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ABSTRACT
Directionlets are built as basis functions of critically

sampled perfect-reconstruction transforms with directional
vanishing moments (DVMs) imposed along different direc-
tions. Here, we combine the directionlets with the space-
frequency quantization (SFQ) image compression method,
originally based on the standard two-dimensional (2-D)
wavelet transform (WT). We show that our new compression
method outperforms the standard SFQ as well as the state-
of-the-art image compression methods, such as SPIHT and
JPEG-2000, in terms of the quality of compressed images, es-
pecially in a low-rate compression regime. We also show that
the order of computational complexity remains the same, as
compared to the complexity of the standard SFQ algorithm.

1. INTRODUCTION

The standard two-dimensional (2-D) wavelet transform
(WT) has become very successful in image compression in
recent years because it provides a sparse multiresolution rep-
resentation of natural images due to the presence of vanishing
moments in the high-pass (HP) filters (enforced by imposing
zeros atω = 0) [1]. This transform is conceptually simple
and has a low computational complexity because of the sim-
ple separable one-dimensional (1-D) filtering and subsam-
pling operations. For these reasons, the2-D WT has been
adopted in the image compression standard JPEG-2000.

However, the performance of the2-D WT is limited by
the spatial isotropyof the basis functions and the construc-
tion only along thehorizontal and vertical directions, which
does not provide enough directionality. For this reason, the
standard2-D WT fails to provide a sparse representation of
oriented1-D discontinuities (edges or contours) in images
[1]. These features are characterized by a geometrical coher-
ence that is not properly captured by the isotropic wavelet
basis functions. Thus, to provide an efficient representa-
tion of contours, the basis functions are required to have di-
rectional vanishing moments (DVMs) along more than the
two standard directions. Several previous approaches, like
curvelets [2], contourlets [3] and bandelets [4], have already
addressed this non-trivial task. However, these methods have
higher complexitythan the standard 2-D WT and require
non-separablefiltering and filter design. Furthermore, these
transforms are oftenoversampled, thus, making it non-trivial
to have efficient image compression methods.

Several recently proposed methods use the lifting scheme
in image compression algorithms. This scheme is exploited
in [5], where transform directions are adapted pixel-wise
throughout images. A similar adaptation is used in [6] and
[7], but with more different directions (9 and 11, respec-
tively). In addition, the method in [6] uses the pixel values
at fractional coordinates obtained by interpolation. However,

even though these methods are computationally efficient and
provide good compression results, they show a weaker per-
formance when combined with zerotree-based compression
algorithms.

In [8], anisotropic wavelet transforms have been con-
structed along different directions. The resulting basis func-
tions, calleddirectionlets, are critically sampledand have
DVMs acrossanytwo directions with rational slopes. At the
same time and very importantly, these transforms retain the
separable processing (filtering and subsampling operations)
and the computational simplicity of the standard2-D WT. Di-
rectionlets have been successfully implemented in non-linear
approximation of images providing a faster decay of mean-
square error as compared to the standard2-D WT. Further-
more, in [9], directionlets have been grouped in zerotrees,
similarly to the multiscale grouping of standard wavelet co-
efficients in [10], while keeping a similar complexity.

Here, our main goal is to design and implement a com-
pression method based on the space-frequency quantization
(SFQ) [11] using directionlets instead of the standard2-D
WT. We show that our new method outperforms the standard
SFQ as well as the state-of-the-art image coding algorithms,
such as SPIHT [12] or JPEG-2000. At the same time, our
method preserves the same order of computational complex-
ity as the standard SFQ.

In Section2, we briefly review the main principles of
the construction of directionlets and also the standard SFQ
method. Then, in Section3, we present the details of our
new compression method. We compare the results achieved
by our method to the results obtained by the standard SFQ,
SPIHT and JPEG-2000in Section4. Finally, we conclude in
Section5.

2. BACKGROUND AND RELATED WORK

2.1 Construction of Directionlets

The construction of directionlets has been explained in detail
in [8]. Here, we only revisit the basic ideas.

Directionlets are constructed as basis functions of the
so-calledskewed anisotropic wavelet transforms(S-AWT).
These transforms make use of the two concepts: anisotropy
and directionality. Anisotropy is obtained by an unbalanced
iteration of transform steps along two transform directions,
that is, the transform is applied more along one than along
the other direction. Directionality is a result of the construc-
tion along skewed transform directions built using integer lat-
tices. The DVMs are imposed in the corresponding HP filters
along any pair of directions. Two examples of directionlets
are shown in Fig.1(b) and (c). These basis functions are
constructed using the frequency decomposition illustrated in
Fig. 1(a) and the Haar and biorthogonal ”9-7”1-D filter-
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(a) (b) (c)

Figure 1: The S-AWT allows for an anisotropic iteration of
the filtering and subsampling operations applied along two
different directions. (a) The decomposition in frequency for
two iterations. The basis functions obtained from the (b)
Haar and (c) biorthogonal ”9-7”1-D scaling and wavelet
functions.
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Figure 2:The wavelet coefficients are grouped in zerotrees to
exploit the multi-scale correlation. The zerotrees have origi-
nally been proposed in [10].

banks, respectively.

2.2 Space-Frequency Quantization

The SFQ image compression method for images was origi-
nally proposed in [11]. Here, because of lack of space, we
only briefly revisit the basic concept of the SFQ.

The main idea behind SFQ is to minimize a mean-square
error (MSE) distortion measure of the reconstructed im-
age for a given bit-rate constraint using Lagrangian opti-
mization. The algorithm exploits the multi-scale correlation
among wavelet coefficients produced by the standard2-D
WT. The coefficients are structured in multi-scale trees (ze-
rotrees) so that one tree consists of the coefficients from dif-
ferent transform scales at the same spatial location (see Fig.
2). Each tree has a root at the corresponding coefficient from
the coarsest scale. The same tree-structure is used in [10],
whereas a similar one is exploited in [12].

In the process of the SFQ encoding, a subset of wavelet
coefficients is discarded (set to zero), whereas the rest is
quantized using a single uniform scalar quantizer. The main
tasks of the SFQ are (1) to select the subset of coefficients
that should be discarded and (2) to choose which quantiza-
tion step size should be used to quantize the retained coeffi-
cients. In both tasks, Lagrangian optimization is used to se-
lect the optimal solution in a rate-distortion (R-D) sense. The
locations of the retained coefficients are encoded and sent as
a map information, whereas the quantized magnitudes are
entropy coded. The block diagram of the encoder is shown
in Fig. 3.

The optimization process consists of three phases: (a)

WT SFQ Q Entropy
coder

x X X

R-D based SFQ

optimization

data

map

Figure 3: The standard SFQ encoding consists of four
blocks: the2-D WT, SFQ optimization, quantization and en-
tropy coding. The task of the SFQ optimization is to pick
the optimal subset of retained transform coefficients in a R-
D sense. These coefficients are quantized in the subsequent
step. The locations of retained coefficients are transmitted as
a side information.

space-frequency tree pruning, (b) predicting the map and (c)
joint optimization of the quantizers. Notice that, even though
the optimal result of the tree pruning is influenced by the bit-
rate spent for predicting and encoding the map in (b), the
optimization process in (a) is assumed to be independent and
is updated in the subsequent phase.

In the first optimization phase (a), all nodes in the full
depth multi-scale tree are checked bottom-up if it is cheaper
in a R-D sense to keep or to zero out the descendant nodes.
The process is iterated on the resulting pruned multi-scale
tree until the convergence is reached, that is, until no new
node is pruned. In the second phase (b), the locations of
the retained nodes are encoded as a map information using a
predictive scheme based on the variance of parent nodes. Fi-
nally, in the last phase (c), the previous optimization process
(the phases (a) and (b)) is run exhaustively for each value
of the quantization step sizeq from an ad-hoc optimized list
{q : q = 7.5+ 0.1 · k, k = 1,2, . . . ,245} for the scaling and
wavelet coefficients and the value that minimizes the La-
grangian cost is chosen as optimal. The quantized coeffi-
cients are encoded using an adaptive entropy coder.

3. COMPRESSION ALGORITHM

Our compression algorithm is explained in more details in
[14]. Here, because of lack of space, we present only brief
ideas.

Images have geometrical oriented features that vary over
space. For that reason, we have to adapt the DVMs of di-
rectionlets locally to each neighborhood. Recall that direc-
tionlets can have up to2 DVMs. Thus, this implies a need
for spatial segmentationas a way of partitioning image into
smaller segments with one or a few dominant directions per
segment. In our algorithm, we use the quad-tree segmenta-
tion, as the simplest method in the sense of encoding effi-
ciency. The transform directions (and DVMs) are adapted
independently in each spatial segment allowing for more ef-
ficient capturing of geometrical information. However, the
separate processing of segments may cause some blocking
effect in the compressed images, especially noticeable at low
bit-rates. Hence, a post-processing is required to remove this
effect, as explained in the sequel.

Next, we present the basic concept of our compression
algorithm. Then, we give a brief overview of the deblocking
algorithm originally proposed in [13] for JPEG compressed
images and, finally, we analyze the computational complex-
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ity of the full method.

3.1 Definition of the Algorithm

Even though the construction of directionlets, as proposed in
[8], allows for anisotropy and DVMs along any two direc-
tions with rational slopes, we apply two restrictions on the
transform: (1) only the isotropic realizations are allowed and
(2) the transform direction pairs are taken only from the set

D = {(0◦,90◦),(0◦,45◦),
(0◦,−45◦),(90◦,45◦),(90◦,−45◦)}. (1)

The reason for the first restriction is in a better compression
performance with natural images in the case of isotropic seg-
mentation (like quad-tree). The second restriction is imposed
to prevent the constructions of directionlets that lead to more
than one coset in the transform, since such constructions re-
sult in a less efficient image representation (see [8] for more
details).

The depth of the multi-scale decomposition in the trans-
form is ad-hoc optimized to5 levels. The filtering operations
are implemented using the1-D biorthogonal ”9-7” filter-
bank [15]. Since a wider interval of the target compression
bit-rates is allowed, as compared to the standard SFQ, the
quantization step size is chosen from an extended list of val-
ues. The new extended list is given byQ = {5.0+0.5·k, k=
1,2, . . . ,245}.

The compression algorithm consists of several embed-
ded optimization phases based on minimization of the La-
grangian cost.1 First, spatial segmentation is applied on the
entire image in the original domain until a preselected max-
imal depth is reached and, then, the transform is applied on
each segment separately using the transform directions from
the listD given by (1). For each segment and combination of
transform directions, the optimal encoding is found follow-
ing the same principles as in the standard SFQ optimization
phases [11] (referred to in Section2.2as phases (a) and (b)).
The best transform directions that minimize the Lagrangian
cost are found for each segment and the spatial quad-tree is
pruned bottom-up to the optimal solution. Finally, the opti-
mal quantization step size is chosen from the listQ. The full
algorithm is presented next.
Step 0: SetSlevel← 0,
Step 1: If Slevel< maxSlevel, then:

∗ Apply quad-tree segmentation in the original domain,
∗ For each of the4 generated segments go recursively

to Step 1with Slevel← Slevel+1,
Step 2: For each pair of transform directions from the listD

given by (1):
∗ Apply directionlets to each segment using the

isotropic construction and build the zerotrees,
∗ Quantize the LP coefficients using all valuesqLP ∈

Q and choose the one that minimizes the Lagrangian
cost,

1Notice that directionlets retain orthogonality from the standard WT al-
lowing for conservation of the mean-square error (MSE) in the transform
domain. Thus, they can be fully implemented in Lagrangian optimization-
based methods. Notice also that, although the conservation of the MSE
does not hold exactly for the biorthogonal ”9-7” filter-bank used in the ex-
periments, the difference of the MSE is small enough and the optimization
process is still valid.

∗ For eachqHP ∈Q, apply the standard SFQ, compute
and record the resulting Lagrangian costs,

∗ Choose the bestqHP that minimizes the Lagrangian
cost,

Step 3: Choose the best pair of transform directions that
minimizes the Lagrangian cost,

Step 4: If Slevel< maxSlevel, then:
∗ If the Lagrangian cost of the current segment is

smaller than the sum of the Lagrangian costs of its
children-segments, then keep only the current seg-
ment and discard the children-segments,

∗ Otherwise, keep its children-segments and set the La-
grangian cost of the current segment to be the sum of
the Lagrangian costs of the children-segments,

Step 5: Encode the quantized coefficients and map informa-
tion for each segment using an adaptive arithmetic coder.
The variablemaxSleveldetermines the maximal segmen-

tation depth and is chosena priori (in our experiments,
maxSlevel= 3). Notice that the jump inStep 1is not a
loop, but a recursive call, where newly generated smaller seg-
ments are forwarded as arguments in each call. The optimal
choices of the spatial segmentation, transform directions for
each segment and the quantization step sizes are encoded as
side information that is added to the output bit stream. The
cost of these side information bits is added to the total La-
grangian cost of encoding segments and is used when the
optimal segmentation is calculated.

3.2 Deblocking

Because of the separated processing of spatial segments, the
compressed images may be affected by a blocking effect,
which is visible as sharp artificial edges along the segment
boundaries. This effect is especially severe in the case of
compression at low bit-rates. The same issue appeared in
the JPEG standard in the90’s and, since then, there have
been many successful deblocking algorithms. We use the
algorithm proposed in [13], which is based on thresholding
oversampled wavelet coefficients. The visual quality of the
reconstructed images is importantly improved (as shown in
Fig. 7), even though the impact on the MSE is negligible.

3.3 Computational Complexity

In [9], it has been shown that the order of computational com-
plexity (or the order of the number of arithmetic operations)
of applying directionlets to anN×N image usingL-tap1-D
filters is given byO(LN2). Here, we show that our com-
pression method increases the computational complexity of
the standard SFQ only up to a constant and, thus, retains the
same order.

The increase of the order is generated by two factors: (1)
the two additional optimization phases (over spatial segmen-
tation and directions) and (2) the deblocking algorithm. The
two optimization phases contribute to the total complexity in
the two multiplicative constants. The optimization over spa-
tial segmentation increases the complexity(maxSlevel+ 1)
times, whereas the optimization over directions contributes
in the constant|D |. Notice that these constants have small
values in our experiments and do not depend on the image
size. The deblocking algorithm carries more multiplication
and addition operations because of the implemented forward
and inverse overcomplete2-D WT. However, the computa-
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(a) (b)

Figure 4:The optimal segmentation and choice of transform
directions in each segment are found using Lagrangian op-
timization. These solutions are obtained for compression of
the images (a) Lena at the target bit-rate0.05bpp and (b) Bar-
bara at0.12bpp.
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Figure 5:The numerical comparison of the compression per-
formance in terms of PSNR. (a) The original images Lena
and Barbara. (b) The results obtained by our method, the
standard SFQ, SPIHT and JPEG-2000. Our method outper-
forms the standard SFQ as well as the other two methods.
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Figure 6:The numerical comparison of the compression per-
formance at low bit-rates for the images (a) Lena and (b)
Barbara. The gain that our method provides over the stan-
dard SFQ is significant.

(a)

(b)

Figure 7:The reconstructions of the two images are obtained
by the compression at0.1bpp using (a) the standard SFQ
(30.17dB for Lena and24.58dB for Barbara) and (b) our
method (30.92dB and25.34dB). Our new method provides
better reconstructions than the standard SFQ at the same bit-
rate. The artifacts are aligned with the locally dominant di-
rections in the images and are less visually annoying.
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tional complexity remains of the orderO(N2). Thus, the to-
tal computational complexity is equal to the complexity of
the standard SFQ multiplied by a constant, which does not
depend on the image size.

4. RESULTS

We compare the performance of our compression method to
the performance of the standard SFQ and the state-of-the-art
methods SPIHT [12] and JPEG-2000when applied to several
standard test images. The comparison is given in terms of
both the visual and numerical (PSNR) quality.

As explained in Section3.1, the optimal spatial segmen-
tation and transform directions are found using Lagrangian
optimization. Fig. 4 shows a result of this optimization
process in the case of the images Lena and Barbara com-
pressed at the bit-rates0.05bpp and0.12bpp, respectively.
Notice that the chosen directions are aligned to the locally
dominant directions in the segments of the image.

The results of compression of the images Lena and Bar-
bara using our method, the standard SFQ, SPIHT and JPEG-
2000are compared in Fig.5. Our method outperforms all
these methods in the entire bit-rate interval shown in the
graphs. The gain is especially significant at low bit-rates (up
to 0.8dB) and the results for that bit-rate interval are shown
magnified in Fig.6.

The corresponding reconstructions of the two images are
shown in Fig. 7 for the compression at the bit-rate0.1bpp
using our method and the standard SFQ. The obtained PSNR
factors are30.92dB and30.17dB for Lena and25.34dB and
24.58dB for Barbara, respectively. Both the numerical and
visual quality of the images obtained by our method are bet-
ter than those obtained by the standard method. Moreover,
the artifacts that appear in the low bit-rate compressed im-
ages are oriented along locally dominant directions and are,
thus, less visually annoying.

5. CONCLUSIONS

We have proposed a novel adaptive image compression algo-
rithm that combines the SFQ method proposed in [11] and
directionlets. In our algorithm, image is segmented using the
quad-tree segmentation method and transform directions are
adapted to dominant directions in each segment. The seg-
mentation and the choice of transform directions are opti-
mized in a R-D sense using Lagrangian optimization. We
showed that our method outperforms the standard SFQ and
also the state-of-the-art image coding methods, like SPIHT
or JPEG-2000, with no significant increase of computational
complexity.
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