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ABSTRACT divisions). Especially, non-LTI systems with a recursien a
To satisfy cost constraints, application implementation i daptive filters are supported. The accuracy is determined
embedded systems requires fixed-point arithmetic. Thus, aflrough the Signal to Quantization Noise Ratio (SQNR)
plications defined in floating-point arithmetic must be con-0f the considered application for any quantization law
verted into a fixed-point specification. This conversion re{rounding or truncation).
quires accuracy evaluation to ensure algorithm integrity.
deed, fixed-point arithmetic generates quantization oise  This paper is organized as follows. First, quantization
due to some bits elimination during a cast operation. Thes@oises are introduced. The modelization of noise source
noises propagate through the system and modify computirig presented and the noise propagation through the system
accuracy. In this paper, an accuracy evaluation model base{s summarized. A general model to determine analytically
on an analytical approach is presented and valid for all sys-noise propagation through arithmetic operation is deduced
tems including arithmetic operations. The LMS algorithmThis model takes into account the different noise sourcesyp
example is developed and its validity is verified through ex: the noises can be scalar, vector or matrix. Then, the censid
perimentations. ered system is modelized. This system is general (LTI, non-
LTI, recursive or non-recursive) and is modelized through
1. INTRODUCTION an expression of its transfert function and impulse respons
Digital signal processing applications are specified | Give_n that the system can be npn—LTI,t_he transfert functipn
floating-ooint t t bl due t . Mand its impulse response are time-varying. This expression
oating-point to prevent probleéms due o compuling aCyatq 5 compute the noise power at the system output with an

curacy. However, to satisfy cost constraints, application,  ica| relation based on noise source statisticalrpara
implementation in embedded systems requires fixed-poing..& 2nd the system time-varying impulse response. This

arithmetic. Thus, the application defined in ﬂoati”g'pomtexpression is unbiased and leads to infinite sums. Finally,

arithmetic must be converted into a fixed-point specificay,q method is applied to different systems such as the LMS
tion. To reduce application time-to-market, tools to BN 510 rithm and its quality is evaluated by experimentations
floating-point to fixed-point conversion are needed. In€hes o qo| execution times have been measured on Matlab. The
tools, an important stage corresponds to accuracy evafuati 5,4 ch reduces dramatically the noise power computing
of fixed-point specification. Indeed, fixed-point arithrseti time compared to approaches based on fixed-point simula-
generates quantization noises due to some bits eliminati ns. These results show the ability of our methodology to
during cast operations. These noises propagate through t duée fixed-point system development time
system and modify computing accuracy. Computing accu- '
racy damages must be contained to ensure algorithm integrit
and application performances.

Application accuracy can be evaluated through different 2. QUANTIZATION NOISES
manners. On one hand, accuracy can be evaluated with
fixed-point simulations [1, 5]. However, these methods2 1 Quantization noises model
require high computing time since a new simulation is re-

quired as soon as a fixed-point format changes in the system. N .
So, these approaches lead to very significant optimisatiorg‘ data quantization can be modelized by the sum of the data

time inside the fixed-point conversion process. On the othef"d @ uniformly distributed white noise [7]. This white reis
r quantization noise) is uncorrelated with the signal and

hand, a fixed-point specification accuracy can be evaluate her noise sources. According to the tvpe of quantization
with analytical methods. These approaches determine%I : 9 yp q '

mathematical expression for the accuracy metric. Thes e noise distribution will differ. Three quantization mexd
&an be considered. It corresponds to truncation, conveaitio

methods require very short computing time compared dounding and convergent rounding [3].

methods based on simulation. In this domain, existin
approaches are only valid for linear and time invariant JLTI Letn be the number of bits for the fractional part after the
systems [3] or non-LTI and non recursive systems [6] oruantization process akdhe number of bit eliminated dur-
need restrictive hypothesis about noises [2]. Thus, the airmg the quantization. The quantization stgpfter the quan-

of this paper is to propose a method which evaluates thBzation is equalj= 2~". The quantization noise mean and
fixed-point accuracy of any system based on arithmetiwariance are presented in Table 1 for the three quantization
operations (additions, subtractions, multiplicationsd an modes.
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Quantization |  Truncation Conventional Convergent
mode rounding rounding ( )
b(n
Mean J(1-27% a2k 0
Vari @ (1_ 2% @ (1_ 2% @ (14 0%t b n
ariance 51— ) | (- ) | A+ ) y

b(n)
Table 1. Quantization noise first and second order moment
for the three quantization modes.

by, (n)
Operation | Valeur de | Valeur de
ag ap
xiy L 1 Figure 1: System modelization
ey Y X Each contributiorb/(n) comes from noise sourda(n)
) . . propagation through the syste®n Thus, to determine com-
=y v v pletely the output noisbky(n), each block§ must be analyti-

cally characterized.

ggglrzt?ér;rsigs—\,/ilfs}l anda» of equation (1) for different 3.1 System characterization
The noise sourck;(n) leads to a noise contributidsj(n) on
the system output. This contribution dependsbgm) but
also on the previous samplegn — k) for k € [1 : Q] be-

2.2 Quantization noises propagation cause of delays inserted in the system. Moreover, the con-

The aim of this part is to define the noise propagation modtfibutionbi(n) depends on its previous samptgen — m) for
els. The propagation of two scalar noisgsndb, associated M€ [1: R due to recursions in the system. Thef{n) can
with two input operatoX andY generates an output noisge be analytically written by the following expression
expressed as the sum of the two input noiseandb, mul-
tiplied by signal terms as explained in [6]. The termsare o A
summarized in Table 2 for the different arithmetic openagio b (n) = Z)gi (n—K)bi(n—Kk) + z filn—m)b/(n—m) (4)
k= m=1
b, = aiby+ azby (1)
) where gi(n — k) represents the contribution of noise

In the case of non-scalar noise sources (vectors or Magpyrce; at time(n— k) to system output noise arf(n— m)
trix), the last model is not valid since terms commutativity that of noiset! at time (n—m). These terms; andg; are
doesn't exist. Indeed, each noise source on the operation ime-varying and depend on system implementation. For LTI
put can be multiplied by signal term on the left or on thesystems, these terms correspond to filter coefficients. The e

right. Thus, the general model for noise source propagatiofression (4) lets us introduce the time-varying transtertf
is expressed by the multiplication of each input noise by twgjon H; (2) defined as

signal termsA etD)

Qi
b = AdxDx -+ AybyDy @ 2, 8i(n—kjz*

Hi(2) = —=3 (5)

1- néll filn—m)zm

The termsA andD are defined by the different operations
crossed by the noise source.

This equation modelizes the system crossed by the noise
3. SYSTEM MODELIZATION sourceb; (n). Nevertheless, the aim is to express output noise

In this section, the system crossed by the noise sources @wer using only input noises statistics and system charac-

characterized. This characterization lets us computeythie s teristics. Then, expression (4) must be developed to egpres

tem output noise power. Lt be the number of noise contributionb(n) with only input noises termls introducing

sources. In the expression (2), the crossed noise terms digne-varying impulse response.

not appear. So, each noise soubg@) at timen propagates

through the system and contributes to the generation of sy$-2 Time-varying impulse response

tem output nois&;(n). The system output noisg(n) isthe | this part, the time-varying impulse response of the syste
sum of all contributions as expressed in equation (3) and pr§s determined. Developing recurrence in equation (4), the

sented in Figure 1. next expression is obtained
Ne n
by(n) = Zbi/(n) 3) bi(n) =% hi(k)bi(k) (6)
is K=o
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. . L .
In this relation, _Cont“bqtlomi(n) 1S expressed by noise Systems Average relative error | Maximum relative error
sourceb; (n) and all its previous samples wheterepresents
the time-varying impulse response of the syst§m This
impulse response is recursively obtained with the follgyin IIR8 0.8% 3.3%
relation
b MP3 coder/decoder 6.62% 20.57%
hi (k) = Zl fi(Dhi(k+ 1) +ai(k) () Volterra filter 1.79% 322%
J:
This time-varying impulse response represents system in- Correlator 1.35% 5.78%
fluence on noise sourd®(n) and must be determined using

system characteristics. The system is composed by arith- . . . .
metic operations. In the section 2, the propagation of aenoisiable 3: Average and maximum relative error committed on dif-
through a system including arithmetic operations has beef§ent systems

modelized by the multiplication of two signal termset D.

as shows equation (2). Thus, the time-varying impulse re-

sponse, modelizing input noibg n) propagation through the
system, is equivalent to the multiplication of the noiserseu
bi (k) by two termsA; (k) andD; (k).

with 1y the N-size matrix composed by 1. The ex-
pressions ofKa and Km are obtained by a floating-point
simulation. These terms are independent from noise sources
and lead to constants in the output noise power expression.
hiby <=> AbiD; (8)  Noise statisticsn and a2 depend on fixed-point formats and
So, the contributiorb{(n) presented in equation (6) is are variables of output noise power expression.
equal to
. The expression (11) is unbiased since no hypothesis has
fooy _ _ _ been done about the system. The tekasandKm are de-
bi(n) = Z Ai(k)bi (k)Di (k) ©) fined by infinite sums. In practice, these sums are truncated

. kz? ) after a numberp representative of the infinite sums. This
_ The output noiséy(n) is the sum of all noise source con- nymbperp depends on signal correlation inside the tefas
tributions Ne andKm. Nevertheless, according to the different carried out
n) — (Kb (K)D: (K 10 experimentations, a numbgrequal to 500 leads to very re-
by(n) i;k;A'( )01 (K)Di (k) (10) alistic results. Moreover, this expression includes ayera

rms computing. These terms requiesamples to get re-
istic results. In practice, a numbigy equal to 100 leads to
satisfying modelizations.
nother approach has been developed to modelize the in-
ite sums and to reduce our approach complexity. This
model is based on linear prediction. Relation (7) between im
pulse response terms is linearized with coefficients mipimi

4. OUTPUT NOISE POWER EXPRESSION ing quadratic error between impulse response terms and es-
4.1 Noise power timated terms. This approach lets us modelize infinite sums

. . , with prediction coefficients. The introduced bias has been
The output noise powdt, is got using second order moment measured

of expression (10). The non correlation between signalderm
and noises allows to obtain the following expression for out
put noise poweh,.

More generally, the considered system can be compose;a
by different serial/parallel blocks. In that case, the pyes
expression is still valid. However, signal terrdsandD are
more complex because they are made-up of different sign:ﬁ
terms.

5. EXPERIMENTATIONS
In this section, experimentations are carried out to védida

o 2 our model. LTI and non LTI systems are studied to apply our
R = Elby(n)] model in all cases.
Ne ) Ne Ne
= Zlo-bi Ka + Zl D My My Kmy; (11) 5.1 Experimentation on LTI and non-LTI non recursive
i= i=1j=1

systems

wherem, andobzi represent input noisés(n) mean and In this section, the proposed model is evaluated on
variance. MoreoverKa andKm; are signal terms defined LTl systems (Infinite Impulse Response filter and MP3
by the following expression coder/decoder) and non-LTI and non recursive systems
(\Volterra system and correlator). Average and maximum rel-
ative error obtained between noise power estimated with our

n—oo . . . .
Ka — ElTr(Di (KDL Tr(A (KA (K 12 model and real noise power got by simulations is presented
a=3 [Tr(Bi(kD} () Tr(AkA(K) | (12 Model and
For the 8-order IIR filter, relative error depends on cho-
00 N0 sen structure (Direct or Transposed Form). Nevertheleks, r
Kmi = E|Tr (A (K)1nDi(K)DY (m)1yAL (m ative error is always less thar3%. The MP3 coder/decoder
: kZo ngo { ( (O INDi(D; (M)A ))} is made-up of a polyphase filter and a Discrete Cosine Trans-

(13) form (DCT). It leads to a maximum error equal t0.20%.
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This error represents a difference less thatBbetween the
real noise power and our model estimation. For thed-
der \olterra filter and the correlator, relative error islézan }
5.78%. Thus, in all cases, relative error is low with an av- nn)
erage value about.@4% for these four systems. These re-
sults let us validate our model for LTI and non-LTI and non-
recursive systems. The estimation quality is definitelyisuf
cient for the fixed-point design process.

- kX(n)
5.2 LMS Experimentations

5.2.1 Fixed-point LMS Algorithm Figure 3: Noise sourcg(n) propagation

To illustrate previous results and experiment model on a non

LTI system with recursion, the Least Mean Square (LMS) ex-

ample is under consideration. The LMS adaptive algorithm

addresses the problem of estimating a sequence of scalars — —

y(n) from aN length vectorX(n) = [x(n),x(n— 1)..x(n— y(n) = Z)hy(k)y(k) = ;Ay(k)y(k)
N+ 1)]' [4]. The linear estimate of(n) is W!(n)X(n) where k= k=

W(n) is aN length vector which converges to the optimal n-1
vectorWept in the Mean-Square Error (MSE) sense accord- = Z Xt(n)F(n,Kk)y(k) (16)
ing to the following equation K=0
with
n-1 ( ¢ )
F(n,k) = In — X ()X (m)
mzl_k|+1

7(n)

The time-varying impulse responbgis defined as the prod-

uct of two signal term#\, on the left andD,, on the right.

The termD, doesn’t appear in the expression since all mul-
tiplications are made on the left. The contributions of the
three other terms can be obtained with the same method. The
noisesn(n) and B(n) are scalar. Then, the terrdsmod-
elizing their propagation through the system are also szala
which lets us writeTr(AA") = A? for input noises](n) and
B(n). The output n0|se power is computed using expression

Figure 2: LMS algorithm (11)
n
W(n+1) =W(n) + uX(n)(y(n) —WHmX(n))  (14) E[bA(n)] = z OZE [ Tr(Aa Ay (k)] + z OZE[AR (k
wherep is a positive constant representing the adaptation
step. In fixed-point implementation, four noise sources are + %UEE A2 )]+ Z)o‘y [Tr (k))}
introduced (figure 2). The noisegn) andB(n) are gener-

ated by input datx(n) quantization and desired signgh)
guantization. The terny(n) comes from product between Z %E[Tr(M(k)Mt(l))} a7)
uX(n) and errore(n) equal toy(n) — Wt (n)X(n). The noise k=0l

n(n) is generated by the inner prod¥et(n)X(n). The terms

_|_

manda? represent mean and variance of each noise source. with

5.2.2 Accuracy model M(k) — Aa(k)ma +A5(k)m5 +A’7( )m’] +Ay(k)my

The system crossed by each noise is determined. The noise ‘ ‘

y(n) is analyzed in details to illustrate our approach. Thefa(k) = X (n)F(n,k) (e(k) X(k)W (k)> +W (n)A(n—Kk)
noise termy(n) propagation is shown on figure 3. The trans—A 5(K) uXt( JF(n,K)X(K)

fer function of its propagation is given by the following ex- ’

pression Aq(K) = —puxX (MF(n.k)X(k)+A(n—k)

(18)
1
Hy(2) = X (n) z
Y 1—(In— uX(n=1)Xt(n—1))z 2
wherely is the N size identity matrix. Its contribution 2-2-3 Estimation quality

y (n) is written using its time-varying impulse resporigeas ~ To evaluate our model quality, experimentations have been
follows made. The relative error between the noise power estimated

(15) with A the Kronecker symbol.
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with our model and its real value obtained by simulationsimulations leading to an execution time equal to 4 seconds.
is evaluated. Figure 4 shows relative error committed byTrhe interest of our model is demonstrated to reduce fixed-
our model on theN = 32 size LMS. The results are pre- point systems development time.

sented versus the numbgchosen to represent infinite sums
and the correlation of input signa(n). The signal can be
white (& = 0), fairly correlated § = 0.5) or very correlated

(0 = 0.95). As p increases, relative error decreases. In-
deed, highepis, more terms are included in sums computing
which leads to a better result. Moreover, relative error-con
vergence speed depends on input data correlation. For non
correlated input data, relative error convergence is slowe
than the one for very correlated input data. In fact, redativ
error is less than 20% after 300 points for very correlated in
put data, after 350 points for fairly correlated data andraft
550 points for uncorrelated input data.

Thus, numbem determining points number in infinite 4s Method with linear prediction
sums computing depends on input data correlation. Nev- Fof mmm = m s
ertheless, with experimentation presented after 500 point '
relative error is less than 25% in all cases wich represents a 10 Iterations
difference less than dB between noise power obtained with
our model and real noise power. For linear prediction modelFigure 5: Optimization time for our approach and method
obtained relative error is equal to 21%. For the other size dbased on simulations
LMS algorithm, same results are obtained.

Method based on
simulation
46 s

Method with infinite sums

Optimization time

6. CONCLUSION

07 ; ; ; ; ; ; ; In this paper, a model to determine analytically the acgurac

5 =005 of a fixed-point system is presented. The model is developed

0.6} o 5 =05 1 for all systems made-up of arithmetic operations and isivali

N L= 900 for all quantization laws. The method is unbiased and leads

05 1 to infinite sums to compute the output noise power. A method
based on linear prediction has been introduced to reduce our

AN Accuracy obtained with lineary method complexity. It has been applied to different systems

prediction model

N / such as LMS algorithm to verify its validity. This method

0.37 allows to reduce conversion time of floating-point to fixed-
point systems.

Relative Error

0.2F
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