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ABSTRACT 2. MULTISCALE EDGE REPRESENTATION

_In this work, a wavelet-based anisotropic diffusion par- we employed the multiscale edge representation described
tial differential equation (PDE) is developed. The new ntodejn [7] and [8]. In this approachx and y—directional
makes use of a multiscale structure tensor as an extension @fvelets are given by the partial derivatives of a sepa-
the single-scale structure tensor proposed by Di Zenzo [1]raple, nonorthogonal scaling functiofi(x,y) as follows:

The multiscale structure tensor allows for accumulatind-mu (wl (xy), W2 (x y)) = (38(x,y)/9%,30(x y)/dy). The as-

tiscale gradient information of local regions. Thus, aw@ra gqciated two-dimensional wavelet coefficients of an image
ing properties are maintained while preserving edge strucy o | 2

ture. This structure tensor is used in an anisotropic diffas
process of multispectral images, namely, in the Peronaikvial W (x, y)I |+ @h(x,y)
model [2]. Therefore, a more efficient and accurate formula- ( L ) = ( L ) =0(*6) (1)
tion for edge-preserving diffusion is obtained. W)l L g(x,y)

(R?) at scalej are defined by:

1. INTRODUCTION Wheret,u} (I = 1,2) and@; represent the wavelet and the scal-

. . . . . | -
Since the formulation of anisotropic diffusion introduced 2 func.:tmn ?t Sca'?" respectively, deflneq byl;U! (xy) _

by Perona and Malik [2], the use of partial differential equa ¢/ (x/217y/21)/\/§ and 6; (x,y) = 6 (x/21,y/21)/\/5.

tion (PDE) in image processing has become a raising rerhe symbok indicates the convolution operation. The direc-

search area. Some of these researches have been orierjgf] of the gradient vector at a poifity, yo) indicates the di-

toward developing stable equations [3] [4] [5], others tmva recion along which the imagdehas the steepest slope. There-

extending and modifying anisotropic diffusion for fast im- fore, a pointx is regarded as an edge point at scpléthe

plementations and modifying the diffusion equations f@&sp magnitude of the wavelet coefficient attains a local maximum

cific applications [6]. , _ . along the gradient direction.

All of these approaches model the image in a continuoughjs” stipulates that the wavelet transform of an image

spatial domain so that it takes the advantages of effectivgonsists of the components of the gradient of the image,

treatments from PDE's theory and obtains high accuracgmoothed by the dilated smoothing functiépn

and stability of the processing with the help of numerical

analysis. One of the most influential work in this aspect is 3 AN|SOTROPIC DIFFUSION: PERONA-MAL I K

the anisotropic diffusion introduced by Perona and Malik in FORMULATION

1990 [2]. Although based on a directional diffusion that-pre

serves edges, the Perona and Malik model meets several seriDiffusion algorithms remove noise from an image by mod-

ous practical and theoretical difficulties such as the signsi ifying the image via a PDE. For example, consider apply-

ity to noise and the existence of a local backward diffusi®n aing the heat equation given Bl (x,y,t) /dt = div(0l), us-

discussed later. The motivation of this work is to introduceing the original noisy imagé&(x,y, 0) as the initial condition,

a new regularization in which the gradient of the image iswherel is the image gradient. Modifying the image us-

adjusted by the wavelet coefficients. Therefore, providing ing this isotropic diffusion is equivalent to filtering theage

more efficient and accurate formulation for edge-presgrvinwith a gaussian filter. Perona and Malik [2] replaced the-clas

diffusion. sical isotropic diffusion equation with

The paper is organized as follows. In section 2 a review of

the multiscale edge representation by the wavelet tramsfor al(xyt) divig (|01 ) O] @)
is presented. In section 3, a description of the PeronakMali ot N g

formulation of the anisotropic diffusion is given. Sectién _ ) . _

is a summary of the single-scale structure tensor of Dizenz§/here||0l | is the gradient magnitude, ag||Cl|[) is an

and the extension of the perona-Malik diffusion equation t®d9€ stopping function satisfyirg(x) — 0 whenx — « so

the multivalued images. In section 5 the new wavelet-basefat the diffusion is "stopped" across edges. _
PDE is described. In section 6 some experimental results afé®WeVver, as mentioned in the introduction, the PeronaMali
presented. Section 7 presents some concluding remarks. Model meets several serious practical and theoreticatulifi
ties. The first difficulty is that it is very sensitive to noise
This work was supported by the INTERREG Ill B PIMHAI project. ~ Assume an image carries strong noise. The Perona-Malik
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model will conserve the noise in the processing. AnotheZenzo (Fig. 1(b)) and the norm of the multiscale multistruc-
difficulty arises from the existence of the local backwarfd di ture tensor defined in (5) (Fig. 1(c)) of the noisy 'Lenna’
fusion in the area where (||01||) O1) < 0. There is no exis- image.

tent theory supports the uniqueness of the solutions of-equdst is clear that the multiscale structure tensor providesta b
tion (2). Examples show that|(2) is unstable in the sense that
very close images could produce divergent solutions [5].

4. STRUCTURE TENSOR OF DI ZENZO ,é

Extending differential-based operations to color imagesi !
hindered by the multi-channel nature of color images. The |
derivatives in different channels can point in oppositedir
tions, hence cancelation might occur by simple additiore Th
solution to this problem is given by the structure tensor for
which opposing vectors reinforce each other.

In [1] Di Zenzo pointed out that the correct method to com-
bine the first order derivative structure is by using a local
tensor. Analysis of the shape of the tensor leads to an ori-
entation and a gradient norm estimate. For a multichannel

5 q
Y ™4l

(a) Noisy Lenna Image (b) Norm of the Di Zenzo fensor

!

imagel = (1%,12,..... ,I“)T the structure tensor is given by
1Tl 171y

M={ 1T 1 (3)
y'x lyly

The multichanel structure tensor describes the 2D firstrorde
differential structure at a certain point in the image.

The use of the Di Zenzo's structure tensor had permitted the
extension of the Perona-Malik anisotropic diffusion foe th (
case of multivalued images. The extended model for an m- (c) Norm of the multiscale structure tensor
valued image can be written as:

% =div(g(||M])Ol;) Figure 1: Norms of the Di Zenzo structure tensor and the
li(xy,0) =1, (xy) for i=212..m (4) multiscale structure tensor defined|in (5)

ﬂ =

MNis0 ter characterization of the image edges. Recall that theenoi

distribution is singular everywhere, which can be characte
ized by negative Lipschitz ordefs|[7]. Lefx,y) be a station-
ary, white noise random field of variancg. LetMy sn(x,y)
5 WAVELET BASED ANISOTROPIC DIFFUSION be the modulus of the wavelet transformngk, y) gt a scale
The Perona-Malik model tries to regularizé to reduce s (s= 2/), and letE(X) be the expected value of a random
the influence of noise. The effectiveness of a regularinatiovariableX. The author of [7] proved that:
depends on the type of noise on the image. For instance, if

WhereQ is the image’s domain.

the noise does not obey Gaussian distribution, then theimode o2 (” leZ I szuz)
does not provide a good regularization. The motivation of E ((M n(x y))Z) _ (6)
this work is to make the regularization of adjusted by the LA S

coefficients of the wavelet transform defined in (1). Based on 1 , ] ] .
the theory of the singularity detection by the wavelet trans Wherey~ andy“ are the wavelets defined in section 2. Thus,
form proposed by Mallat et al. in [7] a multiscale multistruc We can discriminate the image singularity (which occurs at

tural diffusion tensor can be constructed. For an m-value@dge) from the noise singularity by their wavelet transform
image, this structure tensor is defined at a s¢afeterms of ~modulus across scales: as the scdlecreases, the wavelet

wavelet coefficients by: transform modulus of edge poir_1ts increase vyhile the modulus
created by noise decrease. It is that behavior of the wavelet
m 2 m transform coefficients that pioneered the edge detectien ca
1 1 w2
iglzneﬂ (Wn.,J,i) iZlZneQWn,j-,iWn,j,i pability of the multiscale structure tensor.
E s WL W2 E 5 W 2 (®)  The wavelet-based regularization is therefore defined by:
. neQ YVn j,ivVn,j,i neQ ( n,j,i)
i=1

i=1 , . -

- . . 5 = dv(g o) mu)

Where W, ; is the unc_;l_emmated wavelet coeﬁ‘lqlent com- i (xy,0) =i (x,y) for i=12..m )
0

puted at scalg¢ and positiom for the image channél ol N

The norm ofGl, is defined in terms of its eigenvalu#éa\l}v‘ = [P

Gl =

VAL +A_, and it describes the total local derivative energy.That is, at each PDE scale, the multivalued structure tensor
Figure 1 shows the norms of the multistructure tensor of Dis computed using equatioris (1) ahd (5). The multivalued
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structure tensor affords a good edge characterizatioritdesp
of the presence of noise. This edge characterization wwill, i
turn, provide a good orientation for the image gradientrlyri
the regularization process. Therefore, a better edge iprese
ing anisotropic diffusion is obtained.

It is to be noted that the multiscale structure tensor should
be computed at an optimized scale where the noise singular-
ity is well distinguished from edges singularity as expéain
above.

The edge stopping functiog (also called diffusivity func-

tion) always ensures that region boundaries are less Hlurre & - =
than flat regions. Common diffusivity functions are propgbse (@) (b)
by Perona [2], German and Reynolds [13], Aubert et al. [14]

and Saint-Marc gt.al [15_]. For example, the one proposed b%igure 2. Original image and the noisy image
Perona and Malik is defined by [2] (SNR=27.21dB) obtained by adding a white gaussian

exp(— (%) 2) noise

The k parameters in these functions, also called edge
threshold parameter, controls the shape of the diffusivity
function, balancing the degrees of inter-region smoothing
and edge enhancement in the diffusion process. Perona an
Malik proposed to compute the histogram and thenklet
equals to 90% of the integral of the histogram. In our scheme,
thek parameter is computed according to the noise level.
It can be shown that: L
o’ ~ ~No?

T
)\j +)\j

with N the number of pixels in the image aof the noise  Figure 3: Filtered image obtained by: (a) The Perona-
variance at scalg. ajz is given by: Malik approach (SNR=31.59dB), (b) the wavelet-based ap-
proach(SNR=33.61dB)

o7 = il o? ©

total variation schemes [11] and the undecimated wavelet co
efficients hard thresholding and soft thresholding. The re-
sults are shown in figure 4. The hard and soft thresholding
schemes work in three steps: (1) computeMubevel un-
k=cvNo; (10)  decimated wavelet transform. (2) Modify the detail coeffi-
cients by hard and soft thresholding and (3) compute the in-
verse wavelet transform. Both methods set the coefficients
below the threshold to zero. Soft thresholding addition-
6. EXPERIMENTAL RESULTS ally reduces the amplitude of the other coefficientsThya
This section is devoted to comparing the wavelet-basegrocedure called shrinkage. The problem with wavelet coef-
anisotropic diffusion scheme that is presented in this papdicient thresholding is that setting coefficients to zeralka
with previous work on image restoration. to smooth image (Fig. 4(f)) and destroy details which cause
To achieve this, the noisy image shown in figure 2(b) isblur and artifacts (Fig. 4(e)).
processed by equatioh (7) as well as by the Perona-Mali€ompared to all the other listed schemes, the wavelet-based
scheme. The noisy image is obtained by adding a white gaushisotropic diffusion showed better details preserviegsl|
sian noise to the image of figure 2(a) whose variance is equalurring and better image restoration.
t0 0.2. The quality of the filtered images is also evaluated us-
In figures 3(a) and 3(b), the results obtained by filteringing CIEDE2000 color difference equations [16] [17]. The
the noisy images (fig. 2(b)) by the Perona-Malik approactCIEDE2000 evolved from traditional colorimetry and color
(equation 2) and the wavelet-based regularization (eguiati difference calculations is tested using several psychsiphy
[7) are shown respectively. cal datasets. The color differences between the original im
If both, figure 3(a) and figure 3(b) are compared, one can okage (Fig. 2(a)) and each of the filtered images obtained using
serve a better denoising performance, less blurring andrbet different denoising schemes are shown in figure 5. The PDE
edge structures preservation. wavelet based approach showed the lowest color difference
We have also processed the noisy image of figure 2(b) witnd therefore it approaches the original image more than the
the edge enhancement diffusion [9], the coherence enhancether denoising techniques. Therefore, it respects ttaieol
ment diffusion [10], the Tikhonov diffusion [12], the color metric characteristics of the original image.

whereg? is the noise variance of the image, alf; ||
the norm of the wavelet function. THeparameter is made
proportional too:

Wherec is a constant.

©2007 EURASIP 1484 EUSIPCO, Poznan 2007



15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP

Sl !

Perceprible
Differences

()

Just Perceptihle
Differences

Mon Perceptible
Differences

Figure 5: CIEDE2000 color difference between the original image and theréitt image obtained by: (a) wavelet based
approach, (b) Wavelet hard thresholding, (c) Perona anikMpproach (d)Color Total Variation
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(@) edge en-
(b) coherence
(c) Tikhonov

Filtered image obtained by:
hancement diffusion (SNR=29.058dB),
enhancement diffusion (SNR=29.11dB),

diffusion(SNR=32.11dB) and (d) Color
ation (SNR=28.76dB), (e) Wavelet hard threshold-
ing(SNR=38.95dB) and (f) wavelet soft threshold-
ing(SNR=31.28dB)
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