, rk is the rank of thekth positive in-

stance andN is the size of the dataset. It is zero for a perfect
ranking and maximum when theNr positive items occupy the
ranksN−Nr +1 toN. It can be shown that the expected value
and variance of the ANMRR for a random uniform ranking
rk are:

E{r̃} =
(N−Nr)

2N
, (16)

Var{r̃} =
(T +1)2(N−Nr)

4N2Nr
. (17)

The statistics of the ANMRR are functions of the size of the
datasetN, the number of positivesNr and the total number of
retrieved eventsT. This is not convenient for comparing re-
trieval results in various configurations. Manjunath et al.[9]
in the original formulation proposed to assign a fixed value to
the rank of positive items higher than a given threshold. This
approach allows for comparison but then statistical proper-
ties of a random ranking are not easy to derive. However the
expected value of the uniform rank is a measure of compar-
ison much like the coin toss line of ROC curves. Above this
value the performances of a retrieval system are statistically
worst than performing a random retrieval. We propose here
to modify the ANMRR ˜r in order to overcome these draw-
backs. Consider the normalised ANMRR:

r̂ =
1

smax−smin
[s(r)−smin] , (18)
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Dim. 4 8 12 16
racket .11 .09 .13 .09 .25 .09 .29 .09

bounces .36 .40 .40 .36 .45 .34 .42 .33
echoes .30 .34 .35 .31 .30 .36 .34 .35
voice .57 .63 .66 .68 .63 .71 .65 .75
shuffle .60 .56 .57 .59 .55 .56 .54 .54
crowd .60 .56 .57 .57 .62 .63 .56 .66

unknown .61 .61 .55 .54 .50 .54 .48 .51

Table 1: Average Normalised Modified Retrieval Ranking
(ANMRR) for the detected events. For each dimension the
left column displays the ANMRR for the small size training
set and the right column displays the ANMRR for the large
size training set. Three top rows are impulse response type
of events.

wheresmin = ∑Nr
k=1k andsmax = ∑N

k=N−Nr+1k. The expected
value and variance of this new ANMRR are:

E{r̂} =
1
2

and Var{r̂} =
(T +1)2

4Nr(N−Nr)
. (19)

The expected value of the proposed ANMRR ˆr does not de-
pend on the configuration of the retrieval experiment. More-
over r̂min = 0 and ˆrmax = 1 so the boundaries of the proposed
ANMRR do not depend on the configuration of the experi-
ment neither.
Table 1 shows the ANMRR of each class of events for both
experiments performed with the CRCs. The ANMRR of the
racket hits slowly increases when the classifier is trained with
the small sample size training set and is stable when the clas-
sifier is trained with the large sample size training set. This
tendency was already shown with the ROC curves in the pre-
vious section. For all the other events the behavior of the
ANMRR is rather erratic. This can be explained by the high
variability of this measure due to the sensitivity to a change
in the rank of one item.
However for racket hits, bounces and echoes, the ANMRR
is lower than 0.5 whatever the experiment although the AN-
MRR of the other events is higher than 0.5. This illustrates
that false positives are mainly due to bounces and echoes. As
already pointed out bounces and echoes can be considered as
impulse responses. This confirms that CRCs are valid fea-
tures for discriminating impulse responses.

4. CONCLUSION

We have introduced a set of features extracted by cepstral
regression for the classification of impulse responses. Exper-
iments have shown that for a small number of coefficients,
the proposed Cepstral Regression Coefficients (CRC) outper-
form the standard First Cepstral Coefficients (FCC). More-
over we have shown that CRC extraction can be implement
recursively. If data are processed sequentially, the growing
of the population of the dataset requires the simultaneous in-
creasing of the dimension of the feature space. The proposed
recursive computation of the CRCs can thus be conveniently
integrated into a sequential and adaptive learning scheme.
The discriminating power of the CRCs has been assessed
from the interpretation of ROC curves. Such a representa-
tion fails to provide information about the non-stationarity

of the data even though this is a crucial feature in an adap-
tive framework. A statistically motivated modification of the
Average Normalized Modified Ranking Retrieval (ANMRR)
measure has been proposed to evaluate the performance of
the proposed features on a sliding short-time interval. This
is the first step towards the development of a method for as-
sessing non-stationarity in pattern recognition problems.
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