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ABSTRACT

Many signal processing algorithms include numerical prob-
lems where the solution is obtained by adjusting the value
of parameters such that a specific matrix exhibits rank defi-
ciency. Since rank minimization is generally not practicable
owing to its integer nature, we propose a real-valued exten-
sion that we term effective rank. After proving some of its
properties, the effective rank is provided with an operational
meaning using a result on the coefficient rate of a stationary
random process. Finally, the proposed measure is assessed
in a practical scenario and other potential applications are
suggested.

1. INTRODUCTION

Various signal processing tasks involve optimization prob-
lems that consist in finding the values of a set of parameters
which make a matrix rank deficient. Examples include sub-
space based signal analysis techniques [1], the registration
of multiple sets of samples shifted by unknown offsets [2]
or the estimation of parametric diffusive sources using tomo-
graphic methods [3]. Since the rank is an integer quantity by
definition, minimizing its value with respect to the involved
parameters is unfeasible with standard numerical optimiza-
tion methods (e.g. gradient descent, Newton’s method). If
the minimum rank is known not to be larger thanN, the
alternative usually envisioned simply amounts to minimize
its N + 1-th largest singular value. While being simple, this
strategy has three major drawbacks: it is very sensitive to
noise, it requires an a-priori knowledge of the minimum rank
and it does not take into account the full singular value spec-
trum.

To overcome these limitations, we introduce the concept
of effective rankwhich can be considered as a real-valued
extension of the rank. We prove some of its properties and
compute it for a simple example. We then provide its opera-
tional meaning using the notion of coefficient rate introduced
by Campbell in [4]. In particular, our effective rank can be
thought as a coefficient rate in discrete form. Our main con-
tribution in this paper is thus to endow this quantity with a
rank interpretation. It should be noted that, while the use
of spectral entropy based measures have attracted attention
in different contexts (see e.g. [5, 6]), Campbell’s result has
largely gone unnoticed. Some interesting work relating co-
efficient rate to source coding concepts can be found in [7].
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Finally, the practicality of our effective rank is demonstrated
in a specific scenario and compared to the largest singular
value minimization described previously. Other possible ap-
plications are briefly outlined.

The paper is organized as follows: in Section 2, we intro-
duce the effective rank, prove some of its properties and pro-
vide a simple illustrative example. Its operational meaning
is then investigated in Section 3. Finally, Section 4 applies
the effective rank to a practical scenario and suggests other
potential applications.

2. THE EFFECTIVE RANK

In this section, we first define the notion of effective rank and
comment on its intuitive meaning. We then prove some of its
properties as a means to relate it to the rank of a matrix. A
simple illustrative example is finally provided.

2.1 Definition

Let us consider a complex-valued non-all-zero matrixA of
size M ×N whose singular value decomposition (SVD) is
given byA = UDV whereU andV are unitary matrices of
sizeM×M andN×N, respectively, andD is anM×N di-
agonal matrix containing the (real positive) singular values

σ1 ≥ σ2 ≥ . . . ≥ σQ ≥ 0,

with Q = min{M,N}. For notational simplicity, we further
defineσ = (σ1,σ2, . . . ,σQ)T and the singular value distribu-
tion

pk =
σk

‖σ‖1
for k = 1,2, . . . ,Q, (1)

where the superscriptT denotes the transpose and‖ · ‖1 the
ℓ1-norm defined as

‖σ‖1 = ΣQ
k=1|σk| .

In the sequel, all logarithms are to the basee and we adopt
the convention that 0 log0= 0. The effective rank is defined
as follows.

Definition 1 (Effective Rank) The effective rank of the ma-
trix A, denotederank(A), is defined as

erank(A) = exp{H(p1, p2, . . . , pQ)} ,

where H(p1, p2, . . . , pQ) is the (Shannon) entropy given by

H (p1, p2, . . . , pQ) = −
Q

∑
k=1

pk logpk .
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Note that the above entropy is often referred to as spectral
entropy [4, 7].

While the effective rank can be given a precise opera-
tional meaning using Campbell’s result [4] (see Section 3),
the above definition is intuitively motivated by the following
observation. The matrixA is a linear mapping from the vec-
tor spaceCN to the vector spaceCM. A possible orthonor-
mal basis forCM is given by the columns ofU , denoteduk
(k = 1,2, . . . ,M). Similarly, theN columns ofV, denoted
vl (l = 1,2, . . . ,N), form an orthonormal basis ofCN. They
satisfy the following relation

wk , Avk =

{

σkuk for k = 1,2, . . . ,Q ,
0 otherwise.

The space spanned by the vectorswk’s is commonly referred
to as the range ofA [8, Section 0.2.3]. We observe that each
basis vectoruk is multiplied by a factorσk which hence pro-
vides the transformationA with a geometrical shaping inter-
pretation. In this context, the rank ofA corresponds to the
number of dimensions retained by the transformation (i.e. the
dimension of its range) but says nothing about the induced
shaping. The effective rank, however, quantifies such geo-
metrical transformation by means of the spectral entropy. It
thus provides the range ofA with an “effective dimension”.
Note that, unlike the matricesU andV, the singular value
distribution is unique and so is the effective rank.

To intuitively understand the difference between the rank
and the effective rank, a typical example is that of a bi-
dimensional Gaussian random vector with highly correlated
components. Its covariance matrix is of rank two, but the
corresponding Gaussian distribution exhibits most of its en-
ergy along the direction of one singular vector. In this case,
the spectral entropy approaches zero, hence resulting in an
effective rank slightly greater than one.

2.2 Properties

This section provides a few properties of the effective rank
along with their proofs. It should be noted that, while some
properties of the rank naturally extend to the effective rank,
this is not true in general owing to the strong dependance on
the singular value distribution.

Property 1 It holds that

1≤ erank(A) ≤ rank(A) ≤ Q

where the first inequality holds with equality if and only if

σ = (‖σ‖1,0, . . . ,0)T ,

and the second one if and only if

σ = (‖σ‖1/k, . . . ,‖σ‖1/k,0, . . . ,0)T

for some k∈ {1,2, . . . ,Q}.

Proof: The entropyH(p1, p2, . . . , pQ) satisfies [9, Section
D.1]

0 = H(1,0, . . . ,0)

≤ H(p1, p2, . . . , pQ)

≤ H(1/Q,1/Q, . . . ,1/Q)

= logQ.

The effective rank thus satisfies 1≤ erank(A) with
equality if and only if (p1, p2, . . . , pQ) = (1,0, . . . ,0),
i.e. σ = (‖σ‖1,0, . . . ,0)T . Suppose now that only
k singular values of A are non-zero for some
k ∈ {1,2, . . . ,Q}. In this case, rank(A) = k and
H(p1, p2, . . . , pQ) = H(p1, p2, . . . , pk) ≤ logk. Hence
erank(A) ≤ rank(A) ≤ Q with erank(A) = rank(A) if and
only if (p1 . . . , pk, pk+1, . . . , pQ) = (1/k, . . . ,1/k,0, . . . ,0),
i.e.σ = (‖σ‖1/k, . . . ,‖σ‖1/k,0, . . . ,0)T . �

The above property shows that erank(A) is upper bounded
by rank(A) and that equality holds when the singular value
distribution is uniform over its support. An important obser-
vation is that the effective rank can take all possible values in
the interval[1,Q] as opposed to the integer value of the rank
in the set{1,2, . . . ,Q}. This makes the use of numerical
optimization methods on the effective rank feasible. Let us
now denote byA∗ and Ā the Hermitian transpose and the
complex conjugate of the matrixA, respectively. We have
the following result.

Property 2 It holds that

erank(A) = erank(A∗) = erank(AT) = erank(Ā) = erank(cA)

for all c 6= 0.

Proof: The property simply follows from the fact that the
pk’s defined by equation (1) are the same for the matricesA,
A∗, AT , Ā andcA for all c 6= 0. �

The following property also holds.

Property 3 A unitary transformation on A does not change
its effective rank.

Proof: Let us assume without lost of generality thatM ≤ N.
The singular values ofA are the (principal) square roots of
the eigenvalues of the matrixAA∗. Let U denote anM ×
M unitary transform matrix. We have from the determinant
formula det(AB+ I) = det(BA+ I) that

det((UA)(UA)∗−λ IM) = det(AA∗−λ IM) ,

i.e. the eigenvalues of(UA)(UA)∗ and AA∗ are the same.
The effective rank thus remains unchanged. �

As a special case of the above property, the only el-
ementary operation that preserves the effective rank
corresponds to the interchange of two rows or two
columns of A. Finally, similarly to the rank inequality
rank(A+ B) ≤ rank(A)+ rank(B) [8, Section 0.4.5], we can
state the following property.

Property 4 Let A and B be two positive semidefinite Hermi-
tian matrices of size N×N. It holds that

erank(A+B)≤ erank(A)+erank(B) .

Proof: Let us denote the singular values arranged in de-
creasing order ofA, B andA+ B by σ = (σ1,σ2, . . . ,σN)T ,
µ = (µ1,µ2, . . . ,µN)T and ν = (ν1,ν2, . . . ,νN)T , respec-
tively. SinceA and B are positive semidefinite Hermitian
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matrices, their singular values correspond to their eigenval-
ues and

‖σ‖1+‖µ‖1 = tr(A)+ tr(B) = tr(A+B) = ‖ν‖1.

Let pk = σk/‖σ‖1, qk = µk/‖µ‖1 andrk = νk/‖ν‖1 for k =
1,2, . . . ,N. Since exp(x) is a convex function, for allx1,x2 ∈
R andλ ∈ [0,1], we have that

exp(λx1 +(1−λ )x2) ≤ λ exp(x1)+ (1−λ )exp(x2) . (2)

In particular, if we set

x1 = H(p1, p2, . . . , pN)− logλ ,

x2 = H(q1,q2, . . . ,qN)− log(1−λ ) and
λ = ‖σ‖1/(‖σ‖1 +‖µ‖1) ,

we obtain that

λ exp(x1)+ (1−λ )exp(x2)

= exp{H(p1, p2, . . . , pN)}+exp{H(q1,q2, . . . ,qN)}
= erank(A)+erank(B) . (3)

We can also write

λx1 +(1−λ )x2 (4)
= λ (H(p1, p2, . . . , pN)− logλ )

+(1−λ )(H(q1,q2, . . . ,qN)− log(1−λ ))

= −
N

∑
k=1

σk

‖σ‖1 +‖µ‖1
log

σk

‖σ‖1+‖µ‖1

−
N

∑
k=1

µk

‖σ‖1 +‖µ‖1
log

µk

‖σ‖1+‖µ‖1
.

Furthermore, it follows from [9, Theorem G.1.b] that

(σ ,µ)

‖σ‖1+‖µ‖1
≺ (ν,0)

‖σ‖1 +‖µ‖1
=

(ν,0)

‖ν‖1
, (5)

where≺ denotes majorization. Since the functionf (x) =
−xlogx is concave on(0,1], we can use [9, Proposition B.1]
to lower bound the left-hand side of (2) as

exp(λx1 +(1−λ )x2) ≥ exp

(

−
N

∑
k=1

νk

‖ν‖1
log

νk

‖ν‖1

)

= exp{H(r1, r2, . . . , rN)}
= erank(A+B) . (6)

Combining equations (2), (3) and (6) yields the desired
result. �

It is not clear whether Property 4 still holds for arbi-
trary M×N matricesA andB. In general, the vectorσ + µ
only weakly majorizesν and the last step of the proof cannot
be applied. Furthermore, one would need to find positive
semidefinite Hermitian matrices with prescribed eigenvalues
(see e.g. [10, Theorem 1]) such as to satisfy equation (5).

We also remark that, with minor modifications, Proper-
ties 1 to 3 still hold if theℓ1-norm in Definition 1 is replaced
by theℓp-norm (p≥ 1)

‖σ‖p =
(

ΣQ
k=1|σk|p

) 1
p

.
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Figure 1: The effective rank (plain) and the rank (dashed) of
the matrixA of Section 2.3 as a function of the correlation pa-
rameterρ . As the correlation increases, erank(A) decreases
whereas rank(A) remains the same.

Interestingly, if one uses theℓ0-norm (which simply counts
the number of non-zero singular values) the effective rank
becomes equivalent to the rank. In other words, the rank can
be seen as an effective rank with a particular vector norm.

2.3 Example

We now compute the effective rank of a simple matrix to
illustrate the theory developed previously. Let us consider
the 4×4 positive semidefinite Hermitian circulant matrixA
defined as

A =









1 ρ ρ2 ρ
ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ ρ2 ρ 1









,

whereρ ∈ [−1,1] is a correlation parameter. Its singular
values (eigenvalues) are easily computed as(1+ |ρ |)2,1−
|ρ |2,1− |ρ |2 and(1− |ρ |)2. Using Definition 1, a straight-
forward derivation reveals that

erank(A)

= exp

{

H

(

(1+ |ρ |)2

4
,
1−|ρ |2

4
,
1−|ρ |2

4
,
(1−|ρ |)2

4

)}

= exp

{

−(1+ |ρ |) log
1+ |ρ |

2
− (1−|ρ |) log

1−|ρ |
2

}

= exp

{

2H

(

1+ |ρ |
2

,
1−|ρ |

2

)}

.

As illustrated in Figure 1, the effective rank is maximized
when ρ = 0 and corresponds to the rank of the matrix
A. However, as|ρ | increases, the rank remains the same
whereas the effective rank decreases. It hence provides the
range ofA with an “effective dimension”.

3. OPERATIONAL MEANING

As pointed out previously, the effective rank is closely re-
lated to the concept of coefficient rate introduced by Camp-
bell in [4]. In order to provide the effective rank with an oper-
ational meaning, we present in the sequel a similar derivation
to that in [4] (see also [7]) for the case of random vectors. To
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this end, we first note that to everyM×N matrix A, we can
associate theM ×M positive semidefinite Hermitian matrix√

AA∗ which has the same singular values, possibly with ad-
ditional zeros. It thus follows that

erank(A) = erank(
√

AA∗)

and the operational meaning can be equivalently given in
terms of the matrix

√
AA∗. Let us assume without lost of

generality thatM ≤ N and denote byC the Karhunen-Loève
transform (KLT) of the matrix

√
AA∗, i.e. the unitary matrix

satisfying

C∗√AA∗C = diag(σ1,σ2, . . . ,σm) .

We now considerR i.i.d. random vectorsX1,X2, . . . ,XR of
sizeM with mean zero and covariance matrix

√
AA∗. Their

Karhunen-Loève expansion is given by

Xr =
M

∑
k=1

Yr,kck , for r = 1,2, . . . ,R, (7)

whereck denotes thek-th column of the matrixC and where
theYr,k’s are uncorrelated random variables with mean zero
and variance E[|Yr,k|2] = σk. We then define the product ofR
components of these random vectors as

Z(l1, l2, . . . , lR) =
R

∏
r=1

Xr(lr) , (8)

whereXr(lr) denotes thelr -th component of the random vec-
tor Xr with lr ∈ {1,2, . . . ,M}. In an analogous manner to [7,
Section II], theR-dimensional random process defined by
equation (8) can be expanded using (7) as

Z(l1, l2, . . . , lR) =
R

∏
r=1

M

∑
k=1

Yr,kck(lr)

=
MR

∑
k=1

Y(k)c(k) ,

where we definec(k) = ck1(l1)ck2(l2) · · ·ckR(lR), with k index-
ing all possibleR-tuples(k1,k2, . . . ,kR)∈ {1,2, . . . ,M}R such
that the coefficientsY(k) = Y1,k1Y2,k2 · · ·YR,kR are arranged in
decreasing order of their variance. Note that the dependance
of c(k) on l1, l2, . . . , lR is implicit. The goal then is to approx-
imateZ(l1, l2, . . . , lR) using only the firstK coefficients, that
is

ẐK(l1, l2, . . . , lR) =
K

∑
k=1

Y(k)c(k) . (9)

The resulting mean-squared error can be expressed using (8)
and (9) as

1

‖σ‖R
1

M

∑
l1,l2,...,lR=1

E
[

|Z(l1, l2, . . . , lR)− ẐK(l1, l2, . . . , lR)|2
]

=
1

‖σ‖R
1

M

∑
l1,l2,...,lR=1

MR

∑
k=K+1

E
[

|Y(k)c(k)|2
]

=
1

‖σ‖R
1

MR

∑
k=K+1

E
[

|Y(k)|2
] M

∑
l1,l2,...,lR=1

|c(k)|2

=
1

‖σ‖R
1

MR

∑
k=K+1

E
[

|Y(k)|2
]

,

where the first equality follows from the fact that theY(k)’s
are uncorrelated and the third one from the fact that‖ck‖2

2 =
1 for k = 1,2, . . . ,M since the matrixC is unitary. In [4],
Campbell shows that it is possible to find a valueK (that
depends onR) such that, in the limit whenR goes to infinity,
the above approximation error vanishes. Furthermore, thisK
satisfies the asymptotic relation

K
1
R

R→∞−−−→ exp{H(p1, p2, . . . , pM)} ,

where the term on the right-hand side is recognized as the
effective rank of the matrixA.

Campbell’s result can be interpreted as follows. Each
vectorXr can be represented by anM-dimensional random
vector. The productZ defined by equation (8) thus admits a
representation in a space withMR dimensions, out of which
only K are significant (in the sense that they contribute to the
above approximation error in the limit of largeR). Hence,
on average, onlyK1/R coefficients out ofM are significant
in the expansion ofXr . In light of the above interpretation,
the effective rank of a matrixA thus represents the average
number of significant dimensions in the range ofA, hence the
terminology of “effective dimension”.

Finally, the connection between effective rank and the co-
efficient rate of a stationary random process is establishedas
follows. Assume that the matrix

√
AA∗ is of Toeplitz form

with an absolutely summable generating sequence{ak}k∈Z

such that‖σ‖1 = M (i.e. with appropriate normalization).
Associate to it the power spectral density (PSD)ΦA(ω) =

∑k∈Z ake− jωk. The normalized version of the effective rank
then satisfies, in the limit of large matrix sizeM,

lim
M→∞

1
M

erank(A)

= lim
M→∞

1
M

exp

(

−
M

∑
k=1

σk

‖σ‖1
log

σk

‖σ‖1

)

= lim
M→∞

exp

(

− 1
M

M

∑
k=1

σk logσk

)

= exp

(

−
∫

ω∈[0,2π ]
ΦA(ω) logΦA(ω)dω

)

, (10)

where the last equality follows from the Toeplitz distribution
theorem [11, Theorem 4.2]. The term in (10) corresponds
to the coefficient rate of the discrete-time stationary random
process with PSDΦA(ω) defined in [4].
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Figure 2: Effective rank (plain) and smallest singular value (dashed) of the matrixA as a function of the parametersα. (a)
Noiseless case. (b) Noisy case (SNR=50 [dB]). We observe that in both scenarios the effective rank provides the best results.
Note that the matrixA is normalized and the results are scaled to the interval[0,1] for comparison purposes.

4. APPLICATIONS

The effective rank proves useful in applications where multi-
ple signals are coherently related through a finite number of
unknown parameters (see e.g. [2, 12]). It may also be used
to assess the loss incurred by dimensionality reduction meth-
ods, such as principal component analysis (PCA).

As a means to illustrate the potential of the effective rank
in a practical scenario, we consider here the specific problem
addressed in [3]. The goal is to estimate the parameters of
local diffusive sources using a finite number of tomographic
measurements. IfN sources are present, it is shown in [3]
that this task can be accomplished by finding the parameter
α ≥ 1 such that the(N+1)× (N+1) matrix

A =











rNαN2
rN−1α(N−1)2 · · · r0α0

rN+1α(N+1)2
rNαN2 · · · r1α1

...
...

. . .
...

r2Nα(2N)2
r2N−1α(2N−1)2 · · · rNαN2











is of rankN. Herern is a fixed scalar value (n= 0,1, . . . ,2N).
This can be achieved either by minimizing the smallest sin-
gular valueσN+1 of A or by minimizing its effective rank.
We plot in Figure 2 the two quantities forN = 2 as a func-
tion of the parameterα, in both a noiseless and a noisy case.
For comparison purposes, the matrixA is normalized and the
results are scaled to the interval[0,1]. In the noiseless case
[Figure 2 (a)], the two methods provide the correct answer
αopt ≃ 1.04. The minima obtained by the effective rank is
however more precise. In the noisy scenario [Figure 2 (b)],
the effective rank method clearly outperforms the singular
value approach which basically provides no insight about the
optimal solution.
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