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ABSTRACT linearly structuredA and B matrices. Such structure can, e.g.,

The problem of estimating second order statistics for MIMObe due to certain array geometries. )
channels is treated. It is assumed that the so called Kronecker- In the following, X" denotes the Moore-Penrose pseudo-inverse
model holds. This implies that the channel covariance is thef the matrixX. Thei, jth element of the matriXX is denoted
Kronecker product of two covariance matrices associated with théXl]ij- The superscript denotes conjugate transpose dndenotes
transmit and receive array, respectively. The proposed estimatoiranspose. Also cofiX} = XT*. The notationX denotes the
uses training data from a number of signal blocks to computeelement-wise derivative of the matriX w.r.t. the parameter at
the estimate. This is in contrast to methods that assume that thtée jth position in the parameter vector in question. Finally,
channel realizations are directly available, or possible to estimatethe notationxy = op(ay) means that lirR_. xn/ay = 0 in
almost without error. It is also demonstrated how methods thagprobability. In this work the asymptotic results hold when the
make use of the training data indirectly via channel estimates camumber of signal blocks\, tends to infinity.
be biased.

An estimator is derived that can, in an asymptotically opti- I1. DATA MODEL

mal way, use, not only the structure implied by the Kroneckerl:)(_:‘no,[e the MIMO channel during signal blotkby Hy. Assume

assumption, but also linear structure on the transmit- and receive@ h fraini bolds(i)1P-2 |
covariance matrices. The performance of the proposed estimator /@t the same sequencepfraining symbolgx(i)}i_, is sent once

analyzed and numerical simulations illustrate the results and als@S Part of each signal block. The corresponding received data in

provide insight into the small sample behavior of the proposeddnal blockt can then be modelled as
method. yi(i) = Hix(i) +ex(i), i =0, ..., p—1. @

|, INTRODUCTION The noisee(i) is assumed to be zero mean complex Gaussian
with covariance matrix
In the modelling of frequency flat multiple input multiple output )
(MIMO) channels, Kronecker structured channel covariance ma- Eles(klet (1)] = 0gImdstdc- @)

trices are often assumed [6], [13], [2]. The underlying assumptionrhe nojse variancesg is assumed unknown. Assume that the
is that, while the channel changes between the signal blockgectorized MIMO channel, vedl,}, in each signal block is a

the second order statistics of the channel are valid over a longgggjization of a complex Gaussian, zero mean, vector valued
period of time. The Kronecker model also assumes that the channglndom variable that is uncorrelated with the noise and has

covariance is structured according to covariance
Cov[vec{H}| = A®B 1) E[vec{H}vec{H}| =Rud | = (Ao®Bo)d. (4)

whereH is the stochastien x n channel matrix® denotes Kro- ~ This_paper treats the problem of estimatiiy; based on the
necker matrix product, véq denotes the vectorization operator received data iN blocks,

(see, e.g., [4))A is annx n transmit covariance matrix, an yi(i),i=0,....,p—1, t=0,...,N—1. (5)

is anmx m receive covariance matrix. Estimating such covariance

matrices is useful in the design and analysis of signal processing Let the na x 1-vector 65 and theng x 1-vector 6g be
algorithms for MIMO communications. Imposing the structure the real vectors used to parameterize the Kronecker factors (the
implied by the Kronecker assumption gives the advantages dfansmit and receive covariance matrice&)and B, respectively.
leading to more accurate estimators, of reducing the number dfurthermore, assume a linear dependenc® grand 6g:

parameters needed when feeding back channel statistics, and of _ _

allowing for a reduced algorithm complexity. vec{A} =Paba, vecB}=Ppbp ©)

In a typical communication system, the receiver estimates thevhereP? andPg are data and parameter independent matrices
channel statistics based on training data received in a number of size n? x ny and n? x ng, respectively. The matriceB » and
signal blocks. If the amount of training data available in eachPg are required to have full rank. If the only structure imposed is
block is very large, or the signal to noise ratio (SNR) is high, thenthat A and B are Hermitian matrices, them, = n? anqu =nP.
the channel estimates can be assumed to be identical to the tridso introduce the concatenated parameter ve€ter(8 8517
underlying channel and methods such as those of [12] or [11] caRor later use, denote the parameter vector that correspondlg to
be used to calculate the covariance matrix estimate. andBg by 6°. Note that this parameterization is ambiguous since

If the channel estimates cannot be assumed perfect, this shoulla @ Ba—1 = A @ B for any a # 0. Hence, we can only estimate
be taken into account in the design of the estimator. The input te\q and B up to a scalar factor.
the estimator should be the training data, not the channel estimates. Collect the available data in signal blotknto the matrixY; =
In this work we present a new method for the estimation problenjy(1) ... yt(p)]. It is then straightforward to show that the data
based on a covariance matching criterion. The method is noris complex Gaussian, zero mean with covariance matrix
iterative and thus has a fixed computational complexity. It is also Or e 2
asymptotically statistically efficient. Furthermore, it allows for Cov[vec{Yt}] = Ro=WYRu(6")¥" + 05Imp @)
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where IV. AN IMPROVED ALGORITHM
W (XT ®Im> @) The estimator proposed in this paper is based on minimizing
- Ve(8,0%) =vec {R — 0%Imp— WRy (8)W }W
andX is constructed fromx(i)];_, similar to Y. R— oI — WRas (0 W 15
The Gaussian .distributior] olf the received signals implies that xvec{ g tmp H(0)%7) (15)
the sample covariance matrix w.r.t. 85, O and g2. Based on covariance matching principles
e [7], the weighting matriXW should be chosen to be
R=_Y vedYi}vec {Yi} ) 1 oy B B
N t; N (Cov[vec{R}]) = <ROT @R, l) : (16)
is a sufﬁcie_nt statistic, i.e. it contains all relevant information for Clearly this estimator is not feasible since the weighting matrix
the estimation problem. depends on unknown quantities. We propose using
lI. INITIAL APPROACHES W=Q"2Q, Q=[WYRu(OW+0°Ing * (17)
The channel is typically estimated from the training data similarwhere 6 is such thatRH(G_) is a consistent estimate &y (6°)
to and @2 is a consistent estimate (m‘g. As will be shown later,
. s the proposed choice of weighting does not degrade asymptotic
H; =Y{X". (10)  performance.

o . ) . The minimization w.r.t.o? of (15) using the weighting matrix
When channel statistics are available, a Wiener estimate can al?q,en in (17) gives
be used. In a scenario with high SNR or when the amount o . )
training data is large, the estimat®é$ can be assumed to be e {QRQ} tr{WwQ?WRy(9)}
identical toH; and the methods in [12] and [11] can be applied o= tr{Qz} - tr{Qz} : (18)
to estimateR . If the SNR is low or the amount of training data

is limited, then some care must be taken. It is, e.g., easy to s&Qote that6%C is not constrained to be positive. However, as a

that the channel covariance estimate consequence of consistency of the estimates, for large erfdligh
R N_1 will be positive, and thus this relaxation does not affect asymptotic
Ry — % ZOVGC{ﬁt}VGC*{fIt} — YRyt (11)  performance. Inserting (18) and (17) into (15) gives
© Vc(6) = [r—Fvec{Ru}]" (Q" © Q) [r— Fvec{Ru}]  (19)

is biased and inconsistent. In order to devise an unbiased esti-

mator, assume for a moment that the channel covariance matri¥n€re

Cov[vec{H}] = Ry has no structure except the structure inher- . tr{QRQ}
ent to all covariance matrices. Then the derivations for the ML T :VeC{R_Imp# )
estimator of the signal covariance matrix in array processing in r{Q?}

[8] and [5] carry over directly to the present data model. It can F— conj{W}@W—t 1 vec{Imp}vec*{lP*quJ} . (20)
r

be concluded that the ML estimators (for the unstructured case) {Q2}
of Ry andag? is
A Next, note that
AU tRwh  A2U oy _ tr{gR} T
Rg=WYRWY"-0%Inp 0% =—— (12) vec{Ry} =Pgvec(0p 05}, Pg=Pr(Pp®Pa). (21)

mp—mn’

A similar (but not identical) approach for the unstructured estima—By introducing® = 64 6, (19) can be written

tion of Ry for the purpose of channel estimation, is proposed in /. (p) — [r — FP O (OT 00O Ir — FP OV (22
[3]. A simple strategy for imposing the structure Bfyy is then c(®) =[r oved ®}(Q e Q)Ir gved(®}. (22)

to calculate The matrix® is thus constrained to be a rank one matrix. If, for the
. AF AF moment, we consider minimizing (22) w.r. while disregarding
Ry =A(04)®B(0R), the rank constraint we get the minimum norm solution
AF  AF RN A . . . .
04, 0B :a?m]'anHRlIJ{*A(QA)®B(9B)HF- (13) vec[®} = [PHF*(QT @ Q)FPy]"PF* (QT o Q)r.  (23)

. . . . inceVc i ratic ind it foll Taylor nsion th
It can be shown that the resulting estimate is unbiased but no%I ceVe(®) is quadratic in® it follows by Taylor expansion that

statistically efficient. In order to calculate the minimizers, consider  — — A 1 - . A
the permu);ation Ve (®) =Ve(®) + svec {® — d}Ve(P)vec{® — ). (24)

. N . . . T where the derivatives are w.r.t. the elements of{dec The first
U 11 1 21
R(Ry) = [VEC{RH} -~ vec{Rif} vec{Rg} - VeC{Ran}} term is constant w.r.tb. The conclusion is that the minimization
) R of the weighted low rank approximation problem (WLRA)
WhereR‘ﬂ is thek,Ith mx m block of RLﬁ. This permutation has

; T
the propertyR(A © B) = vec{A }vec' {B}. When A andB are aerg?'”VC(eAeB)
general Hermitian matrices the solution !@(13) is given by a rank A TB . - . T
one approximation of the permuted matRxRy;) [9]. A solution Vc(6a6p) =vec'{®— 0,40} Qvec(®—040g},
that can incorporate linear structure Afand B is given in [11]. 0 :Vc(a)) _ PEF*(QT ©Q)FPg (25)

For later use, introduce the permutation mati?g, such that

gives the estimates &5 and 6g. It is interesting to note thab

vec{Ru} = Prvec{R(Ru)} (14)  is a real matrix. This result is given in the following lemma.

for any matrixRy of compatible dimensions.
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Lemma 1 Under the assumptions of Section II, the matrices
and Q in (25) have the following properties:

1) The matrix® defined in[(23) is real.

2) The matrix® is consistent in the sense that
'\|‘Im d=0,6% (26)

(w.p.1) wheref o and 8y are parameter vectors that yield
the true channel covariance matrix. _
3) The matrixQ is full rank and real wherQ is positive definite
4) The limiting matrix Qg = limy_.» Q is the normalized
inverse of the asymptotic covariance\afc{®},

Jim_ NCov|vec[®}] = Q. (27)

Proof: The matricesF andr in (23) can be expressed as

F =D(conj{¥}®W¥), r=Dvec[R} (28)

where
D = |12z — vec{Imp}vec {Q?} (29)
P tr {QZ}
Assuming no structure of the matri®, it can be written
. min(na,ns) _
vec{®} = % (¢+ i) (30)
K=1

where ¢, and ¢, are vectorized real rank one matrices. Then

(conj{W} @ W)Pgvec{d} (31)
min(na,ng) _ _
= > (vec{W(A@BW'} + jvec{W(Ac@ BW'})
=]

where Ay, By, Ax and Bg are Hermitian matrices (that are zero
if and only if ¢ and ¢, are zero). Before proceeding with the
proof, introduce a matrid such thatv = J~vec{Y} is real if Y

is Hermitian. Then introduce the three real vectors

min(na,ns)
vaB=J3"1 3 vecW(Ac@BW},
=1
_ min(na,ng) _ _
vap=J"1 Y vec[W(Ax@By)Wl,
=1
vg =J ve(R}. (32)

The criterion function[(22) can then be written
vec{Ug —UAB—j0A B} D (Q"®Q)DJ (33)
X vec{uﬁ —UAB—jUAB}

Clearly, minimizing W.rt.ua g yields, as one possible solution,
uA B =0which glves that, sinc® is the minimum norm solution,

@ =0 and thus® is real. The consistency result 2) follows by
noting thatDvec{Imp} = Opppe1-
In order to prove the non-singularity 61, write

Q=Py(WT ©W)D"(Q' ®Q)D(coni{¥} ® W)Pg.  (34)
It is straightforward to show that
1

tr{Q?}
(35)

D" Q"2 QD = (Q © Q) —vec{Q*}vec {Q?}

Hence it can be seen that the result of multiplicationCofrom
the right with any real vectoo can be written

R min(na,ns)
Pg(wT®w*)<vec{Q[w( S (Ax@By)¥*
k=1

min(na,ng) tr{QlP(Ak®Bk)qJ*Q} A )
- 2 . (36
S e, e

By considering the dimensions &P it is clear that the matrix

within square brackets above can be zero onlzg\d (e 1e) A®

By = Omnxmn. This implies tha = 0. HenceQ is i]l rank When

Q is full rank. The expression (36) can also be used to prove the
realness ofQ. Note that the result of multiplyind2 from the
right and left with any real vectors (of suitable dimensions) can
be written

TP (W oW)I I HQ T ©Q HI ) I vec(Y}]

with v a real vectorY an Hermitian matrix and defined above.
The bracketed expressions can all be shown to be real, lieiiEe
real. The final part of the proof is straightforward and is omitted
due to space limitations.

It is not known how to solve the WLRA problem (25) in closed
form. However, the statistical properties of the estimation problem
at hand allows us to approximate the solution without degrading
the performance asymptotically. The procedure is similar to the
one proposed for reduced rank linear regression in [10].

Theorem 1 Let 68° be a parameter vector that corresponds to
Aj®Bg. Let 8 be such that

Jim VN6 —6°||; (37)
is bounded in probability. The estimate
Ry = A(6A)©B(0B) (38)
where
Ba N t[ Op eI L= T
J = + 2K BN Qvec{®— 0,05},
(6)- (8 )vac(Bogy Jomeds-anily
K=2 GB‘X’I"A Q (6B ®Tn, Tny ©64) (39)
In, @ 6p

is asymptotically equivalent to the estimate obtained by exactly
minimizing \:(8a, 6) in (25).

Proof: The estimated o and 6 are minimizers of

V(6) =Ve(6)(6 - 6) + 3(6-6)K(6-6).  (40)
Thus
V(6°%) =V (6) +K(6° - 6). (41)
Next, a Taylor expansion ol (0) around® gives
Ve (8°) =Ve(6) +Vc(6)(6° - 8) +0(]|6 - 6°)%)

— 1
=Vc(0)+K(8°—8)+0p(—). 42
c(6) +K(6°-9) +0p( ) (42)
Note that we have thaK =V(6°) +0p(1). The relations
) ) 1
V(6°) =V (6°) +op(—),
( ) C( ) P(m)
V(6°) =Vc(6°) +0p(1) (43)
now lead us to conclude that the theorem holds. [ ]

Theorem 1 gives a practical way of calculating the estimates.
Initial estimatesd can be obtained by for example calculating a
rank one apprOX|mat|on (in the Frobenius norm senseppbr
by using QA and BA Note that if the latter choice is made, the
same estimates can be used for the calculatio® dfi (17).
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V. PERFORMANCE ANALYSIS exact solution to the WLRA, and thétgives the same asymptotic

Theorem 2 Under the assumptions of Sectioh Il, the estinfajg performance. u

roposed in Theorem 1 is consistent and has an asymptotic horm }—laving derived an expression for the covariance of the asymptotic
gist?ibution with zero mean and covariance ymp Bistribution of the proposed estimate we now turn to the problem of

determining if the estimate is asymptotically efficient. The answer
'\I‘im NCov{vec{f{H}] _ Pero[FEQoFo]TFEP’é (44) is given in the following theorem.

where Theorem 3 Let R%I be an estimate oA o ® Bg constructed as
f P (R - - ~C ~C
Qo=PyF5(Ry" @Ry")FoPs, Rf; = A(64)©B(fp)
where 6% and 6% are given by
Fo= |conf{¥} @ W— ————-vec(Imp}vec {W'(Ry1)?W} |, A B B
tr{(Ry )%} argmin min V¢ (6, 02) (53)
0 0 6 0220
Fo= (6% @ In, In, 2 6% ). (45)

and wherev(0,0?) is given by|(15). Then, under the data model
Proof: We begin by proving the theorem assuming tégt dgsqribgd in .Sectioﬁll, it has an asymptotic complex Gaussian

and 6p really are the minimizers of the WLRA problem. For distribution with

simplicity, assume that the weighting matigx of V(8) in (25 . A C 0 2

is rgplag’ed byQo and denote ti?e regulting criter%(n %uncgiqn) by d@wNCOV{VeC{RH}] =NCREE", o5.N) (54)

V(8). The consistency of the estimate (in the sense Biat(6) 0 2 n ,

converges tdRg(8°)) is a direct consequence of the consistencyWhere CRB™, o5, N) lscth_e Crangr-Rao lower bound for the data

of R. Also, for brevity of notation, assume thaf is the limit of ~ model. The estimat®y; is a consistent estimate oio© Bo.

8. In order to derive the asymptotic covariance, note that a TayloFurthermore, [(54) still holds ifW' is replaced by any consistent

series expansion gives estimate.

0y _ 0_ 0_ g2 Proof: The proof is omitted due to space limitations. m
Ve R (67) — A @B} =Pglo(67—0)+0([67—0]2). (46) The implication of the above is that the covariance matching
Let 6 be the parameter vector that minimizes the criterion function€stimate is efficient and hence that the asymptotic covariance (44)
A Taylor series expansion &f(8) gives gives a compact expression for the_CRB. In the next section,
o R . numerical results will be given that illustrate the small sample
0=V(8)=V(8% - G(6°-8)+0p(|6°-8>) (47)  performance of the estimator.

where the gradient vector and Hessian used are defined as VI. NUMERICAL RESULTS
N(8)]i = ov(9) (Gl = lim 92V (6) (48) Monte Carlo simulations are used to evaluate the small sample
(0)]i = a[e]; M N=w 0[0)i0(0]; 0—g0 performance of the proposed estimator. Two matridgsand Bg

are generated (and then fixed) and the corresponﬂimeo) is
Now, calculated. The matriX was randomly generated and then fixed

V(6% = G(6°— ) +0p(”90_ 8)l2) (49) throughout the simulations. The SNR is given by
2
and therefore SNR= %, 08 =1, tr{Rg(6°)} =mn (55)

0_34 t 0_ 3\ — /(g0 A_ 0
(6"=0)— |Inying — G G} (67—0) =G V(6")+0p(||0 —67]2)- Note that the fixed trace of the channel covariance matrix and the

fixed noise variance is introduced in order to give a consistent
"Yefinition of SNR, the information iswot used by any of the
estimators. In each Monte Carlo trid samples are generated
from a complex Gaussian distribution with covariance given by

Note that the matrix within square brackets above is a projectio
matrix on the null-space o& = ZFEQOI'O. Thus multiplication
from the left withPglg gives

Pala(6°— 8) = ParaGiv(g° 0_ 3. Ry in (7). Each estimator was applied to the sample set and the
6Mo(67-6) 6T oGV (67)+0p(/167—6ll) (50) normalized root-MSE was defined as
This gives, making use df (46) and the consistency of the estimate, -

lim NCov|vec{Rz(60) — A(6a)©B(0B)}] 1g [Rm(6%) R (56)

N e A ° L& IRu(6°)?

wheref{'l‘{ is the estimate produced by the estimator in question
] ] ] in Monte Carlo trialk andL is the number of Monte Carlo trials.
Finally, the relation (which makes use of Lemma 1) Here L = 500. The methods evaluated are: 1) The unstructured
estimateRLIjI, (12); 2) The structured approximation of the latter
estimatef{%, (13); 3) The unstructured estimafegy, (11) that
— lim 4rto E[Nvec ®— 6% 89 wec fd — g% 9T }Q r can be seen as a high SNR (HSNR) approximatiorﬂﬂﬁ; 4)

New 00 { A 05 jvecy aBp 1| Qolo The structured approximation (similar fo (13)) of the latter; 5) An
=2G (52)  estimate obtained by separately estimating the transmit and receive

) covariances (with proper normalization)
shows the covariance part of the proof. Also note that the asymp-

totic performance is unaffected by using a consistent estimate o1 N N o

(such asQ) of the weighting matrix instead of the tru®y. The B=g Z\Hthv A=y Zth H;. (57)
asymptotic normality of the estimate follows from the asymptotic t= t=

normality of the elements of the sample covariance matrix, seeThis estimate is marked by Trans./Rec. in the figures; 6) The
e.g., [1]. Theorem]l finally shows that it is not necessary to find theovariance matching estimator proposed in [12], applied to the

—PyroGt L\Ilim NE [V(GO)V*(GO)H Gc'rlpy. (s1)

lim NE [v(eo)\'/*(eo)}
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channel estimatedl; (this is motivated when SNR is high).
Finally, the estimate proposed in Section IV is included. The CRB 0 b
is also included as is the asymptotic covariance of the estimate 07
RIF{ in 2) above. In all simulations presented in this section the

Unstruct.
Struct.
Unstruct. HSNR

S A%x00|]

number of training symbols per block is fixed = 4. If p is Struct. HSNR

significantly larger, then the methods of [12] are more suitable o P’

than those proposed in this work. % Cov. m. HSNR
Figure[1 shows an example whe and B are Toeplitz CRB

Struct. as. var.

structured, SNR 3dB and the number of signal blockhl, is
varied. The proposed estimator and estimators 2), 4) and 6) above
take advantage of the Toeplitz structure and this naturally gives
them a better performance. At abobhit= 150, the bias in the
high SNR estimators becomes a significant part of the error.
The proposed estimator exhibits promising threshold behavior and .
attains the CRB also for small sample sizes. In Figure 2, the 10
sample size was fixed\ = 100, and the effect of varying the

SNR is illustrated. In this example the only structure assumed SNR

on the Kronecker factors\ and B is that they are Hermitian Fig. 2. Normalized root-MSE as a function of SNR for different
matrices. The conclusion is that the proposed method outperformgimators. In the exampla and B are Hermitian matricesn=n = 3
the other methods for both high and low SNR. As expected, the— 4 andN = 100.

biased methods perform equivalent to their unbiased counterparts

when SNR is high but significantly worse when the SNR is

low. The proposed method reaches the asymptotical performance

expressions for quite small number of signal blocks. Note that the REFERENCES
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VIl. CONCLUSION
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