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ABSTRACT
The problem of estimating second order statistics for MIMO
channels is treated. It is assumed that the so called Kronecker-
model holds. This implies that the channel covariance is the
Kronecker product of two covariance matrices associated with the
transmit and receive array, respectively. The proposed estimator
uses training data from a number of signal blocks to compute
the estimate. This is in contrast to methods that assume that the
channel realizations are directly available, or possible to estimate
almost without error. It is also demonstrated how methods that
make use of the training data indirectly via channel estimates can
be biased.

An estimator is derived that can, in an asymptotically opti-
mal way, use, not only the structure implied by the Kronecker
assumption, but also linear structure on the transmit- and receive
covariance matrices. The performance of the proposed estimator is
analyzed and numerical simulations illustrate the results and also
provide insight into the small sample behavior of the proposed
method.

I. INTRODUCTION

In the modelling of frequency flat multiple input multiple output
(MIMO) channels, Kronecker structured channel covariance ma-
trices are often assumed [6], [13], [2]. The underlying assumption
is that, while the channel changes between the signal blocks,
the second order statistics of the channel are valid over a longer
period of time. The Kronecker model also assumes that the channel
covariance is structured according to

Cov[vec{Ht} ] = A⊗B (1)

whereHt is the stochasticm×n channel matrix,⊗ denotes Kro-
necker matrix product, vec{} denotes the vectorization operator
(see, e.g., [4]),A is an n×n transmit covariance matrix, andB
is anm×m receive covariance matrix. Estimating such covariance
matrices is useful in the design and analysis of signal processing
algorithms for MIMO communications. Imposing the structure
implied by the Kronecker assumption gives the advantages of
leading to more accurate estimators, of reducing the number of
parameters needed when feeding back channel statistics, and of
allowing for a reduced algorithm complexity.

In a typical communication system, the receiver estimates the
channel statistics based on training data received in a number of
signal blocks. If the amount of training data available in each
block is very large, or the signal to noise ratio (SNR) is high, then
the channel estimates can be assumed to be identical to the true
underlying channel and methods such as those of [12] or [11] can
be used to calculate the covariance matrix estimate.

If the channel estimates cannot be assumed perfect, this should
be taken into account in the design of the estimator. The input to
the estimator should be the training data, not the channel estimates.
In this work we present a new method for the estimation problem
based on a covariance matching criterion. The method is non-
iterative and thus has a fixed computational complexity. It is also
asymptotically statistically efficient. Furthermore, it allows for

linearly structuredA and B matrices. Such structure can, e.g.,
be due to certain array geometries.

In the following,X† denotes the Moore-Penrose pseudo-inverse
of the matrixX. The i, jth element of the matrixX is denoted
[X]i j . The superscript∗ denotes conjugate transpose andT denotes
transpose. Also conj{X} = XT∗. The notationẊ j denotes the
element-wise derivative of the matrixX w.r.t. the parameter at
the jth position in the parameter vector in question. Finally,
the notation xN = op(aN) means that limN→∞ xN/aN = 0 in
probability. In this work the asymptotic results hold when the
number of signal blocks,N, tends to infinity.

II. DATA MODEL

Denote the MIMO channel during signal blockt by Ht . Assume
that the same sequence ofp training symbols[x(i)]p−1

i=0 is sent once
as part of each signal block. The corresponding received data in
signal blockt can then be modelled as

yt(i) = Htx(i)+et(i), i = 0, . . . , p−1. (2)

The noiseet(i) is assumed to be zero mean complex Gaussian
with covariance matrix

E[es(k)e
∗
t (l) ] = σ2

0Imδs,tδk,l . (3)

The noise varianceσ2
0 is assumed unknown. Assume that the

vectorized MIMO channel, vec{Ht}, in each signal block is a
realization of a complex Gaussian, zero mean, vector valued
random variable that is uncorrelated with the noise and has
covariance

E[vec{Hk}vec∗{Hl} ] = RHδk,l = (A0⊗B0)δk,l . (4)

This paper treats the problem of estimatingRH based on the
received data inN blocks,

yt(i), i = 0, . . . , p−1, t = 0, . . . , N−1. (5)

Let the nA × 1−vector θA and the nB × 1−vector θB be
the real vectors used to parameterize the Kronecker factors (the
transmit and receive covariance matrices),A andB, respectively.
Furthermore, assume a linear dependence onθA andθB:

vec{A} = PAθA, vec{B} = PBθB (6)

wherePA andPB are data and parameter independent matrices
of size n2×nA and m2×nB, respectively. The matricesPA and
PB are required to have full rank. If the only structure imposed is
thatA andB are Hermitian matrices, thennA = n2 andnB = m2.
Also introduce the concatenated parameter vectorθ = [θT

A
θT
B

]T .
For later use, denote the parameter vector that corresponds toA0
andB0 by θ0. Note that this parameterization is ambiguous since
Aα⊗Bα−1 = A⊗B for anyα 6= 0. Hence, we can only estimate
A0 andB0 up to a scalar factor.

Collect the available data in signal blockt into the matrixYt =
[yt(1) . . . yt(p)]. It is then straightforward to show that the data
is complex Gaussian, zero mean with covariance matrix

Cov[vec{Yt} ] = R0 = ΨRH(θ0)Ψ∗ +σ2
0Imp (7)
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where

Ψ =
(

XT ⊗ Im

)

(8)

andX is constructed from[x(i)]p−1
i=0 similar to Yt .

The Gaussian distribution of the received signals implies that
the sample covariance matrix

R̂ =
1
N

N−1

∑
t=0

vec{Yt}vec∗{Yt} (9)

is a sufficient statistic, i.e. it contains all relevant information for
the estimation problem.

III. INITIAL APPROACHES

The channel is typically estimated from the training data similar
to

Ĥt = YtX
†. (10)

When channel statistics are available, a Wiener estimate can also
be used. In a scenario with high SNR or when the amount of
training data is large, the estimateŝHt can be assumed to be
identical toHt and the methods in [12] and [11] can be applied
to estimateRH. If the SNR is low or the amount of training data
is limited, then some care must be taken. It is, e.g., easy to see
that the channel covariance estimate

ˆ̂
RH =

1
N

N−1

∑
t=0

vec{Ĥt}vec∗{Ĥt} = Ψ†R̂Ψ†∗ (11)

is biased and inconsistent. In order to devise an unbiased esti-
mator, assume for a moment that the channel covariance matrix
Cov[vec{Ht} ] = RH has no structure except the structure inher-
ent to all covariance matrices. Then the derivations for the ML
estimator of the signal covariance matrix in array processing in
[8] and [5] carry over directly to the present data model. It can
be concluded that the ML estimators (for the unstructured case)
of RH andσ2 is

R̂U
H

= Ψ†R̂Ψ†∗− σ̂2UImp, σ̂2U =
tr{Π⊥

ΨR̂}
mp−mn

. (12)

A similar (but not identical) approach for the unstructured estima-
tion of RH for the purpose of channel estimation, is proposed in
[3]. A simple strategy for imposing the structure ofRH is then
to calculate

R̂F
H

= A(θ̂F
A)⊗B(θ̂F

B),

θ̂F
A, θ̂F

B = argmin
θA, θB

‖R̂U
H
−A(θA)⊗B(θB)‖F . (13)

It can be shown that the resulting estimate is unbiased but not
statistically efficient. In order to calculate the minimizers, consider
the permutation

R(R̂U
H

) =
[

vec{R̂11
H
} · · · vec{R̂n1

H
} vec{R̂21

H
} · · · vec{R̂nn

H
}
]T

whereR̂kl
H

is thek, l th m×m block of R̂U
H

. This permutation has
the propertyR(A⊗B) = vec{A}vecT{B}. WhenA andB are
general Hermitian matrices the solution to (13) is given by a rank
one approximation of the permuted matrixR(R̂U

H
) [9]. A solution

that can incorporate linear structure ofA andB is given in [11].
For later use, introduce the permutation matrix,PR, such that

vec{RH} = PRvec{R(RH)} (14)

for any matrixRH of compatible dimensions.

IV. AN IMPROVED ALGORITHM

The estimator proposed in this paper is based on minimizing

V̄C(θ ,σ2) =vec∗{R̂−σ2Imp−ΨRH(θ)Ψ∗}W
×vec{R̂−σ2Imp−ΨRH(θ)Ψ∗} (15)

w.r.t. θA, θB and σ2. Based on covariance matching principles
[7], the weighting matrixW should be chosen to be

1
N

(

Cov
[

vec{R̂}
])−1

=
(

R−T
0 ⊗R−1

0

)

. (16)

Clearly this estimator is not feasible since the weighting matrix
depends on unknown quantities. We propose using

W = Q̂T ⊗ Q̂, Q̂ = [ΨRH(θ̄)Ψ∗ + σ̄2Imp]
−1 (17)

whereθ̄ is such thatRH(θ̄) is a consistent estimate ofRH(θ0)
and σ̄2 is a consistent estimate ofσ2

0 . As will be shown later,
the proposed choice of weighting does not degrade asymptotic
performance.

The minimization w.r.t.σ2 of (15) using the weighting matrix
given in (17) gives

σ̂2C =
tr{Q̂R̂Q̂}

tr{Q̂2}
− tr{Ψ∗Q̂2ΨRH(θ)}

tr{Q̂2}
. (18)

Note that σ̂2C is not constrained to be positive. However, as a
consequence of consistency of the estimates, for large enoughN it
will be positive, and thus this relaxation does not affect asymptotic
performance. Inserting (18) and (17) into (15) gives

V̄C(θ) = [r−Fvec{RH}]∗ (Q̂T ⊗ Q̂) [r−Fvec{RH}] (19)

where

r = vec{R̂− Imp
tr{Q̂R̂Q̂}

tr{Q̂2}
},

F =

[

conj{Ψ}⊗Ψ− 1

tr{Q̂2}
vec{Imp}vec∗{Ψ∗Q̂2Ψ}

]

. (20)

Next, note that

vec{RH} = Pθ vec{θAθT
B
}, Pθ = PR(PB⊗PA). (21)

By introducingΦ = θAθT
B

, (19) can be written

V̄C(Φ) = [r−FPθ vec{Φ}]∗ (Q̂T ⊗ Q̂) [r−FPθ vec{Φ}] . (22)

The matrixΦ is thus constrained to be a rank one matrix. If, for the
moment, we consider minimizing (22) w.r.t.Φ while disregarding
the rank constraint we get the minimum norm solution

vec{Φ̂} = [P∗
θF∗(Q̂T ⊗ Q̂)FPθ ]†P∗

θF∗(Q̂T ⊗ Q̂)r. (23)

SinceV̄C(Φ) is quadratic inΦ it follows by Taylor expansion that

V̄C(Φ) = V̄C(Φ̂)+
1
2

vec∗{Φ̂−Φ}
..

V̄C(Φ̂)vec{Φ̂−Φ}. (24)

where the derivatives are w.r.t. the elements of vec{Φ}. The first
term is constant w.r.t.Φ. The conclusion is that the minimization
of the weighted low rank approximation problem (WLRA)

argmin
θA,θB

VC(θAθT
B

)

VC(θAθT
B

) = vec∗{Φ̂−θAθT
B
}Ωvec{Φ̂−θAθT

B
},

Ω =
..

V̄C(Φ̂) = P∗
θF∗(Q̂T ⊗ Q̂)FPθ (25)

gives the estimates ofθA andθB. It is interesting to note that̂Φ
is a real matrix. This result is given in the following lemma.
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Lemma 1 Under the assumptions of Section II, the matricesΦ̂
and Ω in (25) have the following properties:

1) The matrixΦ̂ defined in (23) is real.
2) The matrixΦ̂ is consistent in the sense that

lim
N→∞

Φ̂ = θAθT
B

(26)

(w.p.1) whereθA and θB are parameter vectors that yield
the true channel covariance matrix.

3) The matrixΩ is full rank and real when̂Q is positive definite
4) The limiting matrix Ω0 = limN→∞ Ω is the normalized

inverse of the asymptotic covariance ofvec{Φ̂},

lim
N→∞

NCov
[

vec{Φ̂}
]

= Ω−1
0 . (27)

Proof: The matricesF andr in (23) can be expressed as

F = D(conj{Ψ}⊗Ψ), r = Dvec{R̂} (28)

where

D =

[

Im2p2 −vec{Imp}vec∗{Q̂2} 1

tr{Q̂2}

]

. (29)

Assuming no structure of the matrix̂Φ, it can be written

vec{Φ̂} =
min(nA,nB)

∑
k=1

(φk + j φ̄k) (30)

whereφk and φ̄k are vectorized real rank one matrices. Then

(conj{Ψ}⊗Ψ)Pθ vec{Φ̂} (31)

=
min(nA,nB)

∑
k=1

(

vec{Ψ(Ak⊗Bk)Ψ∗}+ jvec{Ψ(Āk⊗ B̄k)Ψ∗}
)

whereAk, Bk, Āk and B̄k are Hermitian matrices (that are zero
if and only if φk and φ̄k are zero). Before proceeding with the
proof, introduce a matrixJ such thatυ = J−1vec{ϒ} is real if ϒ
is Hermitian. Then introduce the three real vectors

υA,B = J−1
min(nA,nB)

∑
k=1

vec{Ψ(Ak⊗Bk)Ψ∗},

ῡA,B = J−1
min(nA,nB)

∑
k=1

vec{Ψ(Āk⊗ B̄k)Ψ∗},

υ
R̂

= J−1vec{R̂}. (32)

The criterion function (22) can then be written

vec∗{υ
R̂
−υA,B− jῡA,B}J∗D∗(Q̂T ⊗ Q̂)DJ (33)

×vec{υ
R̂
−υA,B− jῡA,B}.

Clearly, minimizing w.r.t.ῡA,B yields, as one possible solution,
ῡA,B = 0 which gives that, sincêΦ is the minimum norm solution,
φ̄k = 0 and thusΦ̂ is real. The consistency result 2) follows by
noting thatDvec{Imp} = 0m2p2×1.

In order to prove the non-singularity ofΩ, write

Ω = P∗
θ (ΨT ⊗Ψ∗)D∗(Q̂T ⊗ Q̂)D(conj{Ψ}⊗Ψ)Pθ . (34)

It is straightforward to show that

D∗(Q̂T ⊗ Q̂)D = (Q̂T ⊗ Q̂)−vec{Q̂2}vec∗{Q̂2} 1

tr{Q̂2}
.

(35)

Hence it can be seen that the result of multiplication ofΩ from
the right with any real vectorυ can be written

P∗
θ (ΨT ⊗Ψ∗)

(

vec{Q̂
[

Ψ
(

min(nA,nB)

∑
k=1

(Ak⊗Bk)
)

Ψ∗

−Imp

min(nA,nB)

∑
k=1

tr{Q̂Ψ(Ak⊗Bk)Ψ∗Q̂}
tr{Q̂2}

]

Q̂}
)

. (36)

By considering the dimensions ofΨ it is clear that the matrix
within square brackets above can be zero only if∑min(nA,nB)

k=1 Ak⊗
Bk = 0mn×mn. This implies thatυ = 0. HenceΩ is full rank when
Q̂ is full rank. The expression (36) can also be used to prove the
realness ofΩ. Note that the result of multiplyingΩ from the
right and left with any real vectors (of suitable dimensions) can
be written

[υTP∗
θ (ΨT ⊗Ψ∗)J−∗][(J−1(Q̂−T ⊗ Q̂−1)J−∗)−1][J−1vec{Y}]

with υ a real vector,Y an Hermitian matrix andJ defined above.
The bracketed expressions can all be shown to be real, henceΩ is
real. The final part of the proof is straightforward and is omitted
due to space limitations.

It is not known how to solve the WLRA problem (25) in closed
form. However, the statistical properties of the estimation problem
at hand allows us to approximate the solution without degrading
the performance asymptotically. The procedure is similar to the
one proposed for reduced rank linear regression in [10].

Theorem 1 Let θ0 be a parameter vector that corresponds to
A0⊗B0. Let θ̄ be such that

lim
N→∞

√
N‖θ̄ −θ0‖2 (37)

is bounded in probability. The estimate

R̂H = A(θ̂A)⊗B(θ̂B) (38)

where
(

θ̂A

θ̂B

)

=

(

θ̄A

θ̄B

)

+2K†

(

θ̄T
B⊗ InA

InB ⊗ θ̄T
A

)

Ωvec{Φ̂− θ̄Aθ̄T
B},

K = 2

(

θ̄T
B⊗ InA

InB ⊗ θ̄T
A

)

Ω
(

θ̄B⊗ InA InB ⊗ θ̄A

)

(39)

is asymptotically equivalent to the estimate obtained by exactly
minimizing VC(θA,θB) in (25).

Proof: The estimateŝθA and θ̂B are minimizers of

V(θ) = V̇C(θ̄)(θ − θ̄)+
1
2
(θ − θ̄)TK(θ − θ̄). (40)

Thus

V̇(θ0) = V̇C(θ̄)+K(θ0− θ̄). (41)

Next, a Taylor expansion oḟVC(θ) aroundθ̄ gives

V̇C(θ0) = V̇C(θ̄)+
..
VC(θ̄)(θ0− θ̄)+O(‖θ̄ −θ0‖2)

= V̇C(θ̄)+K(θ0− θ̄)+op(
1√
N

). (42)

Note that we have thatK =
..
VC(θ0)+op(1). The relations

V̇(θ0) = V̇C(θ0)+op(
1√
N

),

..
V(θ0) =

..
VC(θ0)+op(1) (43)

now lead us to conclude that the theorem holds.
Theorem 1 gives a practical way of calculating the estimates.

Initial estimatesθ̄ can be obtained by for example calculating a
rank one approximation (in the Frobenius norm sense) ofΦ̂, or
by using θ̂F

A and θ̂F
A. Note that if the latter choice is made, the

same estimates can be used for the calculation ofQ̂ in (17).
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V. PERFORMANCE ANALYSIS

Theorem 2 Under the assumptions of Section II, the estimateR̂H

proposed in Theorem 1 is consistent and has an asymptotic normal
distribution with zero mean and covariance

lim
N→∞

NCov
[

vec{R̂H}
]

= Pθ Γ0[ΓT
0 Ω0Γ0]

†ΓT
0 P∗

θ (44)

where

Ω0 = P∗
θF∗

0(R
−T
0 ⊗R−1

0 )F0Pθ ,

F0 =

[

conj{Ψ}⊗Ψ− 1

tr{(R−1
0 )2}

vec{Imp}vec∗{Ψ∗(R−1
0 )2Ψ}

]

,

Γ0 =
(

θ0
B
⊗ InA InB ⊗θ0

A

)

. (45)

Proof: We begin by proving the theorem assuming thatθ̂A

and θ̂B really are the minimizers of the WLRA problem. For
simplicity, assume that the weighting matrixΩ of VC(θ) in (25)
is replaced byΩ0 and denote the resulting criterion function by
V(θ). The consistency of the estimate (in the sense thatRH(θ̂)
converges toRH(θ0)) is a direct consequence of the consistency
of R̂. Also, for brevity of notation, assume thatθ0 is the limit of
θ̂ . In order to derive the asymptotic covariance, note that a Taylor
series expansion gives

vec{RH(θ0)−A⊗B} = Pθ Γ0(θ0−θ)+O(‖θ0−θ‖2
2). (46)

Let θ̂ be the parameter vector that minimizes the criterion function.
A Taylor series expansion ofV(θ) gives

0 = V̇(θ̂) = V̇(θ0)−G(θ0− θ̂)+op(‖θ0− θ̂‖2) (47)

where the gradient vector and Hessian used are defined as

[V̇(θ)]i =
∂V(θ)

∂ [θ ]i
, [G]i, j = lim

N→∞

∂ 2V(θ)

∂ [θ ]i∂ [θ ] j

∣

∣

∣

∣

θ=θ 0
. (48)

Now,

V̇(θ0) = G(θ0− θ̂)+op(‖θ0− θ̂‖2) (49)

and therefore

(θ0− θ̂)−
[

InA+nB −G†G
]

(θ0− θ̂) = G†V̇(θ0)+op(‖θ̂ −θ0‖2).

Note that the matrix within square brackets above is a projection
matrix on the null-space ofG = 2ΓT

0 Ω0Γ0. Thus multiplication
from the left withPθ Γ0 gives

Pθ Γ0(θ0− θ̂) = Pθ Γ0G
†V̇(θ0)+op(‖θ0− θ̂‖). (50)

This gives, making use of (46) and the consistency of the estimate,

lim
N→∞

NCov
[

vec{RH(θ0)−A(θ̂A)⊗B(θ̂B)}
]

= Pθ Γ0G
†
[

lim
N→∞

NE
[

V̇(θ0)V̇∗(θ0)
]

]

G†ΓT
0 P∗

θ . (51)

Finally, the relation (which makes use of Lemma 1)

lim
N→∞

NE
[

V̇(θ0)V̇∗(θ0)
]

= lim
N→∞

4ΓT
0 Ω0E

[

Nvec{Φ̂−θ0
A

θ0T
B
}vec∗{Φ−θ0

A
θ0T
B
}
]

Ω0Γ0

= 2G (52)

shows the covariance part of the proof. Also note that the asymp-
totic performance is unaffected by using a consistent estimate
(such asΩ) of the weighting matrix instead of the trueΩ0. The
asymptotic normality of the estimate follows from the asymptotic
normality of the elements of the sample covariance matrix, see,
e.g., [1]. Theorem 1 finally shows that it is not necessary to find the

exact solution to the WLRA, and thatθ̂ gives the same asymptotic
performance.
Having derived an expression for the covariance of the asymptotic
distribution of the proposed estimate we now turn to the problem of
determining if the estimate is asymptotically efficient. The answer
is given in the following theorem.

Theorem 3 Let R̂C
H

be an estimate ofA0⊗B0 constructed as

R̂C
H

= A(θ̂C
A)⊗B(θ̂C

B)

whereθ̂C
A and θ̂C

B are given by

argmin
θ

min
σ2>0

V̄C(θ ,σ2) (53)

and whereV̄C(θ ,σ2) is given by (15). Then, under the data model
described in Section II, it has an asymptotic complex Gaussian
distribution with

lim
N→∞

NCov
[

vec{R̂C
H
}
]

= N CRB(θ0,σ2
0 ,N) (54)

where CRB(θ0,σ2
0 ,N) is the Craḿer-Rao lower bound for the data

model. The estimatêRC
H

is a consistent estimate ofA0 ⊗B0.
Furthermore, (54) still holds ifW is replaced by any consistent
estimate.

Proof: The proof is omitted due to space limitations.
The implication of the above is that the covariance matching
estimate is efficient and hence that the asymptotic covariance (44)
gives a compact expression for the CRB. In the next section,
numerical results will be given that illustrate the small sample
performance of the estimator.

VI. NUMERICAL RESULTS

Monte Carlo simulations are used to evaluate the small sample
performance of the proposed estimator. Two matricesA0 andB0
are generated (and then fixed) and the correspondingRH(θ0) is
calculated. The matrixX was randomly generated and then fixed
throughout the simulations. The SNR is given by

SNR=
‖X‖2

F

p
, σ2

0 = 1, tr{RH(θ0)} = mn. (55)

Note that the fixed trace of the channel covariance matrix and the
fixed noise variance is introduced in order to give a consistent
definition of SNR, the information isnot used by any of the
estimators. In each Monte Carlo trial,N samples are generated
from a complex Gaussian distribution with covariance given by
R0 in (7). Each estimator was applied to the sample set and the
normalized root-MSE was defined as

√

√

√

√

1
L

L

∑
k=1

‖RH(θ0)− R̂k
H
‖2

F

‖RH(θ0)‖2
F

(56)

whereR̂k
H

is the estimate produced by the estimator in question
in Monte Carlo trialk andL is the number of Monte Carlo trials.
Here L = 500. The methods evaluated are: 1) The unstructured
estimateR̂U

H
, (12); 2) The structured approximation of the latter

estimateR̂F
H

, (13); 3) The unstructured estimatê̂RH, (11) that
can be seen as a high SNR (HSNR) approximation ofR̂U

H
; 4)

The structured approximation (similar to (13)) of the latter; 5) An
estimate obtained by separately estimating the transmit and receive
covariances (with proper normalization)

B̌ =
1
N

N

∑
t=1

ĤtĤ
∗
t , Ǎ =

1
N

N

∑
t=1

Ĥ∗
t Ĥt . (57)

This estimate is marked by Trans./Rec. in the figures; 6) The
covariance matching estimator proposed in [12], applied to the
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channel estimateŝHt (this is motivated when SNR is high).
Finally, the estimate proposed in Section IV is included. The CRB
is also included as is the asymptotic covariance of the estimate
R̂F

H
in 2) above. In all simulations presented in this section the

number of training symbols per block is fixed top = 4. If p is
significantly larger, then the methods of [12] are more suitable
than those proposed in this work.

Figure 1 shows an example whereA and B are Toeplitz
structured, SNR= 3dB and the number of signal blocks,N, is
varied. The proposed estimator and estimators 2), 4) and 6) above
take advantage of the Toeplitz structure and this naturally gives
them a better performance. At aboutN = 150, the bias in the
high SNR estimators becomes a significant part of the error.
The proposed estimator exhibits promising threshold behavior and
attains the CRB also for small sample sizes. In Figure 2, the
sample size was fixed,N = 100, and the effect of varying the
SNR is illustrated. In this example the only structure assumed
on the Kronecker factorsA and B is that they are Hermitian
matrices. The conclusion is that the proposed method outperforms
the other methods for both high and low SNR. As expected, the
biased methods perform equivalent to their unbiased counterparts
when SNR is high but significantly worse when the SNR is
low. The proposed method reaches the asymptotical performance
expressions for quite small number of signal blocks. Note that the
expressions are not valid for the high SNR/small sample size case.
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Fig. 1. Normalized root-MSE as a function of the number of signal
blocks for different alternative estimators. In the exampleA and B are
both Toeplitz matrices,m= n = 3, p = 4 and SNR= 3dB.

VII. CONCLUSION

This paper considers the problem of estimating second order
channel statistics for MIMO channels. It is assumed that training
data from a number of signal blocks is available (as opposed to
perfect observations of the channel realizations). A first approach
is the ML estimate that disregards the known structure of the
channel covariance. Imposing the known structure can improve the
estimate. The performance can be further improved if a statistically
optimal weighting is applied when the structure is imposed.
The resulting estimator is asymptotically optimal as shown in
Theorem 3 but requires solving a weighted low rank approximation
problem, which is a non-convex optimization problem. This issue
is addressed in Theorem 1 that shows how an approximate solution
can be used without compromising asymptotic performance. The
covariance of asymptotic distribution of the proposed estimator is
derived in Theorem 2. Numerical studies that indicate promising
performance conclude the paper.
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Fig. 2. Normalized root-MSE as a function of SNR for different
estimators. In the exampleA andB are Hermitian matrices,m= n = 3,
p = 4 andN = 100.
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