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ABSTRACT
In this paper we consider multiple access systems affected
by flat Rayleigh fading, where users and access point are
equipped with multiple antennas. The exploitation of some of
the MIMO potentials relies necessarily on space-time coding.
However, such a processing may induce severe losses in terms
of achievable information rates. In this paper we prove nec-
essary and sufficient conditions ensuring that the space-time
coding is information lossless, in the sense that it achieves
the ergodic capacity region of the multiple access system. In
particular, the information lossless property is guaranteed if
each user makes use of a full-rate Trace-Orthogonal Design,
that is a linear space-time code whose encoding matrices are
orthogonal with respect to the trace inner product. Notewor-
thy, different users can also adopt the same set of encoding
matrices.

1. INTRODUCTION

MIMO systems have attracted a lot of research in the recent
years, since they yield an increase of spectral efficiency and
diversity gain without sacrificing transmission power and/or
bandwidth [1]. However, the exploitation of MIMO poten-
tials, in particular diversity gain, relies on the use of space-
time coding [2]. Unfortunately, such a processing may induce
severe losses in terms of capacity [3]. Nevertheless, spectral
efficiency is one of the major motivations for using MIMO
systems. Hence, it is fundamental to discern which are the
space-time coding properties essential to achieve the MIMO
potentials without incurring capacity losses. In the single
user scenario there are several studies in that direction, see,
e.g., [4], [5] and references therein. However, it seems that
no equivalent systematic study has been carried out in the
multiuser setting. The characterization of the space-time
coding strategies allowing for lossless information transfer,
in the case of multiple access systems, was considered in [6],
where the problem of invariance for the sum-rate was ad-
dressed, and [7], where the invariance with respect to the
instantaneous capacity region was considered. In particular,
[7] considers non ergodic channels and gives the necessary
and sufficient condition on the space-time coding scheme en-
suring that certain regions of achievable rates are not affected
by the coding. The result is derived on a per-channel real-
ization basis and thus it does not rely on the statistics of
the channels. In this work, we take into account the channel
statistics explicitly and consider multiple access systems af-
fected by flat Raylegh fading with i.i.d.1 channel coefficients.
Assuming ergodic channels with long-term delay constraint,
the set of achievable rates is described by the ergodic capacity
region [10] of the multiple access system. We aim at char-
acterizing the class of information lossless space-time coding
schemes for such systems. In particular, we prove that the
necessary and sufficient condition to achieve the ergodic ca-
pacity region of the multiple access system is that every user
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employs a full-rate Trace-Orthogonal Design, that is a lin-
ear space-time code whose encoding matrices are orthogonal
with respect to the trace inner product. The work is orga-
nized as follows. The system model is outlined in Section 2
where in addition the ergodic capacity regions of interest are
defined. In Section 3 we derive the necessary and sufficient
conditions identifying the class of information lossless linear
space-time codes. Section 4 follows with conclusive remarks.
Throughout the paper, we use the following notation: C

n×p

denotes the space of n × p matrices with complex entries;
matrices are denoted by bold uppercase letters and vectors
by bold lowercase ones; In denotes the n × n identity ma-
trix; I and 0 denote respectively an identity matrix and a
null matrix with suitable dimensions.

2. SYSTEM MODEL

Consider a multiple access system composed of N users,
each with nT transmit antennas, and an access point (AP),
with nR receive antennas. Let us assume that the k-th user
encodes its own ns complex symbols sk(j), j = 1, . . . , ns,
through the following space-time linear encoder

Xk =

nsX
j=1

Ak(j)sk(j) (1)

where {Ak(j), j = 1, . . . , ns} is the set of nT × Q complex
matrices assigned to the k-th user.
A space-time encoder is a Trace-Orthogonal Design (TOD),
if the corresponding matrices Ak(1), · · · , Ak(ns) are ortho-
normal with respect to the trace inner product, that is they
satisfy

tr
�
A

H
k (j)Ak(m)

�
= δjm, (2)

where δjm is the Kronecker delta.
Applying the vec(·) operator to (1), we get

xk = vec(Xk) =

nsX
j=1

vec (Ak(j)) sk(j) = F ksk, (3)

where F k is the QnT × ns matrix whose j-th column is
vec(Ak(j)) and sk = [sk(1) · · · sk(ns)]

T is the vector of trans-
mitted symbols for the k-th user.
To guarantee symbol recovery2 for each user, the matrices
F k must be full column rank, i.e., rank(F k) = ns. This
means that the following inequality must be satisfied

ns ≤ Q · nT . (4)

We will refer to codes for which F k has full column rank, as
nonsingular codes. Moreover, when (4) holds with equality,
we will refer to the corresponding code as full-rate. In this
case, in fact, the code rate, defined as R = ns/Q, is equal to
nT .

2Symbol recovery is guaranteed if mapping (3) is injective.
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As will be clear later, matrices F k (k = 1, . . . , N) play
a fundamental role in characterizing the properties of the
codes. In particular, for full-rate Trace-Orthogonal Designs
the following property holds

Property 1. The matrix F k of a full-rate Trace-Orthogonal
Design is unitary.

Proof. By definition

F k = [vec(Ak(1)) . . . vec(Ak(ns))] , (5)

where ns = Q · nT since the code is full-rate. As a conse-
quence, F k is a square matrix and the generic element of the
product F H

k F k, denoted by
�
F H

k F k

	
i,j

, can be written asn
F

H
k F k

o
i,j

= vec(Ak(i))H vec(Ak(j))

= tr
�
A

H
k (i)Ak(j)

�
= δij , (6)

where property vec(A)H vec(B) = tr(AHB) has been ex-
ploited in the second equality, and (6) comes from (2). So,
unitarity of F k follows immediately.

Conversely, any unitary matrix can be thought as the matrix
F k of a full-rate TOD. Note that, within the class of non-
singular codes, for a full-rate TOD F H

k F k = F kF H
k = Ins ,

as Property 1 states, whereas for a non full-rate (ns < QnT )
TOD we have F H

k F k = Ins , but F kF H
k 6= IQnT

.

Now, let us consider the multiple access channel. Denot-
ing by Hk ∈ C

nR×nT the channel matrix characterizing the
link between the k-th user and the AP, and by x̃k the corre-
sponding vector of transmitted symbols, the received vector
is

ỹ =

NX
k=1

Hkx̃k + ṽ, (7)

where ṽ is the noise vector, assumed to be zero mean, circu-
larly symmetric complex Gaussian, with covariance matrix
σ2

vI . We will refer to (7) as the uncoded system.

Consider now the system with space-time encoding, where
the channels Hk are assumed to be constant over Q succes-
sive channel uses (block fading model). If each user transmits
the matrix Xk, built as in (1), the received matrix is

Y =

NX
k=1

HkXk + V , (8)

where V is the nR × Q received noise matrix. Applying the
vec(·) operator3 to (8) and using (1) and (3), we get

y =
NX

k=1

(IQ ⊗ Hk)F ksk + v, (9)

where v = vec(V ). We will refer to (9) or (8) as the coded
system.

Now, assume that the channels are affected by uncorrelated
Rayleigh fading, i.e., Hk for k = 1, . . . , N is composed of
i.i.d. zero mean circularly symmetric complex Gaussian ran-
dom variables; Pk is the constraint on the transmit power for
the k-th user, i.e., with reference to (7),

tr
�

E

n
x̃kx̃

H
k

o�
≤ Pk ; (10)

3In deriving (9) we have used vec(AXB) = (BT
⊗A) vec(X).

no channel state information (CSI) is available at the trans-
mitters and the receiver at the AP has perfect CSI. Under
these hypotheses, when channels are ergodic with long-term
delay constraint, the multiple access system can be character-
ized in terms of the ergodic capacity region. For the uncoded
system in (7), the region is a polytope given by [9], [10]

C
unc =

n
(R1, . . . , RN ) ∈ R

N
+

���X
k∈S

Rk ≤C unc(S) , (11)

∀S ⊆ {1, . . . , N}
o

,

where

C unc(S) = E

(
log

�����InR
+

1

nT σ2
v

X
k∈S

PkHkH
H
k

�����) , (12)

and S is any nonempty subset of {1, . . . , N}.
To determine the corresponding region for the coded sys-

tem in (9), we can assume, without loss of generality, that
each user transmits independent symbols, since any correla-
tion can be incorporated into the matrix F k. In particular,
assuming that the symbol variance for the k-th user is Pk/nT ,
the power constraint for the coded system becomes

tr
�
F kF

H
k

�
≤ nT Q , (13)

since the symbols are transmitted in Q channel uses. Thus,
the ergodic capacity region for the coded system in (9) is [10]

C
cod =

[
tr(F kF

H
k )≤nT Q

∀k∈{1,2,...,N}

n
(R1, . . . , RN ) ∈ R

N
+

��� (14)X
k∈S

Rk ≤ C cod(S) , ∀S ⊆ {1, . . . , N}

)
,

where

C cod(S) =
1

Q
E

n
log
���I+ (15)

1

nT σ2
v

X
k∈S

Pk(IQ ⊗ Hk)F kF
H
k (IQ ⊗ H

H
k )

�����)
in which the factor 1/Q accounts for the Q channel uses.

3. INFORMATION LOSSLESS SPACE-TIME
CODING

The objective of this section is to provide both sufficient and
necessary and sufficient conditions on the encoding matrices
for each user so that lossless information transfer is guaran-
teed. In general, the coded system (8) can experience rate
reductions depending on the particular choice of the space-
time encoder for each user. For example, in the single user
scenario, it is well known [3] that orthogonal space-time block
coding incurs severe loss in terms of capacity. In a multiuser
scenario the rate loss is experienced in terms of modification
and/or reduction of the corresponding region of achievable
rates. We are interested in space-time coding strategies that
are able to achieve the ergodic capacity region of the multi-
ple access system. In this regard, the next theorem gives a
sufficient condition.

Theorem 1. Consider a MIMO multiple access system with
channels affected by flat Rayleigh fading with i.i.d. channel
coefficients, where perfect CSIR and no CSIT are assumed.
The k-th user is constrained in its total power to Pk. Then,
a sufficient condition to achieve the ergodic capacity region
of the system is that every user employs a full-rate Trace-
Orthogonal Design.
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Proof. Under the assumption of flat Rayleigh fading with
i.i.d. channel coefficients, the ergodic capacity region for the
coded system is given by (14). Since every user employs a
full-rate Trace-Orthogonal Design then, according to Prop-
erty 1, the following identities hold

F kF
H
k = IQnT

, k = 1, . . . , N , (16)

which, substituted in (14), lead to

C
cod =

n
(R1, . . . , RN ) ∈ R

N
+

���X
k∈S

Rk ≤C cod(S) , (17)

∀S ⊆ {1, . . . , N}
o

,

with

C cod(S) =
1

Q
E

(
log

�����IQnR
+

1

nT σ2
v

X
k∈S

Pk(IQ ⊗ HkH
H
k )

�����)
= E

(
log

�����InR
+

1

nT σ2
v

X
k∈S

PkHkH
H
k

�����) , (18)

which is precisely the ergodic capacity region of the original
(uncoded) multiple access system, as reported in (11) with
(12).

It is interesting to note that the use of a full-rate Trace-
Orthogonal Design is also a necessary condition to achieve
the ergodic capacity region, at least when the users have
the same power budget. However, in order to prove this
result, that will be the object of Theorem 2, we need some
preliminary results from linear algebra and random matrix
theory [11]:

Lemma 1. If A is an n×n matrix with complex entries, then
for any choice of n orthonormal vectors u1, . . . , un belonging
to C

n, the following identity holds true

tr(A) =
nX

k=1

u
H
k Auk . (19)

Proof. Let us introduce the matrix U = [u1 u2 · · · un],
which is unitary since its columns are orthonormal by hy-
pothesis. Then,

tr(A) = tr(UU
H

A) = tr(UH
AU ) =

nX
k=1

u
H
k Auk

which proves the lemma.

Definition 1. A Hermitian random matrix W is said to be
unitarily invariant if its distribution is invariant under the
following transformation

UW U
H ,

where U is any unitary matrix.

Lemma 2. If H is a random matrix with i.i.d. entries
which are circularly symmetric complex Gaussian random
variables, then HHH is unitarily invariant.

In particular, the channel matrix of a MIMO channel
affected by flat Raylegh fading with i.i.d. channel coefficients
satisfies Lemma 2.

Lemma 3. If W is Hermitian unitarily invariant, then it
admits the following spectral decomposition4

W = UΛU
H , (20)

where U and Λ are statistically independent. Moreover U is
a Haar matrix, i.e., it is a random matrix uniformly distrib-
uted over the Stiefel manifold of unitary matrices.

We are now ready to prove the following result

Theorem 2. Consider a MIMO multiple access system with
channels affected by flat Rayleigh fading with i.i.d. channel
coefficients, where perfect CSIR and no CSIT are assumed.
Every user is constrained in its total power to P . Then, a
space-time coding strategy based on nonsingular linear codes
achieves the ergodic capacity region of the system if and only
if every user employs a full-rate Trace-Orthogonal Design.

Proof. The proof of the theorem will be carried out show-
ing that the ergodic capacity region of the space-time coded
system, as given in (14), can be achieved if and only if every
user employs a full-rate TOD and then observing that such a
region coincides with the ergodic capacity region of the orig-
inal (uncoded) system, given in (11). Under the assumption
of flat Rayleigh fading with i.i.d. channel coefficients, when
every user is constrained in its total power to P , the ergodic
capacity region for the coded system can be evaluated from
(14) as

C
cod =

[
tr(F kF

H
k )≤nT Q

∀k∈{1,2,...,N}

n
(R1, . . . , RN ) ∈ R

N
+

��� (21)X
k∈S

Rk ≤ C cod(S) , ∀S ⊆ {1, . . . , N}

)
,

where

C cod(S) =
1

Q
E

n
log

���I+ (22)

P

nT σ2
v

X
k∈S

(IQ ⊗ Hk)F kF
H
k (IQ ⊗ H

H
k )

�����) .

Since the matrix F k associated to a full-rate Trace-
Orthogonal Design is unitary (see Property 1), the first step
is to prove that the boundaries C cod(S) in (22), which de-
fine the ergodic capacity region (21), are jointly maximized,
∀S ⊆ {1, . . . , N}, if and only if

F 1F
H
1 = · · · = F NF

H
N = I , (23)

where every F k is square and, as a consequence, unitary. The
next step is to recognize that the ergodic capacity region in
(21), with the optimal choice (23), reduces to the ergodic
capacity region of the original (uncoded) system as given in
(11) with Pk = P .

Following the line of reasoning outlined above, we will
consider (22) with the objective of upper bounding it. So,
let us take a closer look at the determinant inside (22). De-
note by S = {i1, · · · , iK} the generic subset of {1, 2, . . . , N}
having K elements (1 ≤ K ≤ N). Then, let us introduce the
block matrix

H = [H i1 H i2 · · · H iK
] , (24)

4U is the unitary matrix of eigenvectors and Λ is the diagonal
matrix of eigenvalues.
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the block diagonal matrix

F = diag {F i1 , F i2 , · · · , F iK
} , (25)

and the following permutation matrix

Π = [IQ ⊗ P i1 IQ ⊗ P i2 · · · IQ ⊗ P iK
], (26)

with P k defined as

P k = uk ⊗ InT
, (27)

where uk is the k-th unit column vector in C
K . Note that H ,

F , and Π depend on the subset S, but this is not explicitly
indicated in order to keep the notation simple.

Using positions (24)-(27), after some matrix algebra, formula
(22) can be rewritten as

C cod(S) =
1

Q
E

n
log
���I+ (28)

P

nT σ2
v

(IQ ⊗ H)ΠF F
H
Π

H(IQ ⊗ H
H)

����� .

Now, the product HHH is a Hermitian positive semidefinite
matrix and can be written as HHH = UΛUH , where U is
unitary and Λ = diag{λ1, . . . , λKnT

}. Moreover U and Λ

satisfy Lemma 3, since HHH is unitarily invariant accord-
ing to Lemma 2. So, for the determinant within (28) the
following chain of identities holds true����I +

P

nT σ2
v

(IQ ⊗ H)ΠF F
H
Π

H(IQ ⊗ H
H)

����
=

����I +
P

nT σ2
v

(IQ ⊗ H
H

H)ΠF F
H
Π

H

����
=

����I +
P

nT σ2
v

(IQ⊗Λ
1/2

U
H)ΠF F

H
Π

H(IQ⊗UΛ
1/2)

����, (29)

where Λ1/2 is the square root of Λ [8].
In order to proceed, it is useful to rewrite the product
ΠF F HΠH in (29), as a partitioned matrix with Q × Q
blocks, where each block has dimensions KnT × KnT and
is denoted by F ij ,

ΠF F
H
Π

H =

264F 11 · · · F 1Q

...
. . .

...
FQ1 · · · FQQ

375 . (30)

With position (30), the second term in the determinant (29)
becomes

(IQ ⊗ Λ
1/2

U
H)ΠF F

H
Π

H(IQ ⊗ UΛ
1/2)

=

264Λ1/2UH
F 11UΛ1/2 · · · Λ1/2UH

F 1QUΛ1/2

...
. . .

...
Λ1/2UH

FQ1UΛ1/2 · · · Λ1/2UH
FQQUΛ1/2

375. (31)

Each diagonal block in (31) can be further simplified. In fact,
denoting by uj the j-th column of U = [u1 · · · uKnT

], we
have

Λ
1/2

U
H

F jjUΛ
1/2 = Λ

1/2

264 uH
1

...
uH

KnT

375F jj [u1 · · ·uKnT ]Λ1/2

= Λ
1/2

264 uH
1 F jju1 · · · uH

1 F jjuKnT

...
. . .

...
uH

KnT
F jju1 · · · uH

KnT
F jjuKnT

375Λ
1/2.

(32)

Now, applying Hadamard’s inequality [8] to (29), taking into
account (31) and (32), we arrive at the following inequality����I +

P

nT σ2
v

(IQ ⊗ H)ΠF F
H
Π

H(IQ ⊗ H
H)

����
≤

QY
j=1

KnTY
k=1

�
1 +

Pλk

nT σ2
v

u
H
k F jjuk

�
, (33)

where equality holds, when H 6= 0, if and only if UH
F ijU =

δijDj , where Dj is a diagonal matrix.

Inequality (33) is an upper bound to the determinant within
(28). Taking into account the expected value, and consider-
ing that EH {· · · } = EΛ{EU {· · · }} due to Lemma 3, we are
able to state the following chain of equalities/inequalities for
(28), or equivalently (22), that is,

C cod(S) =
1

Q
EΛ

�
EU

�
log
���I+ (34)

P

nT σ2
v

(IQ ⊗ UΛU
H)ΠF F

H
Π

H

������
can be upper bounded exploiting (33) as

≤
1

Q
EΛ

(
EU

(
QX

j=1

KnTX
k=1

log

�
1 +

Pλk

nT σ2
v

u
H
k F jjuk

�))
(35)

where equality holds if and only if UH
F ijU = δijDj . Then,

an application of Jensen’s inequality to the inner expectation
leads to

≤
1

Q
EΛ

(
QX

j=1

KnTX
k=1

log

�
1 +

Pλk

nT σ2
v

EU

n
u

H
k F jjuk

o�)
(36)

where equality holds if and only if uH
k F jjuk =

EU

�
uH

k F jjuk

	
with probability one. Now taking into ac-

count that the eigenvectors u1, . . . , uKnT
have the same mar-

ginal distribution, since U is a Haar matrix [11], we can write

=
1

Q
EΛ

(
QX

j=1

KnTX
k=1

(37)

log

 
1 +

Pλk

nT σ2
v

1

KnT
EU

(
KnTX
h=1

u
H
h F jjuh

)!)
and applying Lemma 1 to the inner sum

=
1

Q
EΛ

(
QX

j=1

KnTX
k=1

log

�
1 +

Pλk

nT σ2
v

1

KnT
EU {tr (F jj)}

�)
(38)

since tr (F jj) is not random, we have, equivalenty

=
1

Q
EΛ

(
QX

j=1

KnTX
k=1

log

�
1 +

Pλk

nT σ2
v

1

KnT
tr (F jj)

�)
(39)

applying Jensen’s inequality to the average running over the
index j, we get

≤ EΛ

(
KnTX
k=1

log

 
1 +

Pλk

nT σ2
v

1

KnT Q

QX
j=1

tr (F jj)

!)
(40)
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where equality holds if and only if tr (F 11) = · · · = tr (FQQ).
Taking into account that F jj is the j-th diagonal block of
F F H , the inner sum can be written as

= EΛ

(
KnTX
k=1

log

�
1 +

Pλk

nT σ2
v

1

KnT Q
tr
�
F F

H
��)

(41)

that achieves the maximum when (and only when)
tr(F ij

F H
ij

) = Q·nT (see (25)), for j =1, . . . , K, leading to

≤ EΛ

(
KnTX
k=1

log

�
1 +

Pλk

nT σ2
v

�)
(42)

= EH

�
log

����IKnT
+

P

nT σ2
v

H
H

H

����� (43)

= EH

(
log

�����InR
+

P

nT σ2
v

X
k∈S

HkH
H
k

�����) . (44)

From (44), we can deduce that the boundaries of the ergodic
capacity region are jointly maximized, whichever is the sub-
set S, if and only if the same relation holds true for every
F k. In fact, let us analyze the condition under which equal-
ity is achieved in the upper bound (44). Towards this end we
have to consider all the equality conditions5 met through the
upper bounding steps. Starting from the equality in (35), we
get that the following identity must hold

U
H

F ijU = δijDj , (45)

where Dj is a diagonal matrix. Equality in (36) implies that
Dj = cjI , where cj is a constant. So, taking into account
that U is unitary, (45) becomes

F ij = cjδijI , (46)

with cj constant. Equality in (40) is achieved if and only
if tr(F 11) = · · · = tr(FQQ), which implies cj = c in (46),
where c is the common constant. Finally equality in (42)
holds if and only if tr(Fij

F H
ij

) = Q · nT , which implies c = 1

in (46). This last condition can be easily derived taking the
trace of both sides of (30) and exploiting the fact that Π is
unitary (see (26)). So, equality in (44) is achieved if and only
if F ij = δijI , or equivalently (see (30) and (25))

F 1F
H
1 = · · · = F NF

H
N = I . (47)

Taking into account the hypothesis that coding is based on
nonsingular codes, i.e., (4) holds, identities (47) imply that
every F k is unitary. From Property 1, this is equivalent to
say that every user must employ a full-rate Trace-Orthogonal
Design. The last step is to recognize that the ergodic capac-
ity region of the coded system, as obtained assuming position
(47), coincides with the corresponding region of the original
(uncoded) system. This is easily accomplished exploiting
Theorem 1, and the proof is complete.

As a consequence of Theorem 2, it is interesting to re-
mark that, at least when users have the same power budget
constraint, the use of a full-rate Trace-Orthogonal Design is
a necessary and sufficient condition to achieve the ergodic
capacity region of multiple access systems affected by uncor-
related Rayleigh flat fading. From a practical point of view,
the common constraint on the power budget is equivalent to

5Note that all such conditions are necessary and sufficient to
achieve equality.

admit the existence of a power control policy such that the
received SNR, at the base station, is the same for all the
users.

It is worthwhile noting that the technique used to prove
Theorem 2 can be exploited for computing the ergodic ca-
pacity region (or the ergodic capacity) of a multiuser (single
user) system when flat uncorrelated Rayleigh fading is as-
sumed. This is possible setting Q = 1, i.e., only one channel
use, and interpreting F kF H

k as the optimal covariance ma-
trix for the k-th user (or the only user in the single user case).
In this regard it is a novel and alternative proof to Telatar’s
results [1].

4. CONCLUSION

In this work we have considered multiple access systems af-
fected by flat Rayleigh fading, where users and access point
are equipped with multiple antennas. To exploit some of
the MIMO potentials we have to resort to space-time cod-
ing. We have studied the way to carry out such a coding
strategy in order to avoid information losses. In particular,
we have proved that, under a common power constraint, the
necessary and sufficient condition for a space-time coding
scheme to achieve the ergodic capacity region of the multiple
access system, is that every user employs a full-rate Trace-
Orthogonal Design. If the power constraints are different, the
condition is only sufficient. Moreover, no other constraints
are imposed on the choice of the encoding matrices apart
from belonging to a Trace-Orthogonal Design. So, as far as
the invariance of the achievable rates region is concerned, all
users can share the same set of encoding matrices.
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