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ABSTRACT

This paper addresses the problem of closed-loop spatial im-
age prediction based on sparse signal representation tech-
niques. The basis functions which best approximate a causal
neighborhood are used to extrapolate the signal in the re-
gion to predict. Two iterative algorithms for sparse signal
representation are considered: the Matching Pursuit algo-
rithm and the Global Matched Filter. The predicted signal
PSNR achieved with these two methods are compared a-
gainst those obtained with the directional predictive modes
of H.264/AVC.

1. INTRODUCTION

Closed-loop spatial prediction has been widely used for image
compression in transform (H.261/H.263, MPEG-1/2/4) or s-
patial (H.264) domains. In H.264, there are two intra predic-
tion types called Intra-16x16 and Intra-4x4 respectively [1].
The Intra-16x16 type supports four intra prediction modes
while the Intra-4x4/8x8 type supports nine modes. Each
4x4 block is predicted from prior encoded samples from spa-
tially neighboring blocks. In addition to the so-called “DC”
mode which consists in predicting the entire 4x4 block from
the mean of neighboring pixels, eight directional prediction
modes are specified. The prediction is done by simply “prop-
agating” the pixel values along the specified direction. This
approach is suitable in presence of contours, the directional
mode chosen corresponds to the orientation of the contour.
However, it fails in more complex textured areas. Alterna-
tive Intra prediction methods based on block or template
matching are suggested in [2] and [3] respectively.

To address the problem of signal prediction in highly tex-
tured areas, methods based on sparse signal approximations
are considered here. The goal of sparse approximation tech-
niques is to look for a linear expansion approximating the
analyzed signal in terms of functions chosen from a large
and redundant set (dictionnary). The Matching Pursuit
(MP) algorithm is a possible technique to compute adap-
tive signal representations by iterative selection of so-called
atoms from the dictionary [4]. The MP algorithm has been
later improved to give at each iteration the linear span of
atoms which would give the best signal approximation in the
sense of minimizing the residue of the new approximation.
This improved algorithm is known as Optimized Orthogo-
nal Matching Pursuit (OOMP) [5]. An alternative optimal
sparse representation called Global Matched Filter (GMF)
has been described in [11]. The advantage of GMF, com-
pared to MP, is that the best atoms are simultaneously se-
lected instead of choosing them one by one.

The MP algorithm has been applied to low rate video
coding in [7]. Motion residual images are decomposed into a
weighted summation of elements from a large dictionary of 2-
D Gabor structures. Used with a time-frequency dictionary
of Gabor functions MP provides a high-resolution adaptive
parametrization of signal’s structures. MP has also been
applied to signal extension using cosines and wavelet basis
functions [8].

Here, we consider the problem of closed-loop spatial im-
age prediction or extrapolation. It can be seen as a problem
of signal extension from noisy data taken from a causal neigh-
borhood. Both the MP and the GMF sparse representation
algorthims are considered. The sparse signal approximation
is run with a set of masked basis functions, the masked sam-
ples corresponding to the location of the pixels to be predict-
ed. However, the stopping criterion (which is the energy of
the residue) is computed on the region to predict. To com-
pute it on the causal neighborhood would lead to a residue
of small energy, however, this residue might take potentially
large values in the region to be predicted. The number of
atoms selected in order to minimize the energy of the residue
on the region to predict is transmitted. The decoder runs
the algorithm with the masked basis functions and taking
the previously decoded neighborhood as the known support.
The number of atoms selected by the encoder is used by the
decoder as a stopping criterion.

The remainder of the article is organized as follows. The
MP and the GMF algorithms are first recalled in sections
2.1 and 2.2 The adaptation of these algorithms to the pre-
diction problem is presented in section 3. The approaches
are compared against the H.264 prediction modes in section
4.

2. SPARSE REPRESENTATIONS

Let Y be a vector of dimension N and A a matrix of dimen-
sion N × M with M ≫ N . The columns ak of A can be
seen as basis functions or atoms of a dictionary that will be
used to represent the vector Y . Note that there is an infi-
nite number of ways to choose the M dimensional vector X
such that Y = AX. The aim of sparse representations is to
search among all these solutions of Y = AX those that are
sparse, i.e. those for which the vector X has only a small
number of nonzero components. Indeed one quite generally
does not seek an exact recconstruction but rather seeks a
sparse representation that satisfies

‖Y − AX‖2
2 ≤ ρ

where ρ characterizes an admissible reconstruction error.
Since searching for the sparsest representation satisfying
this constraint is NP-hard and hence computationally in-
tractable, one seeks approximate solutions.

2.1 Matching Pursuit algorithm (M.P.)

The MP algorithm offers a sub-optimal solution to this prob-
lem via an iterative algorithm. It generates a sequence of M
dimensional vectors Xk having an increasing number of non
zero components in the following way.

At the first iteration X0 = 0 and an initial residual vector
R0 = Y − AX0 = Y is computed. At iteration k, the algo-
rithm selects the basis function ajk

having the highest corre-
lation with the current residual vector Rk−1 = Y − AXk−1,
that is, such that

jk = arg max
j

|aT
j Rk−1|

aT
j aj

.
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The weight xjk
of this new atom is then chosen so as to min-

imize the energy of the new residual vector, which becomes
thus equal to

Rk = Rk−1 −
aT

j Rk−1

aT
j aj

ajk
.

The new optimal weight is introduced into Xk−1 to yield
Xk Note that the same atom may be chosen several times
by MP. In this case, the value of the coefficient is added to
the previous one. The algorithm proceeds until the stopping
criterion

‖Y − AXk‖
2 ≤ ρ (1)

is satisfied, where ρ is a tolerance parameter which controls
the sparseness of the representation.

2.2 Global Matched Filter (G.M.F.)

The G.M.F introduced in [6] is an interesting alternative to
the MP algorithm. Keeping the same notation as in section
2.1, the GMF algorithm yields the sparse representation that
minimizes the criterion

min
1

2
‖Y − AX‖2

2 + h‖X‖1 with h > 0 (2)

where ‖X‖1 =
∑

|xj | and h > 0 is a threshold which con-
trols the sparseness of the representation. Indeed (2) can be
rewritten as

min ‖AX‖2
2 subject to ‖AT (Y − AX)‖∞ ≤ h,

where the constraint can be given the following physical in-

terpretation. At a point, say X̂ satisfying it,

⋄ Y − AX̂ is the residual vector which can be seen as
the unexplained part Y ,

⋄ AT (Y −AX̂) is a vector containing all the correlations
of the atoms with the residual vector,

⋄ the constraint guarantees that, at an admissible point

X̂, no component in this vector exceeds h.
⋄ one finally seeks the representation satisfying this con-

straint that has minimal energy.
At the optimum all the used atoms have indeed their cor-

relation equal to h. As opposed to MP which is an ad hoc
procedure, GMF is optimal. The advantage of GMF, com-
pared to MP, is that for one value of h, the best elements of
A are simultaneously selected, instead of choosing the atoms
one by one.

The price to pay for this difference is a higher computa-
tional burden, although there are now quite efficient ways to
implement GMF. The criterion (2) has appeared somehow
simultaneously in different communities and is sometimes
known as Basis-Pursuit denoising [9]. An efficient manner
to implement the GMF, that we will be using in the sequel,
has been developed in the statistics community [10] (see
also [11]). Although one wants to solve (2) for a fixed h, the
algorithm works iteratively in the number of components
(just as MP) and starts with h =

∥

∥AT Y
∥

∥

∞
for which a

first non zero component appears in the component of the
optimal X. The value of h is then decreased and the next
value of h for which a second component becomes non
zero is found; The algorithm proceeds in this way until the
desired value of h falls within the current interval in h.
One searches (adjacent) intervals of h within which - the
number of nonzero components in the optimum X remains
constant and - an explicit expression of the optimum is
known. Using this quite efficient algorithm has indeed
a further advantage : it allows to build a sequence, say
Xk of optimal representations with increasing complexity.

The basic MP algorithm proceeds in the same way but
at step k, the Xk it generates has no real optimality property.

Remarks: In the sparse representation context, it is im-
portant to note that the larger M , the number of components
(atoms) in the redundant basis (dictionary), the smaller the
number of components required in a potential “good” repre-
sentation, but also the higher the computational complexity.
Hence the importance to choose a good dictionary or better
to adapt it to the signals to be represented. In the sequel
we will essentially use the Discrete Cosine Transform basis
and the Discrete Fourier Transform basis in the real pixel-
domain, i.e., the vector Y is filled with pixels of the available
blocks of the image under investigation.

3. PREDICTION BASED ON MP AND GMF

Figure 1: C is the causal area, P is the current block to be
predicted and L is the whole area surrounding P

In Figure 1, we define the block P of n × n pixels to
be predicted using its causal neighborhood C of size 4n2.
With the entire region L containing 9 blocks and hence of
size 3nx3n pixels, we associate the Discrete Fourier and/or
Cosine basis functions expressed respectively as

gp,q(m, n) = e
2iπ( mp

M
+ nq

N
) (3)

and

gp,q(m, n) = cos

(

(2m + 1)pπ

2M

)

cos

(

(2n + 1)qπ

2N

)

. (4)

With these atoms we build the matrix A. In the experi-
ments reported in section 4, this matrix is composed of 9n2

atoms (DCT or DFT) or 18n2 atoms (DCT and DFT), how-
ever it can be extended to include other basis functions as
for instance Gabor or wavelets. We denote Y the 9n2 dimen-
sional vector formed with the pixel values of the area L and
X the vector containing the coefficients of the representation
Y in terms of the basis functions: Y = AX.

The matrix A is modified by masking its rows corre-
sponding to the pixels not in the known area C. We thus
obtain a compacted matrix Ac whose size is 4n2x9n2 if only
the DCT basis is considered. The corresponding components
in Y are deleted similarly to get the vector Yc of 4n2 pixels.
The MP and GMF algorithms are then applied to Ac and
Yc.

Remember that the aim of both algorithms is to get a
sparse representation of Yc. This means that as the com-
plexity of the representation i.e. as the number k of non
zero components in X, increases the reconstruction error

‖Yc − AcXk‖
2

decreases monotonically. Here, Xk denotes both the repre-
sentation proposed by the MP algorithm after k steps and
the optimum of the GMF criterion (2) for an h which would
be chosen such that there are k non zero components in this
optimum.
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But since our purpose is to get a good prediction of the
area P there is of course no reason that the better the repre-
sentation of the area C, the better the associated prediction
of the area P . We will therefore apply to both MP and GMF
a stopping criterion that tends to fulfil this goal, i.e., that
tends to minimize the reconstruction error in P . We imple-
ment both algorithms so that they generate a sequence of
representations Xk of increasing complexity and for each Xk

we compute the prediction error energy

‖Yp − ApXk‖
2

and we should thus stop as soon as this prediction error
which generically starts decreasing, increases. But since
there is no reason that a more complex representation cannot
indeed yield a smaller prediction error, we actually proceed
differently and consider a two steps procedure.

First the MP and the GMF algorithms are run until the
pre-specified threshold is reached and the resulting Xk se-
quences are stored. The values of the thresholds are fixed
such that the final representation has a quite large number
of components, say kmax. In a second step one then selects
the optimal representation as the one that gives the smallest
error energy on the area P to be predicted:

kopt = min
k∈[1, kmax]

‖Yp − ApXk‖
2
2 (5)

The optimal number of atoms kopt is transmmitted to the
decoder side and this allows him to compute the same pre-
diction.

4. SIMULATION RESULTS

We consider the spatial prediction of blocks of 8 × 8 pixels
(n = 8). Both discrete real Fourier and Cosine functions
have been used to construct the redundant dictionnary A.
The real Fourier basis functions are defined as:

f(n) =
1

N
{F (0) +

N/2−1
∑

p=0

(F (p)e2iπ pn
N + F

∗(p)e−2iπ pn
N ) (6)

+(−1)n
F (

N

2
)}.

where f is the 1D real function of support of length N com-
puted by taking the inverse Fourier transform of the vector
including the known and the unknown samples (F denotes
the Fourier transform). The corresponding 2D basis func-
tions are obtained with the Kronecker product.

Lena PSNR Nb of components
MP 29.66 3
GMF 31.54 3

Barbara PSNR Nb of components
MP 30.88 19
GMF 31.12 15

House PSNR Nb of components
MP 31.53 5
GMF 33.10 20

Table 1: Results with the real DFT

Each threshold is set to a value that yields a final rep-
resentation having kmax, a quite large number, of non zero
components. Then the vector X related to the optimal rep-
resentation is selected, see (5). In all our simulations we
have taken ρ = 8 in (1) and h = 8 in (2). Tables 1 and 2
first compare the respective performance of MP and GMF in
terms of the PSNR of the predicted signal and of the number

of basis functions selected, considering real Discrete Fourier
basis functions and Discrete Cosine functions. It can be ob-
served that there is a performance gap between 1dB and 3.8
dB depending on the image. Table 3 shows results with an
extended dictionary filled with both the Fourier basis and
the cosine basis functions. Overall, the combination of two
basis leads to higher performances since the redundancy of
the dictionary increases.

Lena PSNR Nb of components
MP 29.41 2
GMF 31.65 12

Barbara PSNR Nb of components
MP 27.00 12
GMF 29.85 11

House PSNR Nb of components
MP 32.28 4
GMF 34.28 40

Table 2: Results with the DCT

Lena PSNR Nb of components
MP 29.41 2
GMF 31.75 41

Barbara PSNR Nb of components
MP 34.06 17
GMF 34.29 11

House PSNR Nb of components
MP 33.23 3
GMF 33.74 18

Table 3: Results with a larger dictionary that includes the
DCT and the DFT

The two algorithms are then compared against the 9 di-
rectional prediction modes of H.264. They are then used
as additional modes to the 9 directional prediction modes
of H.264. The prediction mode giving the lowest sum of
squared error (SSE =

∑

i(fi − pi)
2, where fi is one pixel of

the reconstructed image and pi one of the predicted image)
is selected. Tables 5 and 6 give the PSNR of the predicted
image obtained with the different modes and the percentage
of selection of the different modes. The last line of Tables 4,
5 and 6 gives the mean PSNR value of the image predicted
with the modes that minimize the SSE. It can be observed
that mode 9 (corresponding to MP in Table 5 and to GMF in
Table 6) is the most selected and leads to the highest PSNR.
Fig 2 shows the 8x8 blocks, colored in blue, that have been
predicted using MP and GMF. The 9 directional modes of
H.264 remain selected in smooth areas whereas MP and GM-
F are selected in highly textured regions. As stated above,
the number of coefficients (not the coefficients themselves)
needs to be transmitted. However, this overhead remains
low. To see the improvements of GMF compared to the 9
directional modes of H264, refer to Tables 4 and 6. A gain of
1.2 dB is obtained by including GMF as an extra prediction
mode.

Fig 3 and Fig 4 show that directional modes still perform
a better reconstruction on smooth areas and along simple
directions. But GMF is much better on textured area.

Fig 3 (right) shows the predicted image obtained with
the best modes among 10 (last line in Table 6)

Fig 5 and Fig 6 show the positions of non-zero coeffi-
cients for the MP and the GMF algorithms. It can be seen
that, overall, the GMF algorithm leads to a sparsiest repre-
sentation of the signal.
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Figure 2: Image predicted with MP (left), image predicted with GMF (right). Blocks in blue are those selected withe the
SSE criterion, compared to the 9 modes of H264.

Figure 3: Image predicted with the 9 directional modes of H264/AVC (left), image predicted with AVC modes and GMF
(right)

Figure 4: Detail from the image predicted with the 9 directional modes of H264/AVC (left), image predicted with AVC
modes and GMF (right)
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modes percentage psnr
mode 0 19.667 20.280
mode 1 8.897 18.436
mode 2 12.435 20.309
mode 3 7.284 18.889
mode 4 7.778 19.035
mode 5 14.178 19.686
mode 6 5.099 18.598
mode 7 16.415 20.067
mode 8 8.247 18.422

best modes 23.375

Table 4: Results with the 9 modes of H264

modes percentage psnr
mode 0 16.363 20.280
mode 1 7.466 18.436
mode 2 7.440 20.309
mode 3 5.411 18.889
mode 4 6.322 19.035
mode 5 10.250 19.686
mode 6 4.683 18.598
mode 7 11.837 20.067
mode 8 7.206 18.422

mode 9 23.023 21.997

best modes 24.441

Table 5: Results with MP (mode 9) and the 9 modes of
H264.

modes percentage psnr
mode 0 15.973 20.280
mode 1 7.102 18.436
mode 2 6.842 20.309
mode 3 5.073 18.889
mode 4 6.035 19.035
mode 5 9.469 19.686
mode 6 4.370 18.598
mode 7 10.900 20.067
mode 8 7.154 18.422

mode 9 27.081 22.202

best modes 24.568

Table 6: Results with GMF (mode 9) and the 9 modes of
H264
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Figure 5: Coefficients selected by the MP algorithm with the
DFT (left), the DCT (middle) and both of the transforms :
DCT and DFT (right)
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Figure 6: Coefficients selected by the GMF algorithm with
the DFT (left), the DCT (middle) and both of the transforms
: DCT and DFT (right)

5. CONCLUSIONS

This new approach of intra prediction offers interesting per-
spectives compared to directional modes of H264/AVC. The
nine modes of the standard still performed the best predic-
tion on smooth areas. But for complex textures, both MP
and GMF algorithms turn out to be an interesting alterna-
tive. The GMF showed optimized results especially where
textures have high variations, that are generally difficult
to reconstruct. Therefore, MP and GMF can avantageous-
ly substitute for one directional mode. Future effort will
be dedicated to an assessment of the rate-distortion perfor-
mance of the prediction techniques in the H.264 video codec.

REFERENCES

[1] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A.
Luthra, “Overview of the H.264/AVC” Circuits and
Systems for Video Technology, IEEE Transactions, Vol
13,7, 560 - 576, July 2003

[2] J. Yang, B. Yin, Y. Sun and N. Zhang, “A block-
matching based intra frame prediction H.264/AVC”
ICME,2006.

[3] T. K. Tan, C. S. Boon and Y. Suzuki, “Intra prediction
by template matching” ICIP,2006.

[4] S. Mallat and Z. Zhang, “Matching Pursuits with time
frequency dictionaries” IEEE Sig. Processing,vol. 41, 12,
dec 1993.

[5] G.M. Davis, S. Mallat, and M. Avellaneda, “Adaptive
greedy approximations”, Conts. Approx., Vol 13, 57-98
(1997).

[6] J.J. Fuchs, “On the application of the global matched
filter to DOA estimation with uniform circular arrays”
IEEE Sig. Processing,vol. 49, 4, april 2001.

[7] R.Neff and A. Zakhor, “Very low bit-rate video coding
based on matching pursuit video coder”, IEEE Circuits
and systems for video technology, vol. 7, 1, feb. 1997.

[8] U.T. Desai, “DCT and Wavelet based representations
of arbitraily shaped image segments”, proc. IEEE Intl.
Conference on Image Processing, 1995.

[9] S. Chen, D. Donoho and M. Saunders, “Atomic De-
composition by Basis Pursuit” SIAM J. on Scientific
Comput., 20, 1, 33-61, 1999.

[10] B. Efron, T. Hastie, I. Johnstone and R.Tibshirani,
“Least angle regression,” Annals of Statistics, 32, p-
p. 407–499, Apr. 2004.

[11] S. Maria and J.J. Fuchs, “Application of the global
matched filter to stap data, an efficient algorithmic ap-
proach” ICASSP,2006.

©2007 EURASIP 1259

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP


	MAIN MENU
	Front Matter
	Sessions
	Author Index

	Search
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	Help

