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ABSTRACT Finally, the practicality of our effective rank is demoradd
b_in a specific scenario and compared to the largest singular
é(alue minimization described previously. Other possilgle a
plications are briefly outlined.

The paper is organized as follows: in Secfibn 2, we intro-

Many signal processing algorithms include numerical pro
lems where the solution is obtained by adjusting the valu
of parameters such that a specific matrix exhibits rank defi

ciency. Since rank minimization is generally not practieab duce the effective rank. brove some of its broperties and pro
owing to its integer nature, we propose a real-valued exten®{ . Ve rank, prove s IS properties ane p
vide a simple illustrative example. Its operational megnin

sion that we term effective rank. After proving some of its > . . ; : .
properties, the effective rank is provided with an openagib 'S then investigated in Sectid@h 3. Finally, Sectidn 4 applie

meaning using a result on the coefficient rate of a stationar he effective rank to a practical scenario and suggests othe

random process. Finally, the proposed measure is assess Btentlal applications.
in a practical scenario and other potential applicationsar

suggested. 2. THE EFFECTIVE RANK

In this section, we first define the notion of effective rani an
1. INTRODUCTION comment on its intuitive meaning. We then prove some of its

. . . ) L properties as a means to relate it to the rank of a matrix. A
Various signal processing tasks involve optimization F’rObsimpIe illustrative example is finally provided.
lems that consist in finding the values of a set of parameters

which make a matrix rank deficient. Examples include sub2 1 Definition

space based signal analysis techniglés [1], the regisirati _ :
oﬁ‘)multiple setsgof sampl)és shifted gy un{(r}own offsggtis [2]Let us consider a complex-valued non-all-zero makief
or the estimation of parametric diffusive sources usinggem S512€ M x N whose singular value decomposition (SVD) is
graphic method$]3]. Since the rank is an integer quantity bgven byA =UDV whereU andV are unitary matrices of
definition, minimizing its value with respect to the involie 512€M x M andN x N, respectively, an® is anM x N di-
parameters is unfeasible with standard numerical optimizg290nal matrix containing the (real positive) singular esiu
tion methods (e.g. gradient descent, Newton’s method). If 01>0,>...>00>0

the minimum rank is known not to be larger thah the A S

alternative usually envisioned simply amounts to minimizewith Q = min{M,N}. For notational simplicity, we further
its N+ 1-th largest singular value. While being simple, thisdefineo = (01, 02,...,0q)" and the singular value distribu-
strategy has three major drawbacks: it is very sensitive téion

noise, it requires an a-priori knowledge of the minimum rank P = Ok fork= 1,2,...,Q, (1)
and it does not take into account the full singular value spec ol
trum.

where the superscrigt denotes the transpose afd||; the

To overcome these limitations, we introduce the concez}l_norm defined as

of effective rankwhich can be considered as a real-value
extension of the rank. We prove some of its properties and lolly= ZS—1|UI<|-
compute it for a simple example. We then provide its opera- . B
tional meaning using the notion of coefficient rate introedic  In the sequel, all logarithms are to the basand we adopt
by Campbell in[[#4]. In particular, our effective rank can bethe convention that 0log€ 0. The effective rank is defined
thought as a coefficient rate in discrete form. Our main conas follows.
tribution in this paper is thus to endow this quantity With apefinjion 1 (Effective Rank) The effective rank of the ma-
rank interpretation. It should be noted that, while the use ; :

trix A, denotecerankA), is defined as
of spectral entropy based measures have attracted attentio
in different contexts (see e.d. [5, 6]), Qampbell’s res.lais h erankA) = exp{H(p1, p2,---,Pa)} ,
largely gone unnoticed. Some interesting work relating co- ) )
efficient rate to source coding concepts can be foundlin [7vhere Hpa, p2,..., po) is the (Shannon) entropy given by
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Foundation under grant number 5005-67322.
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Note that the above entropy is often referred to as spectrdlhe effective rank thus satisfies 4 eranKA) with
entropy [417]. equality if and only if (p1,p2,...,pq) = (1,0,...,0),
While the effective rank can be given a precise operaie. g = (|lo]/1,0,...,0)T. Suppose now that only
tional meaning using Campbell’s resuli [4] (see Sedlibn 3)k singular values of A are non-zero for some
the above definition is intuitively motivated by the followg k < {1,2,...,Q}. In this case, ranfd) = k and
observation. The matriA is a linear mapping from the vec- H(p1, P2,---,Pq) = H(p1,p2,...,p) < logk. Hence
tor spaceCN to the vector spac€M. A possible orthonor- eranKA) < rankA) < Q with erankA) = rank/A) if and
mal basis foilCM is given by the columns dfi, denoteduy only if (p1..., Pk Pki1,---»Pa) = (1/k,...,1/k0,...,0),

(k=1,2,...,M). Similarly, theN columns ofV, denoted g 5— (lolli/k,-..,|o]l/k,0,...,0)T. [
v (I =1,2,...,N), form an orthonormal basis @N. They T T
satisfy the following relation The above property shows that eréAkis upper bounded
by rankA) and that equality holds when the singular value
Wi 2 Ay = {Ukuk fork= _1’ 2,..,Q, distribution is uniform over its support. An important obse
0 otherwise. vation is that the effective rank can take all possible valne

, the interval[1,Q] as opposed to the integer value of the rank
The space spanned by the vectags is commonly referred jn the set{1,2,...,Q}. This makes the use of numerical
to as the range oA [B, Section 0.2.3]. We observe that eachgptimization methods on the effective rank feasible. Let us

pretation. In this context, the rank @f corresponds to the he following result.

number of dimensions retained by the transformation fie. t

dimension of its range) but says nothing about the induceBroperty 2 It holds that

shaping. The effective rank, however, quantifies such geo- _

metrical transformation by means of the spectral entropy. lerankA) = eranKA*) = eranKAT) = erankA) = erankcA)
thus provides the range éfwith an “effective dimension”.

Note that, unlike the matricdd andV, the singular value forall c # 0.

distribution is unique and so is the effective rank. ) .
To intuitively understand the difference between the rani’T0f: The property simply follows from the fact that the

: : ; ._p«’s defined by equatiori]1) are the same for the matiges

3_nd the effective rank, a typical example is that of a bl—c?;’AT’ A_andcyAfgr o cEéI 0) ,4:;
imensional Gaussian random vector with highly correlate

components. Its covariance matrix is of rank two, but the_l_ .
corresponding Gaussian distribution exhibits most ofiits e | N€ following property also holds.
ergy along the direction of one singular vector. In this case
the spectral entropy approaches zero, hence resulting in
effective rank slightly greater than one.

Property 3 A unitary transformation on A does not change
#3 effective rank.

) Proof: Let us assume without lost of generality thét< N.
2.2 Properties The singular values oA are the (principal) square roots of
This section provides a few properties of the effective ranhe eigenvalues of the matrikA®. Let U denote anV x
along with their proofs. It should be noted that, while someM unitary transform matrix. We have from the determinant
properties of the rank naturally extend to the effectivekran formula detAB+1) = de{BA+1) that
this is not true in general owing to the strong dependance on

the singular value distribution. det((UA)(UA)" —Alw) = det(AA" - Alw) ,
Property 1 It holds that i.e. the eigenvalues ofUA)(UA)* and AA* are the same.
The effective rank thus remains unchanged. |

1 <eranKA) <rank/A) <Q
. ) , r .. As a special case of the above property, the only el-
where the first inequality holds with equality if and only if ementary operation that preserves the effective rank
T corresponds to the interchange of two rows or two
0 =(llol,0,....0)", columns of A. Finally, similarly to the rank inequality
rank/A+ B) < rank'A) + rankB) [8, Section 0.4.5], we can

and the second one if and only if state the following property.

_ T
0 =(lafls/k.--..lloll1/k,0.....0) Property 4 Let A and B be two positive semidefinite Hermi-

for some ke {1,2,...,Q}. tian matrices of size N N. It holds that
Proof: The entropyH (p1, pz, ..., po) satisfies[[D, Section eranKA+ B) < erankA) +erankB).
D.1]
0 = H(1,0,...,0) . .
< H( ) Proof: Let us denote the singular values arranged in de-
= P1; P2;---. PQ creasing order oA, BandA+B by g = (01,02,...,0n)",
s HI/QLQ....1/Q) M= (M1 o, pin)" and v = (v1,vp,...,un)", respec-
= logQ. tively. SinceA andB are positive semidefinite Hermitian
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matrices, their singular values correspond to their eigknv ‘ ‘ ‘
ues and o]

[oll1+ [[u]lx = tr(A) +tr(B) = tr(A+B) = [[V]]1.

Let px = 0k/[| 0|1, ok = pi/|[H[|2 @ndric = vie/|[ V|1 for k=

1,2,...,N. Since expx) is a convex function, for alk;,x; €
R andA € [0,1], we have that

exp(Axg+ (L1—A)x2) < Aexp(x1)+ (1—A)expxz). (2) il

In particular, if we set

erankA), rank A)

X3 = H(pj_, p2,...,pN)rog/\ , B s g o5 1
X2 = H(Ql7Q27---»QN)_|Og(1_)\) and
A= alli/(lolla+lHl), Figure 1: The effective rank (plain) and the rank (dashed) of

the matrixA of SectiorfZ.B as a function of the correlation pa-

we obtain that rameterp. As the correlation increases, eréAk decreases

Aexpxy) + (1—A) exp(xz) whereas ranl®) remains the same.
= exp{H(p1, P2,...,Pn)} +exp{H(ay, 02, -, an)}
= erankA) +erankB). (3) Interestingly, if one uses th@-norm (which simply counts

the number of non-zero singular values) the effective rank

We can also write becomes equivalent to the rank. In other words, the rank can

Axg+ (1—A)x% 4) be seen as an effective rank with a particular vector norm.
= A(H(p1,pz;--.,pn) —logA) 2.3 Example
+(1-A)(H(a, G2 -, an) —l0g(1 - A)) We now compute the effective rank of a simple matrix to
% Ok log Ok illustrate the_t_heory d_eve!o_ped prev_i(_)usly_. Let us conside
Lo+ el = ol + [kl fjheiiﬁ;dtzosmve semidefinite Hermitian circulant matéx
B % ik log M 1 p p? A
& llolli+lulls lofla+lul A=|PR L P P
. ps p 1 p
Furthermore, it follows from[9, Theorem G.1.b] that p p?2 p 1
(o,u) { (v,0) _ (v,0) (5) wherep € [-1,1] is a correlation parameter. Its singular
lolli+ulls  llolla+luls v’ values (eigenvalues) are easily computedlas |p[)%,1—
o _ , |p|2,1— |p|? and(1— |p|)?. Using Definitior(1, a straight-
where < denotes majorization. Since the functié(X) =  forward derivation reveals that
—xlogx is concave o0, 1], we can use_|9, Proposition B.1]
to lower bound the left-hand side @ (2) as erankA)
2 2 2 2
Ny v _ (1+[pD° 1-1|pl® 1-|pl® A—IpD
expAxa+(1-A)x) > expl -y K Jog—%- = exp{H ( 2 4 a4 ' 4
Elvlie Vil 1+ 1ol 1 1o]
exp(H(rL.12.....1n)) — exp{ -+ lpiog ™52 - (1 lpplog 5! |
= eranKA+B). (6)
— onolon (1E1PL 1= 1p|
Combining equationsJ2)[(3) andl (6) yields the desired — p 2 2 :
result. [

As illustrated in Figurdll, the effective rank is maximized
It is not clear whether Propertil 4 still holds for arbi- when p = 0 and corresponds to the rank of the matrix
trary M x N matricesA andB. In general, the vectaw + 1 A. However, asp| increases, the rank remains the same
only weakly majorizes and the last step of the proof cannot whereas the effective rank decreases. It hence provides the
be applied. Furthermore, one would need to find positiveange ofA with an “effective dimension”.
semidefinite Hermitian matrices with prescribed eigengalu
(see e.gI110, Theorem 1]) such as to satisfy equdlion (5). 3. OPERATIONAL MEANING

We also remark that, with minor modifications, Proper-

ties] tdB still hold if the’;-norm in Definitior[l. is replaced AS pointed out previously, the effective rank is closely re-
by the/p-norm (p > 1) lated to the concept of coefficient rate introduced by Camp-

bellin [4]. In order to provide the effective rank with an ope
0 ational meaning, we presentin the sequel a similar deomati
lollp= (Zk:1|ak|p) : to that in [2] (see alsd]7]) for the case of random vectors. To

ol
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this end, we first note that to evely x N matrix A, we can  The resulting mean-squared error can be expressed &ing (8)
associate th&1 x M positive semidefinite Hermitian matrix and [®) as

v AA* which has the same singular values, possibly with ad-

L M R
ditional zeros. It thus follows that - E[|Z(I1,I2,... IR) — 2k (1,12, ... |R)|2}
ol I1.00,r=1
erankA) = erank v AA") 1 % v E[|y(k) (k)|z}
= — c

(realiy Ilplr=1 k:;rl
and the operational meaning can be equivalently given in 1 MR M
terms of the matrix/AA". Let us assume without lost of = — g E {|Y(k)|2] S WP
generality thaM < N and denote bg the Karhunen-Logve 10T «f1 I lp Sr=1
transform (KLT) of the matrix/AA, i.e. the unitary matrix 1 MR
satisfying = g E |Y(k)|2} ,

10T «fa

C*VAAC = diag 01,02,...,0m). where the first equality follows from the fact that tH&)’s

are uncorrelated and the third one from the fact lealf3 =

1 fork=1,2,...,M since the matrixC is unitary. In [4],
We now consideR i.i.d. random vectors{;,X,...,Xg of  Campbell shows that it is possible to find a vakigthat
sizeM with mean zero and covariance matk¥AA*. Their  depends o) such that, in the limit wheR goes to infinity,
Karhunen-Loeve expansion is given by the above approximation error vanishes. Furthermorekthis

satisfies the asymptotic relation

K& B2 exp{H(p1, pz,-...pwm)} »

where the term on the right-hand side is recognized as the
effective rank of the matriA.
wherecy denotes thé&-th column of the matrixC and where Vec%?rgrpgaerl]l Sl,:)éerselgtrecsaemtgg g];ed;t?}rgitrignassi,o?glo ;,;?{d O%Ch
theY; 's are uncorrelated random variables with mean Z€Mector. The producZ defined by equatioi{8) thus admits a
and variance [Y; /% = ok. We then define the product &  representation in a space witht dimensions, out of which
components of these random vectors as only K are significant (in the sense that they contribute to the
above approximation error in the limit of larg®. Hence,
R on average, onlK /R coefficients out oM are significant
Z(I3,l5,...,Ig) = I_lx’(lr)’ (8) in the expansion oK. In light of the above interpretation,
L the effective rank of a matriA thus represents the average
number of significant dimensions in the rang@phence the
terminology of “effective dimension”.
whereX; (1) denotes thé-th component of the random vec-  Finally, the connection between effective rank and the co-
tor X with Iy € {1,2,...,M}. In an analogous manner {d [7, efficient rate of a stationary random process is establiabed
Section I], theR-dimensional random process defined byfg|lows. Assume that the matris/ AA* is of Toeplitz form

M
Xr:ZYr,ka, forr=1,2,...,R, 7
K=1

equation[(B) can be expanded usilig (7) as with an absolutely summable generating sequef@ggy.,
such that||c||1 = M (i.e. with appropriate normalization).
R M Associate to it the power spectral density (PSD)(w) =
Z(I3,l5,...lr) = Z Y, k(lr) S kez &€ 19K, The normalized version of the effective rank
& then satisfies, in the limit of large matrix siké
MR 1
- Z vy (K k) lim — erankA)
’ M—o00 M
K=1 "
1
= Mexp( 2. Tk "ol )
where we define® = ¢, (I1)cy, (I12) - - Ckg (IR), With K index- k=1 1= !
ing all possibleR-tuples(ky, kz, ..., kr) € {1,2,...,M}Rsuch i 1 M |
that the coefficienty® = Y1y Yo, --- Yris are arranged in = dmLEXPl Ty kzl Ok 109 Ok
decreasing order of their variance. Note that the deperdanc -
of c only,ly,....Iris implicit. The goal then is to approx- — exp(—/ Pa(w) Iogqu(w)doo) . (10)
imateZ(l1,12,...,Ir) using only the firsK coefficients, that we[0,27]
is

where the last equality follows from the Toeplitz distrilout

theorem [1L, Theorem 4.2]. The term [@10) corresponds

ZK(|1 o, IR) = vy Kk 9) to the coefficient rate of the_ disc_rete—time stationary cand
ey ra process with PSEPa(w) defined in[[4].
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Figure 2: Effective rank (plain) and smallest singular ea{dashed) of the matri& as a function of the parameters (a)
Noiseless case. (b) Noisy case (SNR=50 [dB]). We observérthmth scenarios the effective rank provides the besttesu
Note that the matriA is normalized and the results are scaled to the inté®va] for comparison purposes.

4. APPLICATIONS

The effective rank proves useful in applications where mult
ple signals are coherently related through a finite number ofl
unknown parameters (see eld.[[Z] 12]). It may also be used
to assess the loss incurred by dimensionality reductiohmet

ods, such as principal component analysis (PCA).

As a means to illustrate the potential of the effective rank
in a practical scenario, we consider here the specific pnoble [4]
addressed in_[3]. The goal is to estimate the parameters of
local diffusive sources using a finite number of tomographic
measurements. N sources are present, it is shown lin [3] [5]
that this task can be accomplished by finding the parameter

o > 1 such that th¢N + 1) x (N+ 1) matrix

2 2
rnaN rne1aN-D7 o
2 2
B rnpror (NFD rnaN o nat
' 2 ' 2 ' ) 2
rZNg(ZN) r2N_1a(2N71) rNgN

is of rankN. Herery is a fixed scalar valua(= 0,1, ...,2N).

This can be achieved either by minimizing the smallest sin-
gular valueoy. 1 of A or by minimizing its effective rank.
We plot in Figurd® the two quantities fof = 2 as a func-
tion of the parametew, in both a noiseless and a noisy case.
For comparison purposes, the mathiis normalized and the
results are scaled to the interJ@l 1]. In the noiseless case
[Figurel2 (a)], the two methods provide the correct answer
Oopt ~ 1.04. The minima obtained by the effective rank is
however more precise. In the noisy scenario [Fidtire 2 (b)]
the effective rank method clearly outperforms the singula
value approach which basically provides no insight abasit th

optimal solution.
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