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ABSTRACT to the equalization of a first order Markov channels. How-

This paper investioates the performance of the NonE €l in B] and 9], only a real value transmission context
pap 9 P 'and a synthetic first order Markov channel were considered.

Stationary Recursive Least Squares (NSRLS) algorithm ik o etore “in this paper, a generalized NSRLS algorithm is

%esigned for a DFE performing in a realistic transmission

in general the wireless channels are assumed to vary in tim8ontext: the transmitted input and the channel impulse re-
according to a Markov model, the NSRLS algorithm maysponse are complex. Moreover, the equalized channel is as-

represent a favorite candidate since it is designed to trac'%umed to vary according to a Markov model of or@ethat
Markovian time varying channels. The Stanford UniversityCan be higherythan one

Interim (SUI) channels are considered in this paper. To obey Furthermore, the proposed equalization approach allows

the constraints of the realistic transmission context, we pro- ot only the reduction of the BER but also the characteriza
in thi li i f the NSRLS algg:- g > : h .
pose in this paper a generalized version of the NSRLS alg on of the Markovian non-stationarity of the considered SUI

rithm. The performances of the Decision Feedback Equaliz

(DFE) updated by the proposed NSRLS algorithm are comchannels. _ _

pared with those of the conventional RLS-DFE through simu- 1 he remainder of the paper is organized as follows. In
lations. The reported results demonstrate the efficiency of tha€ctior2, the non-stationary equalization context as well as
generalized NSRLS algorithm to capture the time variationdh€ test SUI channels models are presented. In Se8fion
of the SUI-1 and SUI-2 channels. Indeed, the Bit Error Ratéhe generalized NSRLS algorithm is developed. Secfion
(BER) is significantly reduced with the NSRLS-DFE. MorePresents several simulation results to illustrate the efficiency
over, it is shown that a high order Markov model is required©f the NSRLS-DFE in the presence of the SUI channels.

to well represent the non-stationarity of the SUI channels.

2. ADAPTIVE EQUALIZATION
1. INTRODUCTION FOR SUI CHANNELS

In wireless transmission, the channel characteristics are u2-1 Equalization problem

known and time varying, so it is difficult to design the op- _ . .
ying g P For transmission over a wireless channels, the underlying

timal transmitter/receiver. An equalizer is needed to elimi-_. I > di ional and th lizer h
nate Inter-Symbol Interference (ISI) introduced by the time>!9"@! SPace IS one-dimensional and the equalizer has com-

varying channel] [2]. Furthermore, the Decision Feed- plex taps. The structure of such equalizer is shown in Fig-
back Equalizers (DFEs) are preferred to transverse equalii'—re L
ers in the case of severe multipath time varying chan@gls [
In this paper, we are interested in the SUI wireless channels Channel
[3] [4]. In particular, only the Line-Of Sight (LOS) models
are considered here.
Basing on the idea that the wireless channels vary accord-
ing to a Markov modeld] [6] [7], we propose to adapt the
DFE that minimize the ISI introduced by an SUI channel by a bjn)

Equalizer

specific algorithm: the NSRLS algorithm. In fact, this latter
one is dedicated to track time varying Markovian channels*(n) r(n)
impulse responses. Based on a prior knowledge of the non- | SY! N2
stationarity Markov structure, the NSRLS performs an adap-
tive identification of the unknown Markovian parameters fol-
lowed by an adaptive estimation of the channel impulse re-
sponse. The approach of the NSRLS algorithm is different
from Kalman algorithm. Moreover, contrary to Kalman, the
knowledge of the non-stationarity and the observation noises
statistics are not required with NSRLE] [

The NSRLS algorithm was proposed B] for the adap- Figure 1: Functional block diagram of the Decision Feed-
tive identification of Markovian time varying channels. In back Equalizer
[9] it was applied to adapt the parameters of a DFE dedicated

J’_
=
=

L s bt |

.h
Do
=
/>3
=

N

(e}
Ll P
=

©2007 EURASIP 1526 EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

X(n) = [x(n—1),...,x(n— N)}T is the input data vector. 3. DESIGN OF THE GENERALIZED
The signaly(n) is the received symbols, it is a noisy version NSRLS ALGORITHM

of the channel output(n). The observation noisk(n) IS The generalized NSRLS algorithm is designed to outper-

)a(l(sr;umed to be ani.i.d., zero mean value and independent @fi, the traditional RLS algorithm, when trackingPa order

Markov time varying channel. Indeed, the filter representin
The equalizer modeled by a Feedback filter is characte oy me vanying o representing

Such channel is assumed to vary in timgas following:
ized by its finite complex impulse responkén) of length . ! . vary intime Wing
N. The input of the decision device is P

o F(n) Z_ZBiF(n—i)+Q(n), (5)
c(n) =y(n) —H" ()X(n), 1) &

whereX(n) = [X(n—1),...,X(n— N)]T is the feedback fil-
ter input vector, and&(n) is an estimation of the transmitted
symbolx(n).

The time evolution of the adaptive filtéd (n) is con-
trolled by the errore(n). The adaptive equalizer operates
in two modes. In the training mode, (1 in Figlte a known
sequence of symbols is transmitted and a synchronized v
sion is locally generated in the receiver. The true transmitte
symbols are then used to compute the error:

P
£(n) = (y(n) —H* ()X (n)) —x(n). 2) H(n+1>:i;l3i(n)H(n+l—i)+£*(n)K(n), 6)

where the vectorF(n) = [f(l),...,f(N)}T represents the

time varying channel filter and < (f);_, p < 1 are

the Markovian parameters. The vect@(n) is the non-

stationarity noise. The components®fn) are assumed to
be Gaussian white processes.

The algorithm is designed in such way to take into ac-
count the prior knowledge of the Markovian channel model
fructure8]. Hence, the classical RLS with forgetting factor

modified as follows:

_ The tap coefficients are adjuste_d _in order to obtain the dggyhere theN-by-1 vectorK (n) is referred to the gain vector,
sired response. Once the tap coefficients converge, the equal-

izer is switched to a decision directed mode (2 in Figljre P(n)X(n)
The error signal derived from the estimated symbols is given K(n)= ~H = s (7)
by: A+ X (n)P(n)X(n)
5 . and theN-by-N matrix P(n) is referred to the inverse corre-
e = (Y —HIWXM) =K. B)  faton sty "

As shown by Figurd,, only the Feedback filter of a con- -1 ( _ oH )
ventional DFE is used. Two reasons explain this choice. P(n+1)=2 P(n) —K(mX(P(m)). (8)
Firstly, in the more general structure, it is usually possible . .
to separate the adaptation of the FIR section from the Feed- * S the forgetting factor close to, but less thdn, The

back one. Secondly, the aim of this paper is to investigatarametergf3(n)),_, . are the adaptive estimates of the un-
the behavior of the generalized NSRLS algorithm facing tcknown Markovian parametef$;),_, . At timen, the esti-

realistic SUI-1 and SUI-2 channels, that are assumed to vaiyation of §; is based on the minimization of the cost func-

in time according to a Markov model. tion Jn(B) = SP_, |e(k)|%. The principal computing details
leading the adaptive estimation of the Markovian parameters

2.2 SUl channel models Bi(n)),_, p are presented in the appendix. Therefore, the

The SUI channel models are proposed 3h fo simulate, generalizéd NSRLS algorithm is described by:

design, develop, and test a system suitable for fixed broad-

band wireless applications. In general, for SUI channels, it

is noted that the shape of the used Doppler power spectral <P 5 ; X

density is not similar to Jake’s spectrum. It is given by equa—al' H(n+1) =%im AMHO+1-0) + (MK (),

tion (4) wherefy = % and fn, is the Doppler frequency. The 2. K(n) = )A(P(”)ﬁ(")x ,
SUI characterization is inspired by real measurements done A+R P AR H
in urban and suburban multipath conditions. 3.P(n+1) =271 (P(n) —K(n)X (n)P(n)),
2 () — num(n)
S(f) = { 1-1.72f3+0.785f¢ |fo| <1 @ 4. B(N) = Fen(n
0 [fo| > 1 5. num(n) :num(n—1)+Re[(y(n)—>“<(n)
There are six types of SUI channels with different param- —e(n— 1K (n—1)X(n)

eters corresponding to typical terrain types of the continental — ZJP:1 i [;]. HH (n— j)X(n))HT(n— i))A(*(n)} ,
US. The SUI-1, SUI-2 and the SUI-6 models correspond to ' H N
channel with Line Of Sight (LOS). However, SUI-3, SUI-4, 6. den(n) =den(n—1)+[H"(n—i)X(n)|~.
and SUI-5 are models for Non Line Of Sight (NLOS) chan-
nels B]. In this paper the SUI-1 and SUI-2 LOS channels
are considered for the evaluation of the generalized NSRLS Note that, in the training mode the symbkih) is re-
algorithm. placed byx(n) its actual value.
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4. SIMULATION RESULTS

-0.5 T T T

The presented simulation results aim to investigate the per- - & —RLS: SULL
formance of the NSRLS equalizer facing to SUI channels and RLS: SUL-2
also to characterize the assumed Markovian non-stationarity —=— NSRLS: SULL
of the considered channels. The proposed equalizer perfor- ~f NSRLS: SUL2 ||

mances were tested by several experiments based on SUI-1
and SUI-2 omni antenna channels. The reported results are.
obtained for the following considerations: = s

e The noise level added to the channel output was fixed byZ
the Signal to Noise Ratio (SNRIB] = 100910(%)),

where P, = E[r?(n)] is the power of the output of the -2t
channel andd, = E[b?(n)] is the noise power.

e An independent and identically distributed input with
a Quaternary Phase-Shift Keying (QPSK) constellation _, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
was used. 045 05 055 06 065 07 075 08 08 09 095

e The DFE operates in training mode (LO0O0 symbols), *
after which it switches to a decision directed mode.

e The length of the DFE filter is fixed thl = 4. In fact, it ~ Figure 2:MSE versus the forgetting factdr for SUI-1 and
is equal to the paths number of the considered SUI charSUI-2 channelsR = 1, SNR= 30dB)
nels.

4.1 SUI channel characteristics

Table!l and Table2 show the time domain attribute of the
SUI-1 and SUI-2 channels respectively. These tables sho
that the Doppler frequencies values are higher in the case
SUI-1 than in the case of SUI-2. Therefore, one can deduct
that the SUI-1 non-stationarity is more severe than the one (ﬁl

Figure 2 shows that, for the two SUI channels, the
\NSRLS algorithm presents better tracking ability than the
anentional RLS algorithm (gairx 0.7 dB). The optimum
rgetting factor value§Aopt) corresponding to the minimum
ean square error aré\op; = 0.75 for SUI-1 channel and
pt = 0.8 for SUI-2 channel.

SUI-2. o

SUI-1
Tapl | Tap2 | Tap3 | Units

Delay 0 04 |09 us !

Power (omniant.) | O —-15 | -20 | dB 055 |

90%K-fact. (omni) | 4 0 0 '

POWGI‘ 80] ant) O _21 —32 dB 0.9 SUI-1 channel i

90%K-fact. (30°) 16 0 0

Doppler 0.4 0.3 0.5 Hz 085 .

SUI-2 channel

Table 1:SUI-1 channel model

Markovian parameter
o
o

o
~
[

SuUI-2

Tapl| Tap2 | Tap3| Units o7
Delay 0 04 |11 us .| |
Power (omniant.) | O -12 | —-15 | dB '
90%K-fact. (omni) | 2 0 0 06 ‘ ‘ ‘ ‘ ‘
Power B0° ant.) 0 —18 [ -27 | dB 0 0% b mber of Doration. n 25 N
90%K-fact. 30°) | 8 0 0 . x10
Doppler 0.2 0.15 | 0.25 Hz -

Figure 3:Convergence of the Markovian paramegfn) for
Table 2:SUI-2 channel model SUI-1 and SUI-2 channeP(= 1)
4.2 Tracking ability of the generalized NSRLS Figure3 illustrates the time variations of the adaptive

Here, we analyze the tracking ability of the generalizedVarkovian parameteB, (n) corresponding to the two chan-
NSRLS algorithm. The variations of the Mean Square Ernels test. The forgetting factor is fixed to its optimal value.
ror (MSE = E[£2(n)]) versus the forgetting factor are pre-  This figure shows that the Markovian paramet@y&) con-
sented in Figur2, for the two test channels, SUI-1 and SUI- verge, in almos600 simples, to an average value close to
2. For these results, the first order NSRLS algoritita=(1)  0.86 for SUI-1 channel an@.8 for SUI-2 channel. There-

is used to update the filter equalizer. The SNR is s&&Qo fore, the first order Markovian model can represent the time
dB. variation of SUI-1 and SUI-2 channels.
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Figure 4:Superiority of the NSRLS-DFE over the RLS-DFE Figure 6:Influence of the Markov ordd? on the BER (SUI-
in term of BER (SUI-1 channeR = 1) 1 channel case)

10 T E| o SUI-2 channel
] 10 T T T

First order (P =1)

————— Second order (P = 2) 1

= = = Third order (P = 3)

BER

Without Equalizer ; \\’xl
] 10} > .~ B
— — —RLS: SUI-2 ] ~ < S E S
NSRLS: SUIL-2 1 TSl .
1074 L 1 L L L -
0 5 10 15 20 25 30 10° i i i i i
SNR [dB] 0 5 10 15 20 25 30
SNR [dB]

Figure 5:Superiority of the NSRLS-DFE over the RLS-DFE

in term of BER (SUI-2 channeP — 1) Figure 7:Influence of the Markov orde? on the BER (SUI-

2 channel case)

4.3 Equalization performances

In order to evaluate the equalization performances, the BEE€ 9ain in SNR is equal tt0dB for SUI-1 channel an8dB
variations are analyzed versus the SNR values for differerfr SUI-2 channel. Although, in view of the Markovian pa-
orders of the Markov model. Note that, for the following Fameters mean values computed in Subse#tiznwe expect
results, the forgetting factor is set to its optimal value fort® enhance the performance of the equalizer by increasing the
each value oP and of the SNR. orderP of the Markov model.

At a first stage, a first order NSRLS algorithm is used. At a second stage, the non-stationarity of the channels
In Figuresld and5 a comparison in term of BER of the is modeled by a high order Markov mod& ¢ 1). There-
RLS-DFE and the NSRLS-DFE is presented. These figurefre, a second and a third order NSRLS algorithm were used.
present the variations of the BER versus the SNR for the corFigure6 and Figure/ display the BER performance of the
sidered channels SUI-1 and SUI-2. It is shown that the BERqualizer forP = 1, P =2 andP = 3. These results show
given by NSRLS-DFE is lower than the one performed bythat the BER is remarkably reduced by the increase of the
the RLS-DFE. Moreover, the BER reduction is more signif-Markov orderP. Also, these results confirm the ability of
icant with SUI-2 channel than with SUI-1. Such result wasthe NSRLS algorithm to identify the Markovian parameters.
expected as the SUI-2 represents a moderate time variatioridpreover, they can be helpful for the characterization of the
however, the SUI-1 corresponds to a relatively fast varyingonsidered SUI channels non-stationarity. Indeed, in view of
channel. In all studied cases, the gain in SNR realized ithe obtained results, one can deduce that a Markov model of
very important. For example, by setting the BER4at0 3,  order higher than thred(> 3) is suitable for SUI channels.
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P ~ ~ ok
5. CONCLUSION — Y BH k- DROHT (kDR (k)]

In this paper, the generalized NSRLS algorithm designed for j=T,]#i

a general Markovian time varying channel is proposed and _n .

used for the equalization of realistic SUI channel models. It +26 Z IH" (k—i)X (Kk)|2. (13)
was shown that a NSRLS-DFE exhibits better performance k=1

than a conventional RLS-DFE. A significant BER reduction )

is obtained. Moreover, the BER is all the most reduced as the  Thus, it follows from ) and (L3) that

Markov model order increases. The reported results confirm

the efficiency of Markov model to represent the time varia- Bi(m= L) (14)
tion of these channels. In particular, a Markov model of order den(n)’

higher than three is more suitable.

where
APPENDIX R
num(n)=num(n—1) + Re{(y(n) —X(n)
An estimate of the Markovian parameter is the solution

of- —g(n—1KH(n—1)X(n)
P
d . o o der(k) & g (K) - BiHH (n— HX(M)HT (n—D)X"(n) |(15)
oA G e s g R
=0, 9 and

whereer(k) = Re[e(k)] and g (k) = Im[g(k)]. In a blind
mode,e(K) is described by3) and then the partial derivation
of er(k) with respect tg5; is given by:

den(n)=den(n—1)+|H*(n—i)X(n)|2.  (16)
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