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ABSTRACT

This paper addresses the problem of efficiently delivering a lay-
ered media stream from multiple senders to a single receiver, over
channels that present correlated packet loss patterns. Using a dig-
ital fountain approach, the performance of a distributed stream-
ing system is driven by the probability of receiving a given num-
ber of packets on aggregate over the multiple channels. In addition,
such a system permits to avoid the need for communication between
streaming servers. We devise an optimization problem whose solu-
tion provides the optimal number of packets that need to be trans-
mitted per channel, in order to maximize the probability of correct
decoding for a given media stream. Our findings indicate that it is
in general important to consider both the Packet Loss Ratio (PLR)
and Average Burst Length (ABL) in channel selection problems such
as multipath routing or rate aggregation on multiple bursty chan-
nels. Finally we present a low-complexity algorithm which is able
to quickly find a suboptimal yet effective solution to the combinato-
rial optimization problem.

1. INTRODUCTION

One of the main challenges in delivering video streams over the In-
ternet, is to adaptively transmit video packets in order to match the
available effective bandwidth, and provide a good quality of service
to the media terminal. Today, the network does not give any hard
quality of service guarantees. The channel parameters such as the
available transmission rate or the loss process, are also prone to vary
in time, hence to affect the quality of the received media. In order to
deal with this situation, it has been proposed to aggregate the trans-
mission rate using multiple channels, either from one server to one
client using multiple distinct paths, or even from multiple distinct
servers to one client. For example, it has been shown in [3] that the
usage of multiple streaming servers in different network locations
provides better robustness in case one of the channels becomes con-
gested. As the data packets most likely take different paths from
their respective source to the client, the overall network load can
be balanced, and the most reliable paths can be exploited more ef-
ficiently. Similarly, sources in modern peer-to-peer (P2P) systems
may not be able or willing to commit to send the full video bitstream
to a single client down-stream, especially if the rate of the stream is
high. In such a scenario, aggregation from multiple peers is the only
way to effectively deliver the requested stream at the desired quality.
The recent emergence of multi-homed devices [5], which are able
to access a networked resource simultaneously over multiple access
channels, also calls for efficient channel aggregation methods.

An inherent problem of using multiple sources for the deliv-
ery the same stream however resides in the coordination between
servers. In an effort to use the network resources efficiently, servers
need to carefully coordinate their packet scheduling strategies [2],
and avoid wasting bandwidth by duplicate packets. This in turn
tends to render such a distributed streaming system overly complex
and cumbersome, especially if channel parameters are dynamic. In
this paper, we use rateless codes, or Fountain codes, in order to
remedy to this coordination problem. We show that using rateless

codes, it is feasible to efficiently stream layered media from mul-
tiple sources to a client with no need of coordination among the
sending servers. At the same time we make sure that each packet
that is sent by any of the servers is not redundant for the client that
receives it. This is in spirit similar to [11]. We extend our previous
work in [10] by considering more realistic channel models that typi-
cally exhibit correlated loss patterns in the form of error bursts, as it
is the case in most transmission scenarios. Further we assign a cost
to every packet transmission, which depends on the used channel.
Given this setup, we propose optimized sending schemes for a set
of servers delivering a given media stream, and devise a heuristic-
based algorithm that provides close to optimum performance in re-
alistic streaming scenarios. The proposed framework is generic and
provides a low complexity distributed streaming solution. Building
on the universal channel code properties of rateless codes, the sys-
tem is able to adapt to any kind of channel loss, without adaptively
transcoding the data at each sender prior to transmission [8].

The remainder of the paper is organized as follows. In Section
2 we explicit the considered framework and give a brief introduc-
tion to rateless codes by the example of Raptor codes. In Section
3 we devise an optimization problem whose solution drives the op-
timal performance of the considered system. In Section 4, we pro-
vide and validate a distributed heuristic-based algorithm to solve
the optimization problem under complexity constraints. Section 5
provides simulation results before we conclude with Section 6.

2. FRAMEWORK

2.1 Network model
In an effort to make our notation transparent, we use capital letters
for system-wide parameters, e.g., the rate of the delivered video, and
small letters for parameters that depend on a specific channel. See
Table (1) for examples. Further we use bold-face letters to denote
vectors, i.e., r = (r1, . . . ,rN). All vectors are of dimension N, which
is the number of peers/channels that are available to serve the client.
For the sake of simplicity we will use the term rate throughout what
follows to denote a number of packets per time unit. Hence we
suppose packets of fixed size, and rates (in bit/s) that are multiples
of the packets size.

RT video target rate
R j rate of layer j
R total allocated rate
rn rate allocated on channel n

rmax
n maximum available rate on channel n
γn cost of sending a packet on channel n

pn,qn parameters of the loss process on channel n
πn,αn packet loss rate (PLR) and average burst

length (ABL) of channel n

Table 1: Notation

Figure (1) illustrates the framework we consider in this paper.
A client wants to retrieve a layered media stream from the network.
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Figure 1: Streaming from multiple sources using Fountain Codes.

To do so, it has access to a set of N servers/peers all of which hold
the video asset that is to be delivered. We suppose that the client
can connect to each of the serving peers through a distinct chan-
nel 1. The channel is characterized by an available rate rmax

n (t) at
time instant t, a packet loss rate πn and the average packet loss burst
length αn. Finally, a cost γn is inferred when a packet is transmit-
ted over the channel n. Note that we assume that the parameters
(πn,αn,γn) do not depend on the transmission rate.

We consider that the loss process on each channel is governed
by a Gilbert-Elliot model, which is a two-state Markov chain: in
the ON state a packet is delivered to the client, whereas in the OFF
state the packet is lost, see Figure (2). The transition probabilities
pn and qn completely characterize the loss process on channel n,
and the transition probability matrix reads as:

Pn =
[

1− pn pn
qn 1−qn

]
(1)

A transition is triggered at each time that a packet is sent over the
channel. A high transmission rate on channel n results in more
packets being transmitted, and hence implies a higher transition fre-
quency of the corresponding Markov chain. Finally, referring to the
outlined model, the PLR and ABL for channel n are given by the
stationary probability of being in the OFF state and by the aver-
age residence time in the OFF state, respectively πn = pn

pn+qn
and

αn = 1
qn

.

2.2 Rateless Codes
With rateless codes, such as LT [6] and Raptor [9] codes, one can
generate a potentially unlimited number of symbols from K original
symbols. Ideal Raptor codes have the property of generating unique
symbols with high probability, such that any (K +ε) packets can be
used to decode the original K symbols. The notion of Fountain code

1Our model also extends to partially disjoint paths, where the bandwidth
on shared network segments is adequately distributed between the different
packet flows.

ON OFF

qn

1-pn 1-qn

pn

Figure 2: Two-state Markov model for channel n. A packet is trans-
mitted if the chain is in state ON, and lost in state OFF.

stems from the analogy of a rateless code with a water Fountain (the
unlimited number of symbols) from which any volume (K +ε) sat-
isfies the client needs, no matter which drops (symbols) of water
it has obtained. It does not matter if the received symbols come
from the same source, as long as different sources have encoded the
same input symbols. This property is key in order to use multiple
sources to provide the same stream to a client without any coordina-
tion among servers. As long as the set of symbols they provide has
been generated from the same input symbols, the encoded symbols
will be different for each source with high probability, which means
that every delivered symbol in the system gives the same amount of
novel information to the client.

In practice, the number of symbols that can be generated from a
set of source symbols is limited to the number of available Encoding
Symbol IDs, or ESIs, which are coded with 2 bytes, thus providing a
maximum of 216 distinct encoded symbols. The symbol size T can
range from 1 bit to several hundred bytes. If a block of K symbols of
size T is encoded into a large number of encoded symbols of size T
and if 1000 ≤ K ≤ 8192, then the decoding overhead ε is typically
of about 2 symbols. It is worth noting that Raptor codes induce
linear complexity for both encoding and decoding, and therefore
also allow for on-the-fly encoding if needed. For further details
on Raptor codes and their implementation, we refer the interested
readers to [9, 1, 7].

We make the assumption that the media source has been en-
coded into a layered bitstream, and that it is made up of indepen-
dently decodable segments. Adding a layer to the bitstream will
increase either the quality of the decoded stream, its framerate or its
resolution, depending on the source encoder that has been used. We
will refer to an independently decodable segment of the bitstream
as a Group of Pictures (GOP), borrowing the term without loss of
generality from the MPEG terminology.

We propose to create one Fountain per layer and per GOP of the
original bitstream, as depicted in Figure (1). This coding scheme al-
lows to keep the hierarchical and temporal dependencies present in
the original bitstream, which are essential for the scalable delivery
of the stream. As long as the client receives K + ε distinct sym-
bols on aggregate from all of the available sources, it will be able to
decode the corresponding video data. Even in the case of practical
Raptor codes, there are several ways to guarantee that each server
sends different symbols from the same Fountain. For example, the
requesting client can provide a different random seed to each of the
sources, determining a subset of ESIs (and thus encoded symbols),
which the server has to transmit. Another option could be to cen-
trally encode a large number of symbols for each Fountain, and to
put disjoint subsets on different servers or source peers.

Given the above considerations it is clear that the performance
of the framework will rely on the solution to two distinct problems:
i) the rate ri assigned to each peer needs to be split in an efficient
manner among the available layers, and ii) we need to find a rate al-
location r among the N available channels that maximizes the prob-
ability of receiving the number of symbols needed for decoding.

2.3 Peer rate distribution
In this subsection we suppose that there is a rate allocation r among
the N available channels that maximizes the probability of receiv-
ing the number of symbols needed for decoding the bitstream, and
hence minimizes the distortion at the decoder. In the next subsec-
tion we will present how r can be computed. Given r, we need
to assign a way of partitionning the streaming rate rn between the
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Figure 3: A simple example with two senders and two layers to
transmit: each sender splits the rate that got allocated to it in a simi-
lar way between the video layers that are available, in order to max-
imize the delivered quality.

different layers of the video stream to each used source n. Recall
that our primary objective is to keep servers synchronized while
avoiding communication between streaming peers, and to provide a
robust distributed streaming solution that benefits from server diver-
sity. Without loss of generality, we assume first that the target rate
RT , which has to be received by the terminal, can be partitioned into
a set of rates that correspond to the rates of the video layers, i.e.:

RT =
L

∑
j=1

R j. (2)

where R j denotes the rate, including Raptor overhead, that needs to
be received in order to decode layer j. We denote by R the aggre-
gate allocated rate, which is the sum of the allocated rates satisfying
Equation (5):

R =
N

∑
n=1

rn. (3)

Clearly R includes the target rate RT , plus some amount of redun-
dant Raptor symbols, which are allocated to cope with the loss pro-
cesses on the different channels. Under the assumption that the full
target rate RT should be delivered to the client, all layers are to be
protected equally. Hence, the redundant rate (R−RT ) is split among
layers in order to reflect the relative size of each layer. This means
that the total amount of Raptor symbols sent on aggregate for each
layer, will be proportional to the fraction of rate each layer takes
from the target rate RT . Therefore, we finally get :

R =
N

∑
n=1

(
L

∑
j=1

R j

RT rn

)
, (4)

which indicates that the distribution among layers of the allocated
rate rn at each peer n should be proportional to the relative size of
each layer in the target rate RT . It is important to note that each
peer knows the sizes of each layer R j . Each peer can thus optimally
allocate the rate to each layer in a completely distributed way, when
it knows the rate rn that has been allocated to it, as well as the target
rate RT (see Figure (3) for an illustration). Although the proposed
partition of rn is not the only possible one, it has the advantage of
being inherently distributed.

3. OPTIMAL RATE ALLOCATION PROBLEM

Let RT be the target video rate that needs to be delivered to the
client, including the Raptor overhead. Further let P(RT ) be the
probability of receiving at least the target rate. We want to find
the rate allocation r∗ = (r∗1, . . . ,r∗N) that achieves the optimal trade-
off between maximizing P(RT ) and minimizing the resulting cost,
i.e.:

r∗ = arg max
ri≤rmax

i ,∀i

(
P(RT )−λ

r · γ†

rmax · γ†

)
, (5)

where γ† denotes the transpose of the cost vector γ = (γ1, . . . ,γN),
and λ is a Lagrangian factor.

As stated, the problem exhibits combinatorial complexity. It is
not trivial to compute P(RT ), which is the probability of receiving at
least RT packets on aggregate over the N channels, each of which is
defined by a Gilbert-Elliot loss process. We can express this prob-
ability in terms of the corresponding probability density function
(pdf):

P(RT ) = 1−
RT−1

∑
j=0

pR( j), (6)

where pR( j) is the probability of losing j out of the R packets that
are transmitted on aggregate over the N independent channels. This
can in turn be computed by the convolution of the N probability
density functions that give, for each channel n, the probability of
losing i out of the rn packets:

pR =
N⊗

n=1
prn . (7)

Note that there is no closed form to express prn in the case of a
bursty loss channel, especially if the number of packets that are
transmitted is relatively small and the pdf is thus ill approximated
by a Normal density. These probability density functions can how-
ever be computed using the exact but iterative solution proposed
by [4], at the price of increased computational complexity. In the
next section we propose a suboptimal rate allocation solution, which
achieves close to optimal performance with a reduced complexity.

4. HEURISTICS BASED ALGORITHM

As there is no simple constructive algorithm to find the optimal
solution to the optimal rate allocation problem, we propose a low
complexity client-driven rate allocation algorithm based on heuris-
tics. The client has to determine the rates that need to be sent from
each of the N streaming peers it has access to, and eventually to
communicate the results to the servers. The allocation problem can
be decomposed as follows :
• the client should first classify channels, in order to select good

channels, whose usage minimizes the resulting overall cost, and
simultaneously maximizes the likelihood of receiving allocated
packets.

• it then determines how these channels should be used. It uses in
priority the good channels, and fills them up successfully, until
the joint likelihood of receiving the allocated packets satisfies a
chosen termination condition:

N

∑
n=1

rnP(rn)≥ RT PT . (8)

Here PT is the target probability of success, and P(rn) is the
probability of receiving all of the rn allocated packets on chan-
nel n.

In the remainder of this section, we present two methods for classi-
fying good channels, and we validate the respective heuristic-based
algorithms in different streaming scenarios. Throughout this section
we will assume that λ = 1 for the sake of clarity.
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Figure 4: Two cases that show the importance of the ABL. The
plots show (1− π)(1− p)r on the y-axis, and the number of sent
packets r on the x-axis. Top: the probability of receiving all of the
sent packets is consistently higher for the channel with higher PLR.
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4.1 Baseline
We first consider a baseline algorithm where channels are simply
classified according to the average loss probability, and to the trans-
mission cost. In other words, the channels are sorted according
to 1−πn

γn
.The average burst length is not considered in the baseline

scheme, and the probability of receiving rn packets is approximated
as :

P(rn) = (1−πn)rn . (9)

Given this expression, which decreases with rn, it is clear that the
hierarchy that is induced by computing P(1) for each channel is
preserved when more packets are transmitted. It follows that a se-
lected channel is fully used, unless the termination constraint is met
earlier.

4.2 ABL based Algorithm
The second algorithm is based on a more accurate estimate of re-
ceiving all of the allocated packets over channel n, which consider
the burstiness of the loss process. Indeed, based on the Gilbert-
Elliot model, the probability of receiving all the rn packets is given
by:

P(rn) = (1−πn)(1− pn)rn−1. (10)

It becomes clear in this case that a simple water-filling algorithm
that considers the loss probability πn, but not the average length
of bursts of errors, will fail in selecting the good channels first.
For example, a channel with higher PLR can provide consistently
higher success probabilities (see Figure (4)-top) depending on the
respective ABL values. There are even cases where the choice of
a particular channel depends on the number of packets to be sent
(see Figure (4)-bottom). We propose to take this phenomenon into
account in the selection of the good channels. We first classify the
channels according to P(1)

γn
, with P(1) as given by Equation (10),

in a similar way as the baseline algorithm. However, this hierarchy
is now allowed to vary with the number of packets assigned to the
channels. Using Equation (10) and considering a pair of channels
(i, j) we compute the number of packets ri j at which the hierarchi-
cal order of channels i and j in the channel classification changes.

Algo prob cost metric
Baseline (eq) 2.1 ·10−2 n/a n/a

ABL-based (eq) 6.8 ·10−4 n/a n/a
Baseline (rand) 6.5 ·10−4 2.1 ·10−4 0.023

ABL-based (rand) 5.0 ·10−4 4.48 ·10−4 0.041

Table 2: Difference between heuristics-based algorithms and opti-
mal rate allocation [MSE].

The intersection points are computed as:

(1−πi)(1− pi)ri j−1

γi
=

(1−π j)(1− p j)ri j−1

γ j
(11)

ri j = 1+
log

(
1−π j
1−πi

)
+ log

(
γi
γ j

)

log
(

1−pi
1−p j

) (12)

It should be noted that there is at most one such switching
point for each channel pair in the rate interval of relevance
[0,max(rmax

i ,rmax
j ]. Also, as ri j = r ji, we only need to compute

at total of N(N−1)
2 switching points. The rest of the algorithm is a

straightforward generalization of the water-filling method, with the
additional step however that, while filling channel i, we switch the
ongoing filling operation entirely to channel j if we need to allocate
more than ri j packets. The algorithm proceeds until the stopping
criterion of Eq. (8) is satisfied.

4.3 Validation
In order to validate both algorithms, we have considered a scenario
in which a client has access to three serving peers, each offering to
provide a maximum rate of rmax

n = 40 packets. The target rate to
be received has been set to RT = 30 packets. We have computed
the optimal rate allocations for 500 realizations on the three chan-
nels, with respect to Equation (5). In each realization, the PLR for
the three channels has been selected uniformly in the interval from
1% to 10%. Similarly the ABL for each realization has been uni-
formly chosen for each channel in the interval from 2 to 20. We
have also computed the rate allocation given by both the baseline
algorithm and the ABL-based algorithm, in each network realiza-
tion. In order to verify whether the optimal channels are chosen by
the algorithms, we constrain the heuristics-based solutions to allo-
cate a total number of packets that is equal to the total number of
packets used under the optimal rate allocation. The distribution of
the rate among the different channels may however differ signifi-
cantly. The resulting rate allocations have been used to compute the
effective success probability, the induced cost and the value of the
optimization metric according to Equation (5). In Table 2 we re-
port the average difference (in MSE) for the values of these metrics
with respect to the performance of the optimal rate allocation, over
500 realizations. We propose two different sets of simulations: i)
in the first set (eq), all channel costs were always equal, ii) in the
second set (rand), the costs for each channel were chosen randomly
between 0.01 and 1 in each realization (with λ = 1). Based on these
experiments, we conclude that the algorithm we propose provides
a robust channel selection algorithm when the channels are charac-
terized by both ABL and PLR, and that consideration of the ABL
in the channel selection is quite important. However, when the opti-
mization function includes transmission costs, similar performance
is achieved for both channel selection schemes.

However, in a realistic scenario neither of the two algorithms
is aware of how many packets need to be allocated on either of the
chosen channels. The termination condition is effectively given by
Equation (8). As the baseline algorithm does not take into account
the ABL, it makes a consistent error in estimating the probability of
effectively receiving the allocated packets: hence it does not know
when to terminate. This behavior is illustrated using a simple yet
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Figure 5: The probability of receiving RT = 80 packets (left axis)
and the normalized costs induced by the two rate allocations (right
axis) are shown for different termination conditions. As opposed
to the baseline algorithm, the ABL-based algorithm is capable of
terminating correctly.

representative example in Figure (5). The considered scenario is
as follows. A client aims at retrieving a total of RT = 80 packets.
There are 3 available peers, each willing to transmit a maximum
of 60 packets. The loss parameters for the 3 channels are (π1 =
5%,α1 = 3), (π2 = 6%,α2 = 8) and (π3 = 7%,α1 = 5) respectively.
We vary the target probability of success PT in the right-hand side
of Equation (8) from 95% down to 75%. It can be observed that the
baseline algorithm always ends up using all the available channels
at full rate and implying maximal cost. The ABL-based algorithm,
through its more accurate estimation of the success probability, is
able to tune the amount of packets that is injected in the network so
that the effective success probability induced by the resulting rate
allocation follows the target probability PT .

5. SIMULATION RESULTS

We have encoded the SOCCER test sequence (CIF, 30Hz) using the
H.264-SVC reference codec into a base layer (' 300kbps) and an
SNR-enhancement layer (' 700kbps). The GOP size is set to 32
frames. Each GOP/Layer of the bitstream has then been encoded
into a digital fountain using a Raptor code, where the Raptor sym-
bol size has been set to 16 bytes. The client retrieves the stream
by aggregating 3 available channels that all have a capacity of 512
kbps. Clearly, only the base layer could possibly be transmitted in
the absence of channel aggregation, resulting in a maximum aver-
age (Y)-PSNR of 33.03dB. Two of the available channels have sim-
ilar loss characteristics given by the tuple (π1,2 = 0.03,α1,2 = 2),
whereas the third channel is given by (π3 = 0.01,α3 = 6). The cost
for sending a packet on either channel is equal to γ1,2,3 = 1 and the
network packet size was set to 1280 bytes. Following the above
considerations, both layers can be correctly decoded whenever 105
packets have been received, 29 of which originating from the base
layer fountain, the remaining 76 from the enhancement layer foun-
tain. We have run both rate allocation algorithms on the above sce-
nario, using RT = 105 and PT = 0.9, and all three senders have
split their respective allocated rate among the 2 layers as given by
Equation (4).

As both algorithms tend to over-provision the system, it is not
surprising that the client is always able to retrieve the 2 available
layers over the 3 channels, thus receiving the best available quality.
However, as already observed above, the baseline algorithm tends
to being unable to terminate correctly as it underestimates the recep-
tion probability of the allocated packets. It hence allocates all the
available resources to the streaming process, resulting in a waste of
bandwidth.

The results are given in Table (3) where the optimal allocation
given by Equation (5) is given as reference. The cost column indi-
cates the number of packets injected into the network. The redun-
dancy column shows the percentage of redundant Raptor symbols

Algo Y-PSNR [dB] cost redundancy [%]
Baseline 38.75 150 38.09

ABL-based 38.75 125 15.23
Optimal 38.75 115 4.76

Table 3: PSNR, inferred cost and received redundancy for the two
proposed algorithms and the optimal rate allocation.

that are received for either rate allocation, as compared to the 105
symbols necessary for decoding. Note that in this case, the redun-
dancy ratio for the baseline algorithm is only bounded through the
available channel capacity, as the algorithm does not terminate cor-
rectly. These results confirm that, using the ABL-based algorithm,
the proposed framework is able to provide close to optimal perfor-
mance for delivering scalable encoded media streams.

6. CONCLUSIONS AND FUTURE WORK

We have presented a low-complexity framework for the delivery of
a given layered media stream from multiple senders to a single re-
ceiver, over channels that present correlated packet loss patterns. As
our distributed streaming system relies on the aggregate reception
of a sufficient number of packets for correct decoding, we have de-
vised an optimization problem whose solution gives the optimal rate
allocation that maximizes the probability of lossless decoding. We
have provided and validated a heuristics-based algorithm, which is
able to quickly provide a sub-optimal solution to the combinatorial
problem. We intend to further investigate the proposed framework
with respect to dynamically changing network parameters in future
work. Our findings finally indicate that it is important to consider
both the Packet Loss Ratio (PLR) and Average Burst Length (ABL)
when addressing channel selection in multipath routing or rate ag-
gregation over bursty channels.

REFERENCES

[1] J. Afzal, T. Stockhammer, T. Gasiba and W. Xu, ”System De-
sign Options for Video Broadcasting over Wireless Networks”,
in Proc. of IEEE CCNC 2006, Jan 2006.

[2] V. Agarwal and R. Rejaie, ”Adaptive Multi-Source Streaming
in Heterogeneous Peer-to-Peer Networks”, in Proc. of Multi-
media Computing and Networking MMCN 2005, Jan 2005.

[3] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, ”On Multi-
ple Description Streaming with Content Delivery Networks”,
in Proc. of IEEE Infocom 2002.

[4] P. Frossard, ”FEC performance in multimedia streaming”,
IEEE Commun. Lett. vol. 5, pp. 122–124, Mar. 2001.

[5] H.Y. Hsieh and R. Sivakumar, ”A Transport Layer Approach
for Achieving Aggregate Bandwidths on Multi-Homed Mobile
Hosts”, in Springer, Wireless Networks, Volume 11, Number
1-2, Jan 2005.

[6] M. Luby, ”LT codes”, in Proc. 43rd Annual IEEE Symposium
on Foundations of Computer Science, 2002.

[7] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu,
”Raptor Codes for Reliable Download Delivery in Wireless
Broadcast Systems”, in Proc. of IEEE CCNC 2006, Jan 2006.

[8] A. Majumdar, R. Puri and K. Ramchandran, ”Distributed
Multimedia Transmission from Multiple Servers”, in Proc. of
IEEE ICIP 2002.

[9] A. Shokrollahi, ”Raptor codes”, Digital Fountain, Tech. Rep.
DR2003-06-001, Jun 2003.

[10] J.-P. Wagner, J. Chakareski and P. Frossard, ”Streaming of
Scalable Video from Multiple Servers using Rateless Codes”,
in Proc. of ICME 2006.

[11] C. Wu and B. Li, ”rStream: Resilient Peer-to-Peer Streaming
with Rateless Codes”, in Proc. of ACM Multimedia 2005, Nov
2005.

©2007 EURASIP 1476

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

