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ABSTRACT
The Mean Square Error (MSE) is a common distortion mea-
sure used to assess image quality although it is not always
justified when compared to the human observer. In this work
we present a Rate-Distortion approach to color image com-
pression based on subband transforms using perceptual opti-
mization of the compression quality. This approach is based
on minimization of the Weighted Mean Square Error (WMSE)
of the encoded image, which better corresponds to quality as-
sessment of the human eye. Based on the new approach, new
optimized compression algorithms are introduced using the
Discrete Cosine Transform and the Discrete Wavelet Trans-
form. We compare the new algorithms to presently available
algorithms such as JPEG. Our conclusion is that the new
WMSE optimization approach offers superior performance
when a human observer is considered.

1. BACKGROUND

Many color image coding algorithms rely on subband trans-
forms (SBT) to enhance the compression performance. The
range of such algorithms is wide: from those based on basic
block transforms like the Discrete Cosine Transform (e.g.,
JPEG [1]) to more complex algorithms based on the Discrete
Wavelet Transform (e.g., EZW - Embedded Zerotree Wavelet
[2] and JPEG2000 [3],[4]). Recently, a Rate-Distortion (R-
D) model has been introduced for SBT coders [5] based on
the MSE as a distortion measure, which is not always well
correlated with image quality assessment of the human eye.
Other distortion measures have been proposed, such as cal-
culating the MSE distortion after an intensity transformation
and filtering [6] or using a non-linear transformation of the
primaries, followed by filtering [7]. These measures, how-
ever, are too complicated for the proposed optimization pro-
cess. Thus, in this work we develop a perceptual R-D model
for subband transform coders based on the simpler WMSE
as the distortion measure. We demonstrate the efficiency of
the new model for subband coding by presenting a new type
of compression algorithms based on perceptual optimization
of the pre-processing stage and of the subband rates.

1.1 Rate-Distortion theory of subband transform coders

Consider a general subband transform coder for color images
where the image samples are passed through the following
steps:
1. Pre-processing by applying a Color Components Trans-

form (CCT) to the RGB color components of the im-
age. We denote the RGB components in vector form
asx = [R G B]T and the new color components asx̃ =

[C1 C2 C3]
T . The 3×3 size CCT matrix is denoted byM.

This stage can be written as:

x̃ = Mx. (1)

The goal of using a CCT transform is usually to reduce
the high inter-color correlations of the RGB components
[8], [9], although in some cases another choice of a CCT
based on a correlation approach could be preferred [10].

2. A subband transform is applied to each color component
and the subband coefficients are quantized. An indepen-
dent uniform scalar quantizer for each subband is used.

3. Lossless post-quantization coding, e.g., entropy coding.
Assuming that a subband transform withB subbands is ap-
plied to each color component, it can be shown that the Rate-
Distortion model of this algorithm is [11]:

d({Rbi},M) =
1
3

3
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ηbGbσ̃2
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(2)
Hereσ̃2

bi is the variance of subbandb (b∈ {0,1, ...,B−1}) of
the color componentCi (i ∈ {1,2,3}), Gb is its energy gain
[12] andRbi is the rate allocated to it.ηb is its sample rate,
i.e., the relative part of the number of coefficients in it from
the total number of samples in the color component. Finally,
ε2 is a constant dependent upon the distribution of the coded
signal anda is 2ln2.
Optimal rates allocation for the subbands can be found by
minimizing the expression of Equation (2) under the rate
constraint:
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for some total image rateR. Here down-sampling factorsαi
have been used. The optimal rates under the rate constraint
of (3) as well as non-negativity constraints are:
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(4)
for b∈ Acti where

Acti , {b∈ [0,B−1] | Rbi > 0} .

ξi , ∑
b∈Acti

ηb, GMAct
i , ∏

b∈Acti

(Gbσ̃2
bi)

ηb
ξi .

(5)
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Acti denotes the set of non zero (or active) rates ofCi .

2. THE PERCEPTUAL R-D MODEL

We assume here that we are given the visual perception
weights corresponding to the subbands of a certain subband
transform in a color space. Such a space can be, for example,
YCbCr. We now wish to derive an expression for the WMSE
distortion of a coder based on the subband transform. The
same coder described in Subsection 1.1 is assumed, so that
a CCT is applied to the RGB color components of the im-
age prior to coding and the actual image data compression
is performed in another color space denoted C1C2C3. We
denote byYb = [yY

b yCb
b yCr

b ]T the vector of the SBT coeffi-
cients at some index in subbandb in the YCbCr color space.
Similarly, the vectors of subbandb coefficients in the RGB
and C1C2C3 spaces are denotedY

RGB

b
= [yR

b yG
b yB

b ]T and

Ỹb = [yC1
b yC2

b yC3
b ]T respectively. Due to the linearity of the

SBT the following relationship holds:

Ỹb = M̄Yb ⇒ Yb = M̄
−1

Ỹb, (6)

where M̄ stands for the CCT matrix from YCbCr to
C1C2C3. IfM is the CCT matrix from RGB to C1C2C3,
andMYCbCr is the RGB to YCbCr matrix, then:

M̄ = M ·M−1

YCbCr
. (7)

Since the SBT coefficients are lossy encoded, errors are in-
troduced between the reconstructed coefficientsY

rec

b
in the

YCbCr color space and the original ones. The error covari-
ance matrices for subbandb in the YCbCr and C1C2C3 do-
mains respectively are:

Erb = E
[
(Yb−Y

rec

b )(Yb−Y
rec

b )T]
,

Ẽrb = E
[
(Ỹb− Ỹ

rec

b )(Ỹb− Ỹ
rec

b )T
]
.

(8)

E() stands here for statistic mean. Using (6), we can express
Ẽrb by Erb as:

Erb = M̄
−1

ẼrbM̄
−T

. (9)

The MSE distortionsdbi of the YCbCr color components in
subbandb are the diagonal elements ofErb and thus:

dbi = ni
T
Ẽrbni, (10)

whereni is theith row of M̄−1 in column form. In a similar
fashion the diagonal elements of̃Erb can be recognized as
the MSE distortions̃dbi of theC1, C2, C3 color components,
given by [12]:

d̃bi = ε2
i σ̃2

bie
−aRbi . (11)

Note that we continue here with the consistent notation of
a tilde for the variables related to the C1C2C3 color space.
Assuming that the quantization errors of the three color com-
ponents in each subband in the C1C2C3 domain are uncor-
related,Ẽrb becomes a diagonal matrix and (10) becomes:

dbi =
3

∑
k=1

ni
2
kd̃bk =

3

∑
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(
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−1)2
ik ε2

k σ̃2
bke

−aRbk (12)

after substitution of (11) for̃dbk. Now if, for the sake of
convenience, we denote the YCbCr color components at each
pixel as a vectorxYCbCr = [Y Cb Cr]T , then the WMSE of
the ith color component(xYCbCr)i is:

WMSE
(
(xYCbCr)i

)
=

B−1

∑
b=0

ηbGbwbidbi. (13)

As can be seen, this expression incorporates the energy gains
of the subbandsGb as well as their sample ratesηb. Also the
visual weightswbi are included in the expression to provide
varying significance to different subbands of the same color
component as well as between color components. Defining
the total WMSE as the average WMSE of the YCbCr color
components, we get:

WMSE=
1
3

3
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)
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(14)
and after substituting (12) fordbi the expression becomes:

WMSE=
1
3

3

∑
i=1

B−1

∑
b=0

ηbGbwbi

3

∑
k=1

(
M̄

−1)2
ik ε2

k σ̃2
bke

−aRbk

=
1
3

B−1

∑
b=0

ηbGb

3

∑
k=1

ε2
k σ̃2

bke
−aRbk

3

∑
i=1

wbi
(
M̄

−1)2
ik .

(15)

To simplify (15) we denote:

ψbk ,
3

∑
i=1

wbi
(
M̄

−1)2
ik , (16)

so that the WMSE expression becomes:

WMSE=
1
3

B−1

∑
b=0

3

∑
k=1

ηbGbσ̃2
bkε

2
k e−aRbkψbk. (17)

Clearly if the visual weightswbi are all equal to 1, the WMSE
expression of (17) should become the expression for the MSE
in the YCbCr domain. This expression is given exactly by
(2) with the difference thatM there is to be replaced bȳM
in our case. From the comparison of equations (17) and (2)

we conclude thatψbk =
(
(M̄M̄

T
)−1
)

kk
in that case, which

means according to (16) that

3

∑
i=1

(
M̄

−1)2
ik =

(
(M̄M̄

T
)−1
)

kk
. (18)

2.1 Basic optimization using the WMSE model

After deriving the WMSE expression, the next step is to use
it to find the optimal rates and optimal CCT in the WMSE
sense. First we wish to minimize the WMSE of (17) subject
to the rate constraint∑3

i=1 ∑B−1
b=0 ηbRbi = R, resulting in the

following Lagrangian (λ is the Lagrange multiplier):

L
(
{Rbi},M̄,λ

)
=

1
3
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b=0

3
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k=1

ηbGbσ̃2
bkε

2
k e−aRbkψbk

+λ

(
3
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∑
b=0

ηbRbi −R

)
,

(19)
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which is minimized by the optimal rates given by:

Rbi =
R
3

+
1
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Here

GMk ,
B−1

∏
b=0

(
Gbσ̃2

bk

)ηb and Ψk ,
B−1

∏
b=0

(ψbk)
ηb . (21)

Note that no constraints for non-negativity of the rates were
used here, which means that high image ratesRare assumed.
As for the optimal CCT matrix̄M: it can be found by mini-
mizing the target function

f (M̄) =
3

∏
k=1

(GMkΨk) =
3

∏
k=1

B−1

∏
b=0

(
Gbσ̃2

bkψbk
)ηb

. (22)

We should remind here thatψbk is a function ofM̄ given in
(16). Also the variances̃σ2

bk depend onM̄, or more specifi-
cally onM. These variances are the diagonal elements of the
subbandb covariance matrix in the C1C2C3 domain:

Λ̃b , E

[(
Ỹb− µ̃

Yb

)(
Ỹb− µ̃

Yb

)T
]

µ̃Yb
, E

[
Ỹb

]
,

(23)
and can also be expressed using theM matrix and the sub-
bandb covariance matrix in the RGB domain:

Λb , E
[(

Y
RGB

b −µRGB

Yb

)(
Y

RGB

b −µRGB

Yb

)T
]

µRGB

Yb
, E

[
Y

RGB

b

] (24)

according toσ̃2
bk = mk

T
Λbmk, wheremk denotes thekth

row of theM matrix in vector form. Thus the target function
f (M̄) can be rewritten as:

f (M̄) =
3

∏
k=1

B−1

∏
b=0

(
(mk

T
Λbmk)Gbψbk

)ηb
. (25)

2.2 Optimal rates with down-sampling

When considering possible down-sampling of some of the
color components, the rate constraint becomes (3) and the
Lagrangian that incorporates this constraint as well as con-
straints for the non-negativity of the subband rates is:

L({Rbi},M,λ ,{µbi}) =
1
3
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∑
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3
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where µbi are the Lagrange multipliers for the new con-
straints. The active rates that minimize (26) are:
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(27)

whereΨAct
k , ∏b∈Actk (ψbk)

ηb
ξk andGMAct

k is as given in (5).

3. PERCEPTUALLY OPTIMIZED COMPRESSION

We present a general approach to color image compression
using a subband transform with perceptual optimization of
the CCT and the subband rates allocation. The approach con-
sists of the stages described in the beginning of Section 1.1.
The main difference here is that in the pre-processing stage
the perceptually optimal CCT transform is applied to the
color components and in the quantization stage the percep-
tually optimal rates allocation is used. We demonstrate the
approach both for the DCT (Discrete Cosine Transform) in
Subsection 3.1 and the DWT (Discrete Wavelet Transform)
in Subsection 3.2.

3.1 The proposed DCT-based compression algorithm

Since the DCT is a subband transform, the Rate-Distortion
theory of Section 2 is readily suitable for such a case. To find
the DCT visual weights we use the CSF (Contrast Sensitivity
Function) curves of the human visual system for the YCbCr
color space, that can be found, for example, in [12]. To con-
vert the cpd (cycle per degree) units of these graphs into spa-
tial frequency units for the DCT, the equations proposed in
[13] are adopted. We consider for example 256× 256 im-
ages displayed as 64mm×64mmon a display with dot pitch
of 0.25mm. The viewing distance is assumed to be four times
the image height [14], i.e., in this example 25cm. The stages
of the proposed algorithm are as follows.
1. Find the optimal CCTM by minimizing (25).
2. Apply the CCTM to the RGB color components of the

image to obtain the new color componentsC1, C2, C3.
3. Apply the DCT block transform to each color component

Ci , i ∈ {1,2,3}.
4. Calculate the optimal rates according to (27) substituting

there the used CCT matrix and the variances of the DCT
subbands. To find the active subbands, the algorithm pre-
sented in [11] could be used.

5. Quantize the DCT coefficients using a uniform scalar
quantizer in each subband. The (optimal) quantization
steps are found using an iterative algorithm [5].

6. Use post-quantization coding similar to the one used in
JPEG. Adaptive Huffman coding is employed and the
codes are sent with the image data. This stage is loss-
less and does not affect the image distortion.

It is of interest to compare the performance of this algo-
rithm to other DCT-based compression algorithms, such as
the MSE optimized algorithm proposed in [11] and to JPEG.
A comparison for several images is summarized in Table 1.
We consider here the above algorithm with WMSE R-D op-
timization of the rates allocation and CCT as well as another
version of the algorithm that uses optimal rates in the YCbCr
color space. The PSPNR (Peak Signal to Perceptual Noise
Ratio) measure used here is:

PSPNR, 10log10
2552

WMSE
, (28)

whereWMSEfor each color component is calculated in the
DWT domain in the YCbCr color space according to the vi-
sual weights suggested in [12]. Then the average PSPNR of
the 3 color components is taken.
It can be concluded from the table that the WMSE opti-
mized algorithm with the optimal CCT achieves the highest
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PSPNR
Image WMSE

Alg.
YCbCr

WMSE
Alg.
Opt.

MSE
Alg.

JPEG CR

Lena 39.425 40.622 38.863 37.566 31.63

Peppers 39.633 39.631 38.140 36.567 29.65

Baboon 42.016 42.535 39.204 36.101 13.63

Cat 41.336 43.082 41.305 39.926 18.53

Sails 41.010 42.908 39.663 37.550 13.07

Monarch 39.796 40.152 38.692 37.521 23.24

Goldhill 42.933 43.371 41.882 40.607 11.05
Mean 40.878 41.757 39.678 37.977

Table 1: Perceptually-based results (PSPNR) for (from left to
right): The DCT-based WMSE optimized algorithm in the YCbCr
domain; The same algorithm with optimal CCT; The MSE opti-
mized algorithm; JPEG. The compression ratio for each image (CR)
is shown in the right column.

PSPNR, which is a gain of 2.08dB compared to the MSE op-
timized algorithm, and 3.78dB above JPEG on average. The
use of the optimal CCT in the WMSE sense increases the
performance by 0.88dB on average when perceptually opti-
mal rates are employed. Another comparison of interest is
of the standard orobjectivedistortions of the algorithms, i.e.,
the PSNR (Peak Signal to Noise Ratio). The average perfor-
mance for the same images of Table 1 is presented in Table
2. As expected, the MSE optimized algorithm is superior
here, but what is perhaps less intuitive is the fact that the use
of the optimal CCT for the algorithm based on the WMSE
optimization slightly decreases the PSNR. Despite this, both
WMSE algorithms outperform JPEG with a gain of 0.87dB
in the PSNR without using the optimal CCT and even higher
(1.08dB) with the optimal CCT. We conclude this section by
presenting a visual comparison of the algorithms in Fig. 1
for the Baboon image. It can be seen that the WMSE al-
gorithm provides results that are perceptually superior tothe
MSE algorithm. Yet both algorithms outperform JPEG.

Mean PSNR
WMSE Alg.
YCbCr

WMSE Alg.
Opt.

MSE
Alg.

JPEG

30.002 29.800 30.854 28.927

Table 2: Standard (PSNR) mean results for (from left to right):
The DCT-based WMSE algorithm in the YCbCr domain; The
WMSE algorithm using the optimal CCT; The MSE optimized al-
gorithm; JPEG.

Figure 1: Compression results for the Baboon (zoomed in) at
0.881 bpp. Original image (top left); Image compressed by the
WMSE optimized algorithm (top right, PSPNR=36.93dB); Im-
age compressed by JPEG (bottom left, PSPNR=33.59dB); Im-
age compressed by the MSE optimized algorithm (bottom right,
PSPNR=35.56dB). As expected, the WMSE algorithm outperforms
the other methods, especially in the marked areas.

3.2 The proposed DWT-based compression algorithm

We consider here the DWT decomposition by Daubechies
9/7 filter bank. No tiling [3] is used. The choice of the vi-
sual weights is according to [12]. The stages of the proposed
algorithm are:
1. Find the optimal CCTM by minimizing (25).
2. Apply the CCTM to the RGB color components of the

image to obtain the new color componentsC1, C2, C3.
3. Apply the DWT tree decomposition up to the required

depth of the tree (3, 4, 5 or higher according to image
size) to each color componentCi , i ∈ {1,2,3}.

4. Calculate the optimal rates according to (27) substitut-
ing there the CCT matrix and the variances, the sample
rates and energy gains of the DWT subbands. The de-
termination of the active subbands is the same as for the
DCT-based algorithm of Section 3.1.

5. Quantize the DWT coefficients by a uniform quantizer
with a central dead-zone in each subband. Use optimal
quantization steps.

6. Use the post-quantization coding of the EZW algorithm
[2] on the quantized subband coefficients. This stage is
lossless and includes bit plane coding with the use of zero
trees. The bit plane coding is split into two passes (dom-
inant and subordinate) and a separate arithmetic coder is
employed for each pass.

It is of interest to compare the proposed algorithm to
JPEG2000. We consider the JPEG2000 implementation by
the JasPer software package [15] and another version of the
implementation with fixed visual weighting at subband level
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Figure 2: Compression results for Lena at 0.519 bpp. Original
image (top left); Image compressed by the DWT-based WMSE op-
timized algorithm (top right, PSPNR=19.66dB); Image compressed
by JPEG2000 (bottom left, PSPNR=19.10dB); Image compressed
by JPEG2000 with CSF weights (bottom right, PSPNR=19.23dB).

using the CSF weights of [12]. The visual results for the
Lena image are shown in Fig. 2. The PSNR results here
are 30.66dB for the proposed WMSE optimized algorithm,
29.96dB for JPEG2000 and 29.73dB for JPEG2000 with
CSF weights. We conclude that the usage of CSF weights
decreases the PSNR of JPEG2000, but slightly improves its
visual performance. Also the proposed algorithm produces
an image that perceptually outperforms JPEG2000.

4. SUMMARY

An optimized perceptually-based model for the Rate-
Distortion function of color subband coders has been in-
troduced and derived. The new model approximates the
WMSE distortion of an image in a given color space, such
as YCbCr. This distortion is then minimized to achieve per-
ceptual optimization of the compression. Based on the Rate-
Distortion model, new algorithms have been introduced con-
sisting of a pre-processing stage of applying a CCT, fol-
lowed by a subband transform, quantization and lossless
post-processing. The algorithms optimize the CCT in the
pre-processing stage of the compression and the quantization
tables used in the coding stage with respect to WMSE. The
DCT-based algorithm, outperforms both JPEG and the cor-
responding MSE optimized algorithm. It has been demon-
strated that even when a relatively basic algorithm is used in
the post-processing stage (introduced for EZW), superior re-
sults are achieved by the DWT-based algorithm compared to
other algorithms based on the DWT, such as JPEG2000. This
holds even when the same WMSE distortion is used in both
the JPEG2000 and the proposed algorithm.
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