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ABSTRACT

Some of the wireless standards, e.g. IEEE 802.16-2004, al-
low successive transmission of a number of consecutive slots,
where each of them contains a training (pilot) interval. If a
number of neighbouring cells asynchronously transmit sim-
ilar frames, then the resulting interference environment be-
comes similar to a distributed training scenario. In this pa-
per, a distributed training scenario is addressed by means
of semi-blind (SB) processing at the multiple-antenna re-
ceiver. A second-order statistics identifiability is analyzed
and a SB algorithm is proposed for the situation, where the
data and training intervals contain different sets of interfer-
ence components. Its performance is assessed by means of
comparison to the non-asymptotic maximum-likelihood (ML)
benchmark initialized by the developed identification algo-
rithm. It is demonstrated that the SB solution significantly
outperforms the conventional training-based algorithm and
approaches the benchmark in the case of low number of
available data symbols. Using all the considered second-
order solutions as initializations for the higher-order statis-
tics iterative algorithm is also addressed.

1. INTRODUCTION

In wireless communications systems unsynchronized trans-
missions in neighbouring cells lead to an asynchronous CCI
scenario, where some of the interference components may
not overlap with the training data of the desired signal [1]
- [3]. Conventional training-based space-time interference
cancellation techniques may not be effective in this situation.
One example of such a scenario is interference mitigation on
the uplink of a cellular WiMAX-compliant system based on
the IEEE 802.16-2004 [4] or ETSI HiperMAN [5] standards
addressed in [3].

A second-order statistics adaptive semi-blind (SB) algo-
rithm for asynchronous CCI cancellation is proposed and
studied in [6] [8]. It is based on regularization of the conven-
tional training-based least squares (LS) solution by means of
the weighted covariance matrix estimated over the data in-
terval. It is shown in [6], [7] that its performance in typical
asynchronous CCI scenarios is close to the performance of
a non-asymptotic ML benchmark jointly estimated over both
the training and working intervals. This benchmark is based
on the stochastic ML bounds developed in [9]. In [8] the non-
asymptotic ML benchmark is expanded to the scenario with
the known time-of-arrival information for CCI components.

It is pointed out in [10] that spreading the training sym-
bols over the data slot (distributed training) could signif-

Part of this work has been done in the context of the IST FP6 MEM-
BRANE project.

icantly simplify cancellation of the asynchronous CCI be-
cause it increases probability of overlapping between CCI
and the training data. A simple case with one CCI compo-
nents is addressed in [10] by means of the SB algorithm with
projections to the finite alphabet (FA).

Second- and higher-order statistics interference cancel-
lation is addressed in this paper in a more complicated dis-
tributed training scenario with a number of interference com-
ponents.

Some of the wireless standards, such as GSM or WLAN,
do not assume distributed training. Some of them, e.g. IEEE
802.16-2004 [4], allow successive transmission of a number
of consecutive slots, where each of them contains a training
interval. If a number of neighbouring cells asynchronously
transmit similar frames, then the resulting interference sce-
nario becomes similar to distributed training as illustrated in
Fig. 1.
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Figure 1: Typical asynchronous scenario with distributed
training for three neighbouring cells environment

The main feature of this scenario is that for some data
intervals and groups of sub-carriers a set of CCI compo-
nents may be different compared to the surrounding training
intervals leading to significant performance degradation for
conventional training-based solutions or initializations for
higher-order SB techniques. This type of data intervals will
be referred to as intervals with indirect training. For example,
training interval T1 overlaps with CCI 1, 3 and 5, T2 over-
laps with CCI 2, 4, 5, but the data interval D with indirect
training contains different set of CCI 2, 3, 5. All other data
intervals in Fig. 1 can be associated with one of the training
intervals with the same set of the interference components.
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Interference cancellation on the data intervals with indi-
rect training is considered in this paper. First of all, a second-
order statistics identifiability is demonstrated. A second-
order SB solution is proposed, which is based on a two-stage
adaptive noise canceller [11], [12] applied over the data and
training intervals. Efficiency of the proposed solution is an-
alyzed by means of comparison to the non-asymptotic ML
benchmark. Higher-order statistics estimation is also ad-
dressed by means of comparison of different second-order
initializations including the ML benchmark.

2. DATA MODEL AND PROBLREM
FORMULATION

The following narrowband data model of the signal received
by an antenna array ofK elements is considered:

x(n) = hs(n)+
M

∑
m=1

gmum(n)+z(n), (1)

wheren = 1, . . . ,N is the time index;x(n) ∈ C K×1 is the
vector of observed outputs of an antenna array;s(n) is the
desired signal, E{|s|2} = 1, E{s(q)s∗(g)} = 0, q 6= g, E{·}
denotes expectation;um(n), m= 1. . .M are theM indepen-
dent components of CCI:

E{um(q)u∗m(g)}=
{

pm, for q = g∈Nm
0, for all otherq andg , (2)

Nm is the appearance interval for them-th interference com-
ponent,z(n) ∈ C K×1 is the vector of noise, E{z(n)z∗(n)}=
p0IK , E{z(q)z∗(g)} = 0, q 6= g and h ∈ C K×1 and gm ∈
C K×1 are the vectors modelling linear propagation channels
for the desired signal and interference. All propagation chan-
nels are assumed to be stationary over the whole data slot and
independent for different antenna elements and slots.

As illustrated in Fig. 2, two training intervals ofNt > K
samples:Nt1: n = 1, . . . ,Nt andNt2: n = N−Nt +1, . . . ,N
are located in the edges of the data intervalNd: n = Nt +
1, . . . ,Nt +Nd of Nd = N−2Nt samples. The same training
sequencest ∈ C 1×Nt is assumed for both training intervals.

For simplicity we assume a particular structure of the in-
direct training interval forM = 5 shown in Fig. 2 (three
interfering cells or three CCI components at each time in-
stant) leading to the following interference appearance inter-
valsN1 = Nt1, N2 = Nd∪Nt2, N3 = Nt1∪Nd, N4 = Nt2,
N5 = Nt1∪Nd∪Nt2 = 1, . . . ,N.

CCI 1

D

CCI 2

CCI 3 CCI 4

CCI 5

T1 T2

tN dN tN

Figure 2: Indirect training data model

One can see that the scenario in Fig. 2 represents D in-
terval shown in Fig. 1 that may contain a group of OFDM
sub-carriers, e.g., in the case of WiMAX uplink scenario [3].

Location of this interval is assumed to be known. For exam-
ple, it can be obtained by using tracking sub-carriers or other
abrupt changes techniques. The considered scenario appears
when two of three neighbouring cells change their transmit-
ters within one slot of data1.

A signal estimate can be found as the output of a spatial
filter:

ŝ(n) = ŵ∗x(n), n∈Nd, (3)

wherew ∈ C K×1 is a weight vector.
The minimum mean square error (MMSE) weight vector

in the scenario shown in Fig. 2 is as follows:

wMMSE = R−1
d h, (4)

whereRd = hh∗ + p2g2g∗2 + p3g3g∗3 + p5g5g∗5 + p0IK and
IK is theK-dimension identity matrix.

The problem is to estimatewMMSE using second-
order statistics over all three available intervals:R̂t1(2) =
N−1

t ∑n∈Nt1(2)
x(n)x∗(n), R̂d = N−1

d ∑n∈Nd
x(n)x∗(n),

r̂t1(2) = N−1
t ∑n∈Nt1(2)

s(n)∗x(n), and compare performance

to the conventional training-based least squares LS solution

ŵLS = (R̂t1 + R̂t2)
−1(r̂t1 + r̂t2), (5)

as well as to the non-asymptotic ML benchmark under Gaus-
sian assumption for all variables.

3. IDENTIFIABILITY

First of all, we develop an identification algorithm and
demonstrate that all the parameters of the data model in Fig.
2 can be asymptotically (Nt → ∞ andNd→ ∞) identified up
to an arbitrary rotation. In Section 7, the identification al-
gorithm based on the estimated covariance matrices will be
used for initialization of the non-asymptotic ML benchmark.

At the beginning, we assume the known second-order
statistics:Rt1(2), Rd andrt1(2) and form two more covari-
ance matrices for the training intervals with the removed

training signal:R(0)
t1(2) = N−1

t ∑n∈Nt1(2)
x(n)Bsx∗(n), where

Bs = INt−s∗tst/(sts
∗
t ). In terms of interference components,

identification means that we find a scalaram and a vectorbm
such that a first rank matrixambmb∗m = pmgmg∗m. For the
desired signal we finda andb such thatabb∗ = hh∗.

For simplicity we assumeK = 5 in this and following
sections because this case represents especially important sit-
uation for scenario in Fig. 2, where the total number of sig-
nals for the whole interval exceeds the number of antenna
elements, i.e.,M +1 > K, which makes the conventional so-
lution (5) to be ineffective.

The expressions below are based on the following eigen-
decompositions of the matrices:

Rt1(2) = Ut1(2)Λt1(2)U
∗
t1(2) + λt1(2),5ut1(2),5u

∗
t1(2),5 (6)

Rd = UdΛdU∗
d+ λd,5ud,5u

∗
d,5

(7)

R(0)
t1(2) = U(0)

t1(2)Λ
(0)
t1(2)U

(0)∗
t1(2)+

1Other intervals shown in Fig. 1 or similar that may appear for different
overlapping models can be addressed by similar data models with different
appearance intervals.
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U(0)
t1(2),45

[
λ (0)
t1(2),4 0

0 λ (0)
t1(2),5

]
U(0)∗

t1(2),45 (8)

where eigenvalues are in descending order. For example, no-
tations “t1(2),5” and “d,5” indicate the minimum eigenvalues
and corresponding eigenvectors for the training and data in-
tervals, taking into account thatK = 5. The increased by

one dimension of the noise sub-space inR(0)
t1(2) is taken into

account in (8).
The identification solution is summarized below without

detailed explanations because of space limitation.

- Identification of p5g5g∗5:

a5 =
(
e∗dΛ−1

d ed

)−1
, b5 = Uded, (9)

Λ̃d = Λd−λd,5I4, ed = umin(D∗
5D5),

D5 =




U∗
t1

U∗
t2

U(0)∗
t1,45

U(0)∗
t2,45


Ud.

Now, the fifth CCI component can be removed from all
five matrices (6)-(8):

R(1)
t1(2) = Ut1(2)

(
Λ̃t1(2)−

et1(2)e
∗
t1(2)

e∗t1(2)Λ̃
−1
t1(2)et1(2)

)
U∗

t1(2) (10)

R(1)
d = Ud

(
Λ̃d−

ede
∗
d

e∗dΛ̃−1
d ed

)
U∗

d (11)

R(01)
t1(2) =U(0)

t1(2)


Λ̃(0)

t1(2)−
e(0)
t1(2)e

(0)∗
t1(2)

e(0)∗
t1(2)

(
Λ̃(0)

t1(2)

)−1
et1(2)

(0)

U(0)∗

t1(2),

(12)
whereet1(2) =Ut1(2)b5, Λ̃t1(2) =Λt1(2)−λt1(2),5I4, e(0)

t1(2) =

U(0)
t1(2)b5 andΛ̃(0)

t1(2) = Λ(0)
t1(2)−0.5(λ (0)

t1(2),4+ λ (0)
t1(2),5)I3.

Similarly to (6)-(8), eigendecomposition of matrices
(10)-(12) can be obtained taking into account the increased
by one dimension of the noise subspace for all of them. Be-
low we keep the eigendecomposition notations from (6)-(8)
with the additional upper upper index(·)(1).

- Identification of p3g3g∗3 (p2g2g∗2):

a3(2) =
[
r∗3(2)

(
Λ(1)

d

)−1
r3(2)

]−1

, b3(2) = U(1)
d r3(2), (13)

r3(2) = umin(D∗
3(2)D3(2)), D3(2) =

[
U(1)∗

t1(2),45

U(01)∗
t1(2),345

]
U(1)

d .

- Identification of p1g1g∗1 (p4g4g∗4):

a1(4) = λmax(D1(4)), b1(4) = umax(D1(4)), (14)

D1(4) = U(01)
t1(2)


Λ̃(01)

t1(2)−
r1(2)r∗1(2)

r∗1(2)

(
Λ̃(01)

t1(2)

)−1
r1(2)


U(01)∗

t1(2) ,

r1(2) = U(01)
t1(2)a3(2),

whereλmax(A) andumax(A) are the maximum eigenvalue
and the corresponding eigenvector of matrixA.

- Identification ofhh∗

a =
[
r∗
(
Λ(1)

d

)−1
r
]−1

, b = U(1)
d r, (15)

r = umin(D∗D), D =

[
U(1)∗

t1,45

U(1)∗
t2,45

]
U(1)

d .

Thus, all the covariance matrices components for the
training and data intervals shown in Fig. 2 can be identified.

The presented solution can be used as an identification al-
gorithm if the known correlation moments are replaced with
the second-order statistics estimated over the corresponding
intervals.

It is worth emphasizing that we do not propose using
such the identified parameters for signal estimation, e.g.,

asŵ = α̂
(
âb̂b̂∗+ â2b̂2b̂∗2 + â3b̂3b̂∗3 + â5b̂5b̂∗5 + p̂IK

)−1
b̂,

whereα̂ is a rotation coefficient. The reason is that identi-
fication solutions that are not obtained from optimization of
the signal recovery criterion normally have very slow conver-
gence in terms of the required amount of data for the given
quality of signal estimation [13]. In the next Section, the
identified parameters will be used for intialization of the no-
asymptotic ML benchmark for ad hoc algorithms.

4. NON-ASYMPTOTIC ML BENCHMARK

Similarly to [6], [7], in the considered scenario the ML es-
timates of the structured covariance matrices could be ob-
tained via maximization of a monotonic function of the prod-
uct of the likelihood ratios (LR) on the corresponding inter-
vals:

Find max
c,cm,d

γ(Āt1)γ(Āt2)γ(Ad))Nd/Nt , (16)

γ(Āt1(2)) =
det(Ā−1

t1(2)
ˆ̄Rt1(2))exp(K +1)

exp[tr(Ā−1
t

ˆ̄Rt1(2))]
, (17)

γm(A =
det(A−1

d R̂d)exp(K)

exp[tr(A−1
d R̂d)]

, (18)

Āt1 =
[

1 c∗
c cc∗ +c1c∗1 +c3c∗3 +c5c∗5 +dIK

]
> 0, (19)

Āt2 =
[

1 c∗
c cc∗ +c2c∗2 +c4c∗4 +c5c∗5 +dIK

]
> 0, (20)

Ad = cc∗+c2c∗2 +c3c∗3 +c5c∗5 +dIK > 0, (21)

where ˆ̄Rt1(2) =
[

p̂t1(2) r̂∗t1(2)
r̂t1(2) R̂t1(2)

]
are the sufficient statis-

tics at the training intervals, andc andcm, m= 1, . . . ,M are
K×1 complex vectors andd is a positive scalar.
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The identification algorithm developed in Section 3 ap-
plied for the estimated correlation moments can be used for

initialization in (16)-(21) as follows:c[0] = α̂
√

âb̂, c[0]
m =√

âmb̂m, m= 1, . . . ,M, d[0] = p̂0. Noise power ˆp0 can be es-
timated as an average value of all the noise sub-space eigen-
values.

As in [9], [6], [7], the benchmark performance is
estimated only over the selected trials, where the LR
value exceeds the LR value for the exact parameters. The
weight vector for such trials can be calculated as ˆwML =(
ĉ[J]ĉ[J]∗ + ĉ[J]

2 ĉ[J]∗
2 + ĉ[J]

3 ĉ[J]∗
3 + ĉ[J]

5 ĉ[J]∗
5 + d̂[J]IK

)−1
ĉ[J],

where J is the number of iterations of the optimization
procedure in (16)-(21).

5. SB SOLUTION WITH “CLEANED” TRAINING

The developed non-asymptotic benchmark can be used for
assessment of empirical solutions in the considered scenario.
One of them is proposed in this section. The idea is to use the
data interval for cancellation of the interference components
at the training intervals that do not exist at the data interval.
This can be done by means of a two-stage adaptive noise
canceller (ANC) [11], [12] as illustrated in Fig. 3.

T1(2) with
CCI 1,3,5(2,4,5)

and desired signal

Cleaned T1(2) 
with “no” CCI1(4)

)ˆ( dmin Ru

Signal correlated with CCI1(4)

ANC
)2(1)2(1 ˆ,ˆ

tt rR )2(1)2(1
~,

~
tt rR

Figure 3: Two-stage “cleaning” ANC

At the first stage the spatial filter estimated over the data
interval that cancels all the interference components and the
desired signal, is applied over the training intervals to ob-
tain the signals correlated to the interference components not
presented on the data interval:

y(n) = v̂∗dx̂(n), n∈Nt1(2), (22)

wherev̂d = umin(R̂d) is the eigenvector corresponding to
the minimum eigenvalue of matrix̂Rd. Then, “cleaned”
training intervals can be obtained:

x̃k(n) = xk(n)− f̂ ∗1(2)ky(n), n∈Nt1(2), k = 1, . . . ,K, (23)

where f̂1(2)k = ∑n∈Nt1(2)
x∗k(n)y(n)/∑n∈Nt1(2)

|y(n)|2.

Eventually, the “cleaned” training intervals ˜x =
[x̃1, . . . , x̃K ]T can be used similarly to (5) instead of the origi-
nal training intervals to get the semi-blind solution:

ŵSB = (R̃t1 + R̃t2)
−1(r̃t1 + r̃t2). (24)

One can expect better performance for (24) compared to
(5) because of cancellation of the interference components
that are not presented on the data interval (CCI 1 and 4 in

Fig. 2). Efficiency of such a cancellation depends on the
number of antenna elements and duration of all the intervals
shown in Fig. 2. It will be evaluated in Section 7 by means
of comparison with the non-asymptotic ML benchmark in
the considered scenario.

6. SB ALGORITHM WITH FA PROJECTIONS

In communications applications transmitted signals belong
to special classes such as FA or constant modulus (CM).
Thus, second-order statistics techniques can be used as ini-
tializations for iterative higher-order algorithms, for exam-
ple, as follows

ŵSBFA = ŵ[J], (25)

ŵ[ j ] = (XX∗)−1XΘ
[
X∗ŵ[ j−1]

]
, j = 1, . . . ,J, (26)

whereX =
[
x(1), . . . ,x(Nd)

]
is theK×Nd matrix of input

signals on the data interval, ˆw[ j ] is the weight vector at the
jth iteration,Θ[·] is projection to the FA andJ is the total
number of iterations with stopping rule ˆw[J] = ŵ[J−1].

All the considered above second-order solutions can be
used as an initialization ˆw[0] in (25). Comparison of the ML
benchmark initialization to the LS and SB initializations for
the SBFA algorithm (25), (26) is especially interesting. It
can be considered as comparison of the ad-hoc and the best
possible second-order initializations.

7. SIMULATION RESULTS

We simulate a five-element antenna array and five-
component interference according to the CCI scenario in Fig.
2. The desired signal and interference are generated as in-
dependent streams of random symbols(±1± 1)/

√
2. All

propagation channels are simulated as independent complex
Gaussian vectors with unit variance and zero mean. The
training sequence ofNt = 8 symbols and variable total num-
ber of symbols at the data intervalNd are considered. The
LS and SB algorithms (5) and (24) as well as the ML bench-
mark developed in Section 4 are compared by means of the
MSE and bit error rate (BER) performance estimated over
6000 trials with independent channel and data realizations.
Optimization routine “fmincon” from the MATLAB Opti-
mization Toolbox is used for solution of the non-linear con-
strained optimization problem (16)-(21).

The MSE and BER results for the LS, SB algorithms and
the benchmark are presented in Fig. 4 for variable signal-
to-noise ratio (SNR) and the fixed signal-to-interference ra-
tio SIR=0 dB (equal power interference components are as-
sumed). The MMSE performance is also shown in Fig. 4 for
information. Typical LR distributions of the initialization,
exact solution and benchmark are shown in Fig. 5.

First of all, one can see that the benchmark performance
is much better compared to the conventional training-based
LS case. This means that the considered problem is clearly
required an advance semi-blind processing. The proposed
SB algorithm significantly outperforms the LS solution, but
demonstrates some performance degradation compared to
the non-asymptotic ML benchmark. Particularly, one can
see 2 dB and 3 dB degradation at 1% BER forNd = 16 and
Nd = 160 respectively.

The SBFA performance for different initializations is
shown in Fig. 6. One can see that for high number of data
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symbols the difference between the SB and benchmark ini-
tializations is reduced to less than 1 dB at 0.1% BER.

Further illustration is presented in Fig. 7 for the fixed
SNR=15 dB and variable SIR. Again, one can see significant
SB performance improvement, e.g., by more than 7 dB at 1%
BER forNd = 160 and by more than 5 dB for SBFA with the
SB initialization compared to the LS initialization.

8. CONCLUSION

Second-order statistics identifiability of the considered indirect dis-
tributed training scenario has been demonstrated and a semi-blind
algorithm has been developed, where the data and training intervals
contain different sets of interference components. The SB perfor-
mance has been assessed by means of the developed non-asymptotic
ML benchmark. It has been shown that the SB algorithm signif-
icantly outperforms the conventional LS solution and its perfor-
mance is close to the benchmark for the low number of available
data symbols. In the case of the large number af data symbols,
the SB initialization of the iterative algorithm with FA projections
demonstrates the performance close to the benchmark initialization.
The proposed approach can be applied for interval-based process-
ing with different interference situations such as shown in the asyn-
chronous scenario in Fig. 1.
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Figure 4: SB and benchmark performance for SIR=0 dB
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Figure 7: SB and SBFA performance for SNR=15 dB
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