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ABSTRACT

Tailored for the emerging class of cognitive radio net-
works comprising primary and secondary wireless users, the
present paper deals with channel-adaptive allocation of sub-
carriers, rate and power resources for orthogonal frequency-
division multiple access (OFDMA). Users rely on adaptive
modulation and coding that they select in accordance with
the limited-rate feedback they receive from the access point.
The access point uses channel state information to maximize
the weighted average sum-rate of the network while respect-
ing rate and power constraints on the primary and secondary
users. When the channel distribution is available, the op-
timal off-line allocation is obtained to benchmark perfor-
mance. In addition, a simple yet optimal on-line algorithm is
derived using a stochastic primal-dual approach to solve the
constrained utility maximization problem formulated. Analy-
sis and simulations corroborate that the low-complexity on-
line recursive scheme converges to the optimal solution re-
gardless of initialization.

1. INTRODUCTION

In an effort to alleviate today’s spectrum scarcity, there has
been a growing research interest in cognitive radios, which
being aware of their frequency environment can dynami-
cally program radio parameters to efficiently utilize available
spectrum without causing harmful interference to authorized
users [1]. A major class of cognitive radio platforms typ-
ically follows a primary-secondary hierarchy in which pri-
mary users hold licences of the spectrum. A secondary user
might attempt to coexist with a primary user and access the
spectrumopportunistically, provided that its presence does
not adversely affect the primary spectrum holder(s).

To fulfill the promise of cognitive radios in efficiently uti-
lizing the available bandwidth, it is of paramount importance
to judiciously allocate the available channel resources. Since
orthogonal frequency division multiple access (OFDMA) is
the “workhorse” access technology for most current and
proposed wireless standards, the present paper deals with
scheduling and resource allocation of OFDMA-based cog-
nitive radios in uplink operation where each (primary or sec-
ondary) user transmits to an access point (AP) using chan-

nel adaptive modulation and coding (AMC). Specifically, a
weighted average sum-rate optimal sub-carrier, power and
rate allocation is sought to provide a minimum average rate
guarantee for the quality-of-service of the primary user while
constraining the maximum rate of secondary users. Schedul-
ing and allocation of resources is adapted to the underlying
channel state information (CSI) and is communicated from
the AP to all users through a limited-rate feedback channel.
The feedback provides quantized CSI for every transmitter
(Q-CSIT) to adapt to its intended channel.

For fading channels with known distributions the optimal
resource allocation is derived using a primal-dual approach
which requires off-line evaluation of the associated optimum
Lagrange multipliers (Section 3). This off-line component
renders it appropriate for benchmarking purposes and moti-
vates the development of on-line alternatives. Such a simple
yet optimal on-line alternative is possible through a stochas-
tic primal-dual (SPD) approach which does not require a pri-
ori knowledge of the channel statistics because it learns the
required averages on-the-fly (Section 4). The resultant low-
complexity, low-overhead on-line resource allocation algo-
rithm is well suited for primary and secondary user access in
cognitive radio networks.

2. MODELING PRELIMINARIES

Consider an OFDMA air interface between an AP andJ+1
wireless users, where user0 is a primary spectrum holder
and usersj = 1, . . . ,J are secondary users. The overall band-
width B is divided intoK orthogonal narrow-band subcarri-
ers, each with bandwidthB/K small enough to ensure that
the fading channel on it is flat, i.e., non-selective. The
wireless link between the AP and userj at subcarrierk =
1, . . . ,K is then characterized by a random coefficient

√
h j,k.

The (J + 1)K × 1 vector of channel gainsh := {h j,k, j =
0,1, . . . ,J, k = 1, . . . ,K} is stationary and ergodic with joint
cumulative distribution function (cdf)F(h).

Per subcarrierk = 1, . . . ,K, we introduce a time-sharing
vector τk(h) := {τ j,k(h), j = 0,1, . . . ,J}, where entries
τ j,k(h) depend on the channel realizationh and obey the con-
straint0≤ ∑J

j=0 τ j,k(h) ≤ 1. Specifically,τ j,k(h) represents
the percentage (of time) that userj is allocated (on the aver-
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age across symbols) access to subcarrierk. If scheduled, i.e.,
if τ j,k(h) 6= 0, user j transmits on subcarrierk with a cho-
sen modulation (e.g., 16-QAM) and a channel code (e.g., a
convolutional code with rate 1/2) with overall rater j,m. In ad-
dition to{r j,m, m= 1, . . . ,M j} non-zero rates (AMC modes)
that can differ from user to user, we letr j,0 denote the case
where userj does not transmit.

The AP acquires with sufficient training the CSIh based
on which it optimizes resource allocation and feeds back the
optimal schedule to the users using a finite number of bits.
Such a limited-rate feedback dictates that users have only a
limited number of possible transmit-configurations. This im-
plies that for each of theM j AMC rates, userj can only se-
lect power from a set of power values with finite cardinality.
It can be shown that if power assignment is optimized based
only on Q-CSIT, one must design the optimum quantizer (op-
timal power-book) jointly with the resource allocation task
[2]. This design amounts to having each transmit-mode as-
sociated with a unique quantized rate-power pair. Under this
design condition, the possible transmit-configurations of user
j are the pairs{(r j,m, p j,m), m = 0,1, . . . ,M j}, where both
r j,m andp j,m are constant quantities known to both transmit-
and receive-ends. As this paper focuses on resource alloca-
tion, it is assumed henceforth that such a power book, i.e, the
set ofp j,m’s is provided.

Reliability of the wireless links must be maintained un-
der a maximum allowable bit error rate (BER)ε̌. For
constellation- and code-specific constantsκ1 andκ2 and af-
ter assuming without loss of generality (w.l.o.g.) that the
additive white Gaussian noise (AWGN) at the receiver has
unit variance, the BER with AMC at subcarrierk can be ac-
curately approximated as [3] (our framework applies to any
other BER function)

ε j,m,k(h j,k, p j,m, r j,m) = κ1exp

(
−κ2h j,kp j,m

2r j,m−1

)
. (1)

Using h, the AP finds for each userj the set of AMC
modes satisfying the prescribed BER at subcarrierk, call it
M j(h j,k) := {m : ε j,m,k(h j,kp j,m, r j,m)≤ ε̌}.

It is useful at this point to recognize that except for the
pre-specifiedr j,m m∈ M j(h j,k) modes, each user can also
support under the prescribed BER transmit-rates expressed
as linear combinations of these AMC modes by time-sharing
their usage per subcarrierk. Specifically, using the mode
m over ζ j,m,k percentage of theτ j,k, and lettingτ j,m,k :=
ζ j,m,kτ j,k, user j can support rate

τ j,k(h)r j,k(h) = ∑
m∈M j (h j,k)

τ j,m,k(h)r j,m (2)

where clearly0 ≤ ∑J
j=0 ∑m∈M j (h j,k) τ j,m,k ≤ 1. By time-

sharing, any linear combination of{r j,m} as in (2) gives
rise to the same linear combination of corresponding pow-
ers{p j,m}, which meet the pre-specified BER constraintε̌
for a givenh j,k; hence,

τ j,k(h)p j,k(h) = ∑
m∈M j (h j,k)

τ j,m,k(h)p j,m. (3)

Using (2) and (3), it suffices to optimize resource allocation
only with respect to the time allocation variablesτ(h) :=
{τ j,m,k(h), j = 0,1, . . . ,J, m∈M j(h j,k), k = 1, . . . ,K}.

To guarantee quality-of-service of the primary user0, a
minimum average ratěR0 must be maintained for its trans-
mission. On the other hand, to prevent secondary users from
abusing the spectrum, maximum average ratesř j j = 1, . . . ,J
should be imposed for these users too. Likewise, average
power constraintšP0 and p̌ j j = 1, . . . ,J are also present for
the primary and secondary users, respectively.

3. WEIGHTED SUM-RATE MAXIMIZATION

With Eh[·] denoting the expectation operator w.r.t.h, the
average rate of userj = 0,1, . . . ,J can be is expressed as

r̄ j := Eh

[
∑K

k=1 ∑m∈M j (h j,k) τ j,m,k(h)r j,m

]
, and the average

power asp̄ j := Eh

[
∑K

k=1 ∑m∈M j (h j,k) τ j,m,k(h)p j,m

]
. Incor-

porating rate-reward weightsw j ≥ 0 to effect fairness, the
optimal allocation maximizes the weighted average sum-rate
subject to (s.to) average rate and power constraints; i.e.,




max
τ(h)

∑J
j=0w jEh

[
∑K

k=1 ∑m∈M j (h j,k) τ j,m,k(h)r j,m

]

s.to C1. 0≤ ∑J
j=0 ∑m∈M j (h j,k) τ j,m,k(h)≤ 1; ∀h, k

C2. Eh

[
∑K

k=1 ∑m∈M0(h0,k) τ0,m,k(h)r0,m

]
≥ Ř0

C3. Eh

[
∑K

k=1 ∑m∈M0(h0,k) τ0,m,k(h)p0,m

]
≤ P̌0

C4. Eh

[
∑K

k=1 ∑m∈M j (h j,k) τ j,m,k(h)r j,m

]
≤ ř j , j 6= 0

C5. Eh

[
∑K

k=1 ∑m∈M j (h j,k) τ j,m,k(h)p j,m

]
≤ p̌ j , j 6= 0.

(4)
The problem formulated as in (4) is convex and can be effi-
ciently solved using a Lagrange multiplier based primal-dual
approach [4].

Let λR0, λP0, λr j andλp j denote the Lagrange multipli-
ers associated with rate and power constraints of the primary
user and the secondary usersj = 1, . . . ,J, respectively. Ig-
noring temporarily the trivial constraints C1, the Lagrangian
w.r.t. λ := [λR0,λP0,λr1,λp1, . . . ,λrJ ,λpJ ]

T is

L(λ ,τ) =
J

∑
j=0

w j r̄ j +λR0(r̄0− Ř0)−λP0(p̄0− P̌0)

−
J

∑
j=1

(
λr j (r̄ j − ř j)+λp j (p̄ j − p̌ j)

)
. (5)

The Lagrange dual function is

D(λ ) = max
τ s.to C1

L(λ ,τ) (6)

and the dual problem of (4) is

min
λ≥0

D(λ ) (7)

whereλ ≥ 0 means that all entries ofλ are nonegative.
Givenλ , the optimum in (6) will turn out to be attained

almost surely using a greedy winner-takes-all strategy. To
establish this, we first define the link quality indicators

ϕ0,m,k(λ ,h) := (w0 +λR0)r0,m−λP0 p0,m, (8)
∀m∈M0(h0,k)

ϕ j,m,k(λ ,h) := (w j −λr j )r j,m−λp j p j,m, (9)

∀m∈M j(h j,k), j 6= 0.
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Per subcarrierk, we determine for each userj = 0,1, . . . ,J
the most-efficient mode

m∗
j,k(λ ,h) = arg max

m∈M j (h j,k)
ϕ j,m,k(λ ,h); (10)

and select the “winner user” as the one with index

j∗k(λ ,h) = argmax
j

ϕ j,m∗j,k,k(λ ,h). (11)

Per sub-carrierk, the optimal schedule of time-sharing frac-
tions is

τ∗j,m,k(λ ,h) =
{

1, if j = j∗k andm= m∗
j∗k ,k

0, otherwise.
(12)

It is easy to show that the allocation in (12) maximizes the
dual function (6). In fact, regardingλP0 or λp j as the power
price, the link quality indicators in (8) and (9) determine
the net rate reward (rate reward minus power cost) corre-
sponding to the( j,m) mode at subcarrierk. Notice that to
guarantee the service of the primary user0, we may pro-
mote its rate reward weight through addition of the multiplier
λR0 > 0; whereas positiveλr j > 0 may be subtracted from
w j to prevent the abusive spectrum access of secondary user
j = 1, . . . ,J. Using such indicators, the optimal allocation
then simply assigns the whole subcarrierk to the winning
user-mode pair( j∗k,m

∗
j∗k ,k) which produces the highest net

rate reward. According to such a time allocation, we indeed
let userj∗k exclusively transmit with rater∗j∗k ,k(λ ,h) = r j∗k ,m∗

j∗k ,k

and powerp∗j∗k ,k(λ ,h) = p j∗k ,m∗
j∗k ,k

, while having all other users

j 6= j∗k defer by settingr∗j,k(λ ,h) = p∗j,k(λ ,h) = 0 on subcar-
rier k.

Now we are ready to solve the dual problem (7) for the
optimal multipliersλ ∗. With [x]+ := max(x,0) andβi a small
stepsize, this can be accomplished through the iterations

λ (i+1)
R0

=

[
λ (i)

R0
−βi

(
Eh

[
K

∑
k=1

r∗0,k(λ ,h)

]
− Ř0

)]+

(13)

λ (i+1)
P0

=

[
λ (i)

P0
−βi

(
P̌0−Eh

[
K

∑
k=1

p∗0,k(λ ,h)

])]+

(14)

λ (i+1)
r j =

[
λ (i)

r j −βi

(
ř j −Eh

[
K

∑
k=1

r∗j,k(λ ,h)

])]+

(15)

λ (i+1)
p j =

[
λ (i)

p j −βi

(
p̌ j −Eh

[
K

∑
k=1

p∗j,k(λ ,h)

])]+

. (16)

If the convex problem (4) is strictly feasible, these iterations
represent standard sub-gradient projections whose fast (lin-
ear) convergence to the optimalλ ∗ of (7) is guaranteed from
any initial non-negative value, e.g.,λ (0) = 0 [5]. The opti-
mal solution for the primal problem (4) is in turn provided by
τ∗(h) = τ∗(λ ∗,h).

It is evident that the expected values in (13)–(16) can be
only obtainedoff-line provided that the cdfF(h) is known.
Furthermore, notice that the reward weightsw j in (4) are
fixed beforehand. On the other hand, practical cognitive ra-
dios could welcomeon-lineresource allocation without a pri-
ori knowledge ofF(h) and with weights adapted to ensure

fairness. This becomes possible using stochastic approxima-
tion tools and the utility maximization framework (see e.g.,
[6]) that we outline for our problem in the ensuing section.

4. ON-LINE UTILITY MAXIMIZATION

Select a concave and increasing so called utility function
U j(r̄ j), and consider





max
τ(h)

∑J
j=0U j(r̄ j)

s.to C1. ∑J
j=0 ∑m∈M j (h j,k) τ j,m,k(h)≤ 1; ∀h, k

C2. r̄0 ≥ Ř0

C3. p̄0 ≤ P̌0

C4. r̄ j ≤ ř j , j 6= 0
C5. p̄ j ≤ p̌ j , j 6= 0

(17)

wherer̄ j and p̄ are defined as in (4). Clearly (17) includes
(4) as a special case whenU j(r̄ j) = w j r̄ j . Suppose that
the fading coefficientsh remain invariant during a block of
OFDMA symbols but can vary from block-to-block (block
fading channel model). Aiming at replacing the expecta-
tion r̄ j , we rely on a standard stochastic approximation on-
line recursion across blocks indexed byn block to obtain
∀ j = 0,1, . . . ,J

ˆ̄r j [n+1] = ˆ̄r j [n]+βn




K

∑
k=1

∑
m∈M j (h j,k[n])

τ j,m,k(h[n])r j,m − ˆ̄r j [n]


 ;

(18)
where h[n] is the fading state at current blockn,
∑K

k=1 ∑m∈M j (h j,k[n]) τ j,m,k(h[n])r j,m is clearly the current sum-
rate of the userj provided a certain allocationτ(h), and step-
sizeβn ∈ [0,1] implements a forgetting factor in the averag-
ing. Substituting (18) into (17) and using Taylor’s expansion
with βn sufficiently small, we have (′ denotes derivative)

J

∑
j=0

U j( ˆ̄r j [n+1])≈
J

∑
j=0

U j( ˆ̄r j [n])+
J

∑
j=0

U ′
j( ˆ̄r j [n])

×βn

(
∑K

k=1 ∑m∈M j (h j,k[n]) τ j,m,k(h[n])r j,m − ˆ̄r j [n]
)

. (19)

Since estimates ˆ̄r j [n] are available at block n,
maximizing ∑J

j=0U j( ˆ̄r j [n + 1]) becomes equiv-
alent to maximizing the weighted sum-rate

∑J
j=0U ′

j( ˆ̄r j [n])
(

∑K
k=1 ∑m∈M j (h j,k[n]) τ j,m,k(h[n])r j,m

)
.

With λ̂ [n] := [λ̂R0[n], λ̂P0[n], λ̂r1[n], λ̂p1[n], . . . , λ̂rJ [n], λ̂pJ [n]]T
denoting the estimated Lagrange multipliers at blockn. we
can define on-line link quality indicators

ϕ0,m,k(λ̂ [n],h[n]) := (U ′
0( ˆ̄r0[n])+ λ̂R0[n])r0,m− λ̂P0[n]p0,m,

∀m∈M0(h0,k[n])

ϕ j,m,k(λ̂ [n],h[n]) := (U ′
j( ˆ̄r j [n])− λ̂r j [n])r j,m− λ̂p j [n]p j,m,

∀m∈M j(h j,k[n]), j 6= 0.

Then arguing as before, we can pick the most ef-
ficient user-mode pair( j∗k[n],m∗

j∗k ,k[n]) yielding largest

ϕ j∗k ,m∗
j∗k ,k

,k(λ [n],h[n]), and let user j∗k[n] transmit with
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r∗j∗k ,k(λ̂ [n],h[n]) = r j∗k [n],m∗
j∗k ,k

[n] and powerp∗j∗k ,k(λ̂ [n],h[n]) =

p j∗k [n],m∗
j∗k ,k

[n], while all other usersj 6= j∗k[n] deferring with

r∗j,k(λ̂ [n],h[n]) = p∗j,k(λ̂ [n],h[n]) = 0 per subcarrierk.
Substituting this allocation into (18), average rates̄̂r j [n+

1] can be updated. Mimicking the subgadient updates in
(13)–(16), we update thêλ [n+1] using the following on-line
recursions:

λ̂R0[n+1] =

[
λ̂R0[n]−βn

(
K

∑
k=1

r∗0,k(λ̂ [n],h[n])− Ř0

)]+

λ̂P0[n+1] =

[
λ̂P0[n]−βn

(
P̌0−

K

∑
k=1

p∗0,k(λ̂ [n],h[n])

)]+

λ̂r j [n+1] =

[
λ̂r j [n]−βn

(
ř j −

K

∑
k=1

r∗j,k(λ̂ [n],h[n])

)]+

λ̂p j [n+1] =

[
λ̂p j [n]−βn

(
p̌ j −

K

∑
k=1

p∗j,k(λ̂ [n],h[n])

)]+

.

Devoid of the expectation operators, these updates are sto-
chastic (un-biased) estimates of the sub-gradient projections
in (13)–(16). Such iterations along with the on-line optimal
allocation amount to a stochastic primal-dual (SPD) algo-
rithm for solving the utility maximization problem in (17).
Per blockn, this algorithm performs a weighted sum-rate
maximization with adaptive weights provided byU ′

j( ˆ̄r j [n]) to
obtain on-line optimal allocation, whereas the dual variables
λ̂ [n+1] are updated usinginstantaneoususer rates.

Interestingly, without knowingF(h), this simple SPD
on-line algorithm can learn the channel cdf on-the-fly, and
is convergent and asymptotically optimal. Specifically, we
have proved that:

Proposition 1 If problem (17) is strictly feasible, then the
estimateŝ̄r j [n] obtained recursively from (18) using any ini-
tial ˆ̄r j [0]≥ 0, converge in probability to the optimal̄r∗j of (17)
∀ j , asn→ ∞ andβn ↓ 0.

As βn ↓ 0, large samples are used inˆ̄r[n] andλ̂ [n] estimates,
which then evolve according to sample averages while satis-
fying the Lipschitz condition [7]. Ergodicity and stationarity
of the channel further implies the equivalence between sam-
ple and ensemble averages. Since first-order approximation
of the Taylor’s expansion used in developing the SPD algo-
rithm also becomes accurate asβn ↓ 0, the evolution ofˆ̄r[n]
maximizes the utility drift; whereas thêλ [n] evolves accord-
ing to the sub-gradient projection. All of these imply that the
trajectory of SPD algorithm indeed fluctuates around that of
the corresponding off-line primal-dual updates, and this fluc-
tuation is negligible asn→∞ andβn ↓ 0. The rigorous proof
relying on stochastic approximation and Lyapunov function
arguments [7, 8] is omitted due to space limitations.

With a small but constant stepsizeβn = β , the SPD al-
gorithm brings ˆ̄r[n] to a small neighborhood of̄r∗ (with
size o(β )) in o(1/β ) iterations, uniformly for any initial
state. Because this adaptive algorithm converges from ar-
bitrary initializations it exhibits robustness to channel non-
stationarities. Upon convergence, the SPD weights become

U ′
j(r̄

∗
j ) and the solution of (4) and (17) will coincide if

w j = U ′
j(r̄

∗
j ). Compared to the off-line solution, the adap-

tive SPD algorithm enjoys two attractive features: i) conver-
gence to the optimal average rates without a priori knowledge
of fading cdf, and ii) flexibility in selecting different utility
functions to achieve additional desirable properties such as
fairness.

5. IMPLEMENTATION AND OVERHEAD

Recall that the AP has available the full CSI vectorh[n] per
block n and relies on it to run an SPD iteration. Each iter-
ation includes the on-line optimal allocation as well as the
primal ˆ̄r[n] and dual̂λ [n] updates. The scheduled user-mode
pairs{( j∗k[n],m∗

j∗k ,k[n]), k = 1, . . . ,K} are then broadcasted,

and users transmit in accordance with this schedule at block
n. Instead of the analog-valued vector channelh[n], the AP
needs to feed back to the users the quantized CSI (user and
AMC mode indexes selected). Since there are∑J

j=1M j dif-
ferent user-mode combinations plus one more when all users
are deferring, the Q-CSIT (as well as scheduling) overhead

is F =
⌈
K log2

(
∑J

j=1M j +1
)⌉

. As long as the feedback

link from the AP to the users can carry more thanF bits per
block, this Q-CSIT is sufficient for implementing the pro-
posed channel-adaptive resource allocation. Note that this
overhead is typically a small number for practical cognitive
radios. For instance, in the case of one primary and three
secondary users with each supportingM j = 5 AMC modes,
only 4 feedback bits are required per subcarrier.

6. NUMERICAL RESULTS

To numerically test our designs, we consider an adaptive
OFDMA system withJ = 4 users,K = 64 subcarriers, uni-
tary noise power per user and subcarrier, andM j = 5 active
AMC modes per user and subcarrier with rates (1/4,1/2,3/4,1,
and 5/4 bits per symbol). We further suppose that subcar-
rier gains are uncorrelated and constant∀k (i.e., uncorrelated
Rayleigh taps are simulated per user). The utility function is
U j(r̄ j) = r̄ j for all users.

To run our resource allocation algorithms we fixed Q-
CSI pairs{(r j,m, p j,m)} ∀ j,m. Different from this work, [2]
deals with optimum rate and power quantization for a TDMA
system, obtaining as a result that when optimally designed,
the relation between power and rate for different regions is
almost constant (i.e.,p j,m/r j,m ' c j ∀m). To facilitate the
design of Q-CSI pairs in the present setup, we can use as a
rule of thumb the constantc j based on the BER function in
(1) and ε̌; since the set of{r j,m} rates is given by the AMC
modes that users implement, through{c j} we can easily cal-
culate the corresponding{p j,m}. Specifically, we will obtain
c j as the required power to transmit one bit satisfyingε̌ when
h j,k = Eh[h j,k].

The QoS constraints are set to:Ř0 = 30, ř1 = 20 ř2 = 5,
and ř3 = 5 (bits per symbol),P̌0 = 100, p̌1 = 20 p̌2 = 100,
and p̌3 = 20 (watts per symbol), anďε = 10−3 ∀ j. The solid
line in Figure 1 depictŝ̄r j [n] and the dashed linê̄p j [n] for
βn = 0.05 and average channel gains across subcarriers and
users set toEh[h j,k] = 3. The curves validate the proposed
allocation since the requirements are clearly satisfied: the
transmit-power is below the maximum value for all users,
the primary user transmits at a rate higher than its mini-
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Figure 1: Time evolution of ˆ̄r j [n] (solid line, left axis) and
ˆ̄p j [n] (dashed line, right axis) forj = 0,1,2,3.

mum requirement while the transmit-rates of secondary users
stay below their maximum allowable levels. We also ob-
serve that to maximize the total transmit-rate∑J

j=0 r̄ j the op-
timal allocation sets: (a)̄r j ≈ ř j and p̄ j < p̌ j for j = 3,2 (in
both cases the users have power enough to transmit at higher
rate but they would violate their maximum rate constraints);
(b) r̄1 < ř1 and p̄1 ≈ p̌1 (although user1 could transmit at
higher rate it does not have enough power); andr̄0 > Ř0 with
p̄0 < Ř0 (the primary could slightly increase its own transmit-
rate at the expense of reducing the rates of others thus reduc-
ing the overall transmit-rate). With respect to convergence,
it is fast (but with fluctuations) since we chose a high value
for βn. Moreover, since forn = 1 the rate requirement of the
primary user is clearly unsatisfied, during the first samples
of the algorithm secondary users are not allowed to access
subcarriers and their initial rate and power are zero.

To gain insight about the allocation depicted in Figure 1,
we plot the correspondinĝλr j [n] andλ̂p j [n] values in Figure
2. Simply inspection of the latter reveals that: (a) since both
rate and power constraints of userj = 0 are oversatisfied, its
Lagrange multipliers take positive but close to zero values.
(Notice that, e.g.,̂λr j [n] is not always zero since it is updated
based on the instantaneous values of the transmit-rate and
power [cf. (20)], which implies that althougĥ̄r j [n] is greater
than ř j , ∑K

k=1 r j,k can be less thaňr j for somen leading
the multiplier to take a non-zero value); (b)λ̂p1[n] > 0 and
λ̂r1[n] is close to zero (i.e., the whole transmit-power is con-
sumed but the maximum transmit-rate is not achieved); (c)
both λ̂r2[n] > 0 andλ̂r3[n] > 0 imply that the maximum rate
constraints forj = 2,3 are active; and (d) whilêλp2[n] ≈ 0
(in this case the power constraint of user 2 is far from being
violated),λ̂p3[n] is close to zero (sincěp3 ¿ p̌2).

7. CONCLUSIONS

Based on limited-rate feedback, we formulated channel-
adaptive resource allocation in cognitive radios with a
primary-secondary user hierarchy as a convex optimization
problem. Using a Lagrange multiplier based primal-dual ap-
prach, we derived an off-line optimal resource allocation al-

0 50 100 150
0

2.5

5

U
se

r
0

0 50 100 150
0

2.5

5
λ̂rj

[n] and λ̂pj
[n] for users j = 0, 1, 2, 3

0 50 100 150
0

2.5

5

U
se

r
1

0 50 100 150
0

2.5

5

0 50 100 150
0

2.5

5

U
se

r
2

0 50 100 150
0

2.5

5

0 50 100 150
0

2.5

5

U
se

r
3

0 50 100 150
0

2.5

5

n

Figure 2:Time evolution ofλ̂r j [n] (solid line, left axis) and

λ̂p j [n] (dashed line, right axis) forj = 0,1,2,3.

gorithm to maximize the average weighted sum-rate subject
to power and rate constraints on the primary and secondary
users. We further developed a stochastic approximation SPD
algorithm for on-line scheduling and resource allocation. It
was argued that this simple low-complexity SPD algorithm
asymptotically converges to the optimal off-line resource al-
location from any initial value without a priori knowledge of
the channel fading statistics.
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