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ABSTRACT

In this paper, we consider a transmission of M-Phase Shift Key-
ing (M-PSK) symbols with Gray mapping over a frequency se-
lective channel. We propose to study analytically the impact of
a priori information (provided for instance by a decoder in a
turbo equalizer) on the maximum a posteriori (MAP) equalizer
performance. We derive analytical expressions of the bit error
probability at the output of the equalizer. Simulations show that
the analytical expressions approximate well the bit error rate
(BER) at the output of the MAP equalizer at high signal to noise
ratio (SNR).

1. INTRODUCTION

The high data rate communication systems are impaired by inter-
symbol interference (ISI). To combat the effects of ISI, an equal-
izer has to be used. The optimal soft-input soft-output equalizer,
that achieves minimum bit error rate (BER), is based on the max-
imum a posteriori (MAP) criterion. In this paper, we consider
the case where the M-Phase Shift Keying (M-PSK) modulation
(with M = 2q, for q≥ 1) is used and the MAP equalizer has a pri-
ori information on the transmitted data. The a priori information
are provided by another module in the receiver, for instance a de-
coder in a turbo-equalizer [1]. In a turbo-equalizer, the equalizer
and the decoder exchange extrinsic information and use them as
a priori in order to improve their performance.

In [2], the authors studied analytically the impact of a pri-
ori information on the MAP equalizer performance in the case
of Binary Phase Shift Keying (BPSK) modulation (M = 2). The
aim of our paper is to generalize the study of [2] to the case of
M-PSK modulation. To do this, we derive analytical approxi-
mate expressions of the BER at the output of the MAP equalizer.
Simulations show that these expressions approximate well the
BER at the output of the MAP equalizer at high SNR.

This paper is organized as follows. In section 2, we give
the system model. In section 3, we derive analytical expressions
of the BER at the output of the MAP equalizer. In section 4,
we give simulation results for 8-PSK and 16-PSK modulations.
Throughout this paper matrices are upper case and vectors are
underlined lower case. The operator (.)T denotes transposition,
and Re(.) represents the real value.

2. SYSTEM MODEL

We consider a data transmission system over a frequency selec-
tive channel. We assume that transmissions are organized into
bursts of T symbols and the channel is invariant during one burst.
The channel is spread over L symbols. The input information bit
sequence b = (bq(1−L), ...,b(qT−1))

T , is mapped to a sequence of
M-PSK symbols with Gray mapping where M = 2q, and q ≥ 1.

The baseband signal received and sampled at the symbol rate at
time k is:

yk =
L−1

∑
i=0

hixk−i +nk, (1)

where hi, represents the ith complex channel tap gain, xk, for
1−L ≤ k ≤ T −1, are the transmitted symbols, nk are modeled
as independent random variables of a complex white Gaussian
noise with zero mean and variance σ 2, with normal probability
density function (pdf) NC

(
0,σ 2

)
where NC

(
α ,σ 2

)
denotes a

complex Gaussian distribution with mean α and variance σ 2.
Equation (1) can be rewritten as follows:

y = Hx+n,

where x = (x1−L, ...,xT−1)
T is the vector of transmitted sym-

bols, n = (n0, ...,nT−1)
T is the Gaussian noise vector, y =

(y0, ..., yT−1)
T is the vector of the output symbols and H is a

T × (T +L−1) Toeplitz matrix defined as:

H =




hL−1 . . . h0 0 . . . 0

0 hL−1 . . . h0
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 hL−1 . . . h0


 . (2)

We assume that the channel is normalized:
L−1
∑

i=0
|hi|2 = 1.

In this section, we consider the case where no a priori infor-
mation is provided to the equalizer. The data estimate according
to the MAP sequence criterion (or to the Maximum Likelihood
(ML) criterion, since there is no a priori) is given by:

x̂ = argmin
u

(∥∥y−Hu
∥∥ : u ∈ A(T+L−1)

)
,

where A is the symbol alphabet. An error occurs if the estimated
sequence x̂ is different from the true sequence x. Let us denote
e = x̂− x the resulting error vector. A subevent ξe of the error
event is that “x̂ is better than x” in the sense of the ML metric:

ξe :
∥∥y−Hx̂

∥∥≤
∥∥y−Hx

∥∥ ,

We now proceed to derive a lower bound on the BER of the
equalizer. This can be done by computing the exact error prob-
ability of a genie aided equalizer that has some side informa-
tion about the sent sequence. More precisely, we consider the
case where the receiver has side information (from a genie) that
one of the two sequences x or x̂ was transmitted. When the ge-
nie aided equalizer has this side information, the pairwise error
probability that it chooses x̂ instead of x is given by [3]:

Px,x̂ = Q

( ‖ε‖√
2σ

)
, (3)
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where ε = He, and Q(α) = 1√
2π

∞∫
α

exp
(
− y2

2

)
dy.

Let us assume that the genie tells the receiver that it has to
choose between the true sequence x and another sequence x̂, such
that (3) is maximal i.e. such that the distance ‖ε‖ is minimal. We
now proceed to compute the exact error probability for this genie
aided receiver. Let Emin be the set of all e achieving the minimum
value of ‖ε‖. Let πe be the probability that the input sequence x
will be such that x̂ = x+e is an allowable input sequence for this
e. πe can be interpreted as the probability that the data sequence
x is compatible with e. Then, the probability that the genie aided
equalizer makes an error is

∑
e∈Emin

πeQ




min
e

‖ε‖
√

2σ




In order to obtain a lower bound on the BER, we assume that e is
made of m(e) non-zero consecutive symbols, the other symbols
being zero. Other saying, we assume that there exists an interval
of size m(e) such that all the symbols of x̂ are different from the
corresponding symbols of x while the preceding symbol and the
following one are the same. m(e) is referred to as the weight of
the error sequence in the following. Moreover, we remark that
there is at least one erroneous bit per erroneous symbol. There-
fore, when the equalizer has no side information, the BER Pe is
lower bounded by the probability achieved by the genie aided
equalizer:

Pe ≥ ∑
e∈Emin

m(e)πeQ




min
e

‖ε‖
√

2σ




As will be shown by simulations, this lower bound is a good
approximation of the error probability at high SNR and for a
Gray mapping. This can be explained by the fact that at high
SNR and for a Gray mapping, the union bound (upper bound)
and the above derived lower bound are equal.

Our goal is to find an approximation of the BER at the output
of the MAP equalizer with a priori information.

3. PERFORMANCE ANALYSIS

In this section, we propose to evaluate the impact of the a priori
information on the MAP equalizer performance when a M-PSK
modulation with Gray mapping is used. The study will be done
for the equalizer using the MAP sequence criterion. It holds
for the MAP symbol equalizer using the BCJR algorithm [4]
since the two equalizers have almost the same performance as
observed in [5,page 814]. We assume that channels are perfectly
known at the receiver. Moreover, we suppose that a priori ob-
servations at the input of the equalizer are modeled as outputs
of an additive white Gaussian noise (AWGN) channel. This is a
usual assumption in the analyses of iterative receivers [6]. These
a priori observations on bits bl , for q(1−L)≤ l ≤ qT −1, are:

zl = bl +wl ,

where wl are independent random variables of a real white Gaus-
sian noise with zero mean and variance σ 2

a with normal pdf
N(0,σ 2

a ), where N
(
α ,σ 2

)
denotes a real Gaussian distribution

with mean α and variance σ 2. Then, the a priori Log Likelihood
Ratios (LLRs) are:

LLR(bl) = log
P(zl |bl = 1)

P(zl |bl = −1)
=

2
σ2

a
zl .

Thus, these LLRs can be modeled as independent and iden-
tically distributed random variables with the conditional pdf

N
(

2bl
σ 2

a
, 4

σ 2
a

)
(with bl the transmitted bit).

Proposition 1 Suppose we have a transmission of M-PSK sym-
bols over a frequency selective channel defined by a Toeplitz ma-
trix H and with a complex AWGN of variance σ 2. Consider that
the MAP equalizer has side information (from a genie) that one
of the two sequences x or x̂ was transmitted and has a priori ob-
servations modeled as outputs of an AWGN channel with vari-
ance σ 2

a . Then, the pairwise error probability that it chooses x̂
instead of x is:

Px,x̂ = Q

(
1√
2σ

√
‖ε‖2 +2mb(e)µ2

)
, (4)

where ε = He, e = x̂− x is the symbol error vector, m(e) is the
weight in symbols of e, mb(e) is the weight in bits of e (m(e) ≤
mb(e) ≤ qm(e)) and µ = σ

σa
.

The proof of proposition 1 is given in the Appendix. �

Here again we assume that the genie always chooses a se-
quence x̂ that maximizes the pairwise error probability (4).
Let Emin be the set of all e achieving the minimum value

of
√
‖ε‖2 +2mb(e)µ2, πe be the probability that the input

sequence x will be such that x̂ = x + e is an allowable in-
put sequence. Then, the probability that the genie aided
equalizer chooses an allowable sequence x̂ instead of x is

∑e∈Emin
πeQ

(
1√
2σ

(
min

e

√
‖ε‖2 +2mb(e)µ2

))
.

Corollary 1 We consider a M-PSK modulation with Gray map-
ping. The BER at the output of the MAP equalizer without genie,
using the a priori information can be approximated by:

Pe ' ∑
e∈Emin

m(e)πeQ

(
1√
2σ

(
min

e

√
‖ε‖2 +2m(e)µ2

))
, (5)

where m(e) is the number of (consecutive) non zero symbols in
e.

Proof of corollary 1: For the MAP equalizer without genie,
the BER is lower bounded by the probability achieved by the
genie aided equalizer:

∑
e∈Emin

mb(e)πeQ

(
1√
2σ

(
min

e

√
‖ε‖2 +2mb(e)µ2

))
.

In addition, since we use a Gray mapping, we further as-
sume that there is one erroneous bit per erroneous symbol, s.t.
mb(e) ≈ m(e). Simulations show that this assumption becomes
true at high SNR. Moreover, at high SNR the union bound (up-
per bound) and the lower bound are equal. Therefore, the lower
bound of the BER becomes an approximation as written in (5).
�

In order to evaluate the expression (5), an exhaustive search
has to be performed over all possible error sequences. We pro-
pose to reduce this exhaustive search and to restrict ourself to the
case of error sequences of symbol weight 1 or 2. Simulations
will show that this provides reliable approximations of the over-
all BER. In the following, we consider different cases according
to the value of µ .

Corollary 2 Let d1 = min
e: m(e)=1

‖ε‖ and d2 = min
e: m(e)=2

‖ε‖. If the

a priori information is unreliable (i.e. d1 > d2 and µ ≤ µlim =√
d2

1−d2
2

2 ), the BER at the output of the MAP equalizer can be
approximated by:

Pe ' 2πe2
Q

(
1√
2σ

√
d2

2 +4µ2

)
, (6)
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where πe2
is the probability that we can find pair of sequences

compatible with error sequences of (symbol) weight 2. More
precisely πe2

= ∑e∈E2
πe and E2 is the set of (symbol) weight 2

sequences s.t. ‖ε‖ = d2.
On the other hand, if the information is reliable (i.e. d1 > d2

and µ > µlim or if d1 ≤ d2), the BER at the output of the MAP
equalizer can be approximated by:

Pe ' Q

(
1√
2σ

√
d2

1 +2µ2

)
, (7)

Proof of corollary 2: The value of µlim results from the
equality between equations (6) and (7). When the a priori in-
formation at the input of the MAP equalizer is unreliable (i.e.
µ ≤ µlim), errors occur in bursts. Thus, we do not consider iso-
lated errors and we look for the maximum of (5) for m(e) ≥ 2.

Simulations show that the minimum value of
√
‖ε‖2 +2m(e)µ2

is obtained for error sequence of weight 2 (i.e. m(e) = 2 and
‖ε‖ = d2). Therefore the BER is approximated by (6). The
values of πe2

for the different modulations can be found by an
exhaustive search and are given in Table 1.

In the case of reliable a priori information (i.e. µ > µlim),
a priori observations have more influence on the detection than
channel observations and most of the errors are isolated. There-
fore, m(e) = 1 and ‖ε‖ = d1. In this case for all modulations,
πe1

= ∑{e: m(e)=1 and ‖ε‖=d1} πe is equal to 1, which leads to (7).
Depending on µ , we get either (6) or (7). We determine a

threshold µlim as the value of µ when (6) equals (7). It follows
that µ ≤ µlim corresponds to the case with unreliable a priori and
µ > µlim to the case with reliable a priori. �

Table 1: πe2
values when the a priori information at the input of

the MAP equalizer are unreliable
BPSK QPSK 8-PSK 16-PSK

πe2
1/2 3/4 3/8 3/16

4. SIMULATION RESULTS

In this section, we propose to validate the analysis by simula-
tions. In the simulations, the modulation used is either a 8-PSK
or a 16-PSK using Gray mapping and the channel is assumed
to be constant. We provide the MAP equalizer with a priori in-
formation on the transmitted bits bl modeled as independent and
identically distributed random variables with the conditional pdf
N( 2bl

σ 2
a
, 4

σ 2
a
). We consider different channels.

Figures 1, 2 and 3 represent respectively the BER with
respect to the SNR at the output of the MAP equal-
izer with 8-PSK modulation, for channel3, channel4 and
channel3c with impulse responses: channel3 = (0.5,0.71,0.5),
channel4 = (0.37,0.6, 0.6,0.37) and channel3c = (0.6117−
0.1223 j,0.4588+0.5505 j,−0.3059+0.0612 j).

Table 2 gives the values of d1 and d2 for each channel. For
all these channels, we have d1 > d2. The limit values µlim are
given in Table 3.

Table 2: d1 and d2 values for 8-PSK modulation
channel3 channel4 channel3c

d1 0.7653 0.7653 0.7653
d2 0.5858 0.4730 0.6936

Figures 4 and 5 represent the BER with respect to the
SNR at the output of the MAP equalizer with 16-PSK modula-
tion respectively for channel3 and channelcomp with impulse
responses: channel3 = (0.5,0.71,0.5) and channelcomp =

Table 3: µlim values for 8-PSK modulation
channel3 channel4 channel3c

µlim 0.3483 0.4255 0.2288
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Figure 1: BER versus SNR: comparison of the equalizer per-
formance (solid curves) and the theoretical performance (dotted
curves) for channel3 and 8-PSK modulation

(0.3127−0.4576 j,0.3813+0.5643 j,−0.469+0.0953 j).
Table 4 gives the values of d1 and d2 for each channel.
For all these channels, we have d1 > d2. The limit values µlim
are given in Table 5.

Table 4: d1 and d2 values for 16-PSK modulation
channel3 channelcomp

d1 0.3901 0.3901
d2 0.2986 0.3005

In all figures, each curve is obtained while the ratio µ is
kept constant. The solid lines indicate the equalizer performance
given by simulations. The dotted lines are obtained by consider-
ing the analytical approximate expressions calculated in the pre-
vious section. We notice that the theoretical curves approximate
well the BER. This approximation becomes better at high SNR
(for low values of BER). We can also deduce that the approxi-
mation is more accurate for 8-PSK than for 16-PSK, since the
assumption that there is one erroneous bit per erroneous symbol
is better validated for a 8-PSK modulation.

5. CONCLUSION

In this paper, we considered a transmission of M-PSK symbols
over a frequency selective channel. We proposed to study analyt-
ically the impact of a priori information on the MAP equalizer
performance. We gave an approximation of the error probability
at the output of the MAP equalizer. Simulation results showed
that the analytical expressions give a good approximation of the
equalizer performance. The aim of this work is to perform in the
future the analytical convergence analysis of iterative receivers
with MAP equalization.

6. APPENDIX: PROOF FOR PROPOSITION 1

We recall that the output of the channel during a burst is the T ×1
complex vector y = (y0, ...,yT−1)

T defined as:

y = Hx+n,
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Figure 2: BER versus SNR: comparison of the equalizer per-
formance (solid curves) and the theoretical performance (dotted
curves) for channel4 and 8-PSK modulation
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Figure 3: BER versus SNR: comparison of the equalizer per-
formance (solid curves) and the theoretical performance (dotted
curves) for channel3c and 8-PSK modulation

where x = (x1−L, ...,xT−1)
T is the (T +L−1)× 1 vector of

transmitted symbols, n = (n0, ...,nT−1)
T is a complex white

Gaussian noise vector with zero mean and variance σ 2 and H
is the T × (T +L−1) channel matrix given by (2).

The real vector of a priori observations z =
(zq(1−L), ...,z(qT−1))

T on the transmitted bits is defined as:

z = b+w,

where w = (wq(1−L), ...,w(qT−1))
T is a real white Gaussian

noise vector with zero mean and variance σ 2
a and b =

(bq(1−L), ...,b(qT−1))
T is the vector of transmitted bits.

Taking into account the a priori information, the a posteriori

Table 5: µlim values for 16-PSK modulation
channel3 channelcomp

µlim 0.1774 0.1758
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Figure 4: BER versus SNR: comparison of the equalizer per-
formance (solid curves) and the theoretical performance (dotted
curves) for channel3 and 16-PSK modulation
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Figure 5: BER versus SNR: comparison of the equalizer per-
formance (solid curves) and the theoretical performance (dotted
curves) for channelcomp and 16-PSK modulation

probability of the sequence x is given by:

P
(
x|y,z

)
∝ exp

(
−
∥∥y−Hx

∥∥2

σ2

)
exp

(
−‖z−b‖2

2σ 2
a

)
.

As in the case of no a priori information, we consider an error
event ξe. This error event is that x̂ is better than x in the sense of
the MAP sequence metric:

ξe :
∥∥y−Hx̂

∥∥2
+

σ2

2σ 2
a

∥∥∥z− b̂
∥∥∥

2
≤ (8)

∥∥y−Hx
∥∥2

+
σ2

2σ 2
a
‖z−b‖2 ,

Let e = x̂ − x and a = b̂− b be respectively the symbol error
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vector and the bit error vector. We have:
∥∥y−Hx̂

∥∥2 −
∥∥y−Hx

∥∥2
(9)

=
∥∥y−Hx−He

∥∥2 −
∥∥y−Hx

∥∥2

= ‖He‖2 −2Re(
〈
y−Hx,He

〉
)

= ‖ε‖2 −2Re(〈n,ε〉),
where ε = He. In addition:

∥∥∥z− b̂
∥∥∥

2
−‖z−b‖2 = ‖z−b−a‖2 −‖z−b‖2

= ‖a‖2 −2〈z−b,a〉

= ‖a‖2 −2〈w,a〉 . (10)

We obtain using (8), (9) and (10):

ξe : ‖ε‖2 +
µ2

2
‖a‖2 ≤ 2Re(〈n,ε〉)+ µ2 〈w,a〉 ,

where µ = σ
σa

. We note χ = 2Re(〈n,ε〉) + µ2 〈w,a〉. We can

write that χ ∼ N
(

0,2σ 2
(
‖ε‖2 + µ2

2 ‖a‖2
))

. Thus, when the

genie aided equalizer is provided with a priori information, the
pairwise error probability that it chooses x̂ instead of x is given
by:

Px,x̂ = Q

(
1√
2σ

√
‖ε‖2 +

µ2

2
‖a‖2

)
.

Let mb(e) be the weight of the bit error vector, and m(e) the
weight of the symbol error vector with m(e) ≤ mb(e) ≤ qm(e)

since the number of erroneous bit per erroneous symbol is be-
tween 1 and q. The vector a has mb(e) components equal to
±2 and the others equal to zero. Thus, we can replace ‖a‖2 by
4mb(e) and we obtain:

Px,x̂ = Q

(
1√
2σ

√
‖ε‖2 +2mb(e)µ2

)
.
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