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ABSTRACT
In this paper, we propose a method to mitigate the effects

of non line of sight errors in range-based localization of mo-
bile phones. The TOA/range measurement errors are dynam-
ically tracked with a Kalman filter, which are then combined
through a constrained weighted least squares (CWLS) algo-
rithm to locate a mobile station with respect to three or more
base stations. NLOS situations, which cause a large error
in TOA readings, are initially detected and handled with a
highly biased Kalman filter. The use of CWLS further miti-
gates NLOS errors. Simulation results clearly demonstrate
the improvement offered by this combined approach.

Introduction

Mobile station (MS) positioning has gained considerable at-
tention with the evolution of new wireless technologies and
services. The location of a user is a valuable information
which can be used for mobile advertising, asset tracking, fleet
management, location-based wireless access security and lo-
cation sensitive billing, etc., [1]. In addition, in 1999, FCC
mandated the wireless operators to provide the location infor-
mation of the emergency calls in United States. According
to FCC regulations, the accuracy requirement is 100 meters
for at least 67 per cent of all calls, and 300 meters for at least
95 per cent of all calls[2].

For location estimation, various methods can be em-
ployed. These methods can be based on measurements of
angle of arrival (AOA), time of arrival (TOA), time differ-
ence of arrival (TDOA), cell global identification (CGI), tim-
ing advance (TA), received signal strength (RSS) or a hybrid
method that is composed of a combination of these measure-
ments [3]. This work focuses on range-based positioning,
which requires TOA measurements of a mobile station (MS)
from at least three base stations (BS).

In this paper, a novel location estimation scheme for
NLOS mitigation in TOA-based positioning is proposed, as
summarized in figure 1. Often, TOA measurements deflect
severely from the desired range value due to the the lack of
a line-of-sight (LOS) propagation path between a BS and a
MS. This NLOS condition is addressed here in two steps. In
the first step, time series of range measurements for each BS
to MS path is treated individually. At each time step, the cur-
rent TOA reading is classified as LOS or NLOS based recent
TOA values. Depending on the decision, the current range
reading is corrected through a different Kalman filter on that
time series. In the second step, the filtered time series of TOA
for several BSs are combined through constrained weighted
least squares to estimate the location of the MS.

The rest of the paper is organized as follows: In section 1
the LOS/NLOS identification technique will be explained; in

section 2 the Kalman filter and biasing Kalman filter will be
described; in section 3 Constrained Weighted Least Squares
(CWLS) algorithm will be mentioned, the simulation results
and the simulation environment are shown in section 4.

1. LOS/NLOS IDENTIFICATION

At each time step k the current sample of the corresponding
TOA time series ym(k), for a particular BS-MS combination,
is identified as LOS or NLOS as follows:

Step 1: Average of recent TOA data is calculated as in eq.
1 with a sliding window with a length of 20 steps (4 seconds).

ym(k) =
1
M

k

∑
j=k−M+1

ym( j) (1)

Step 2: Standard deviation for range measurements is
calculated as in eq. 2

σ̂m(k) =

√√√√ 1
M

k

∑
j=k−M+1

(ym( j)− ym(k))2 (2)

where:
M : is the window size.
ym( j) : is the range measurement at time sample j for mth

base station.
ym(k) : is the mean of range measurements inside the win-
dow (from time sample k−M + 1 to k) which is calculated
and used at time sample k (for mth base station).

Step 3: Calculated standard deviation is compared to a
threshold as follows

if σ̂m(k)≥ γσm then decision is NLOS
if σ̂m(k) < γσm then decision is LOS (3)

where:

σm : is the standard deviation of the LOS measure-
ments, which is known.
γ : is a coefficient used to reduce false alarms due to small
changes in variance at LOS condition.

This is based on the fact that under the LOS condition,
typical measurement error standard deviation for a particular
BS to MS TOA time series is known to correspond to 150m.

The choice of γ parameter in this paper is based on figure
2. Figure 2 shows a Receiver Operating Characteristic(ROC)
curve which assigns the probability of detection for each
probability of false alarm. Operation at a particular proba-
bility of false alarm can be obtained by a choice of threshold
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γ . In the case of this paper, γ is chosen to be 1.35 since this
allows a very high detection rate (97.88%), for a relatively
low probability of false al arm (13.15%). It is judged that,
correct identification of NLOS situation is more critical than
incorrect classification of LOS as NLOS (ie. false alarm).

2. KALMAN FILTER AND BIASED KALMAN
FILTER

The Kalman Filter, which is mostly used as a path tracking
tool in discrete time signals, is used here in tracking merely
range variations for a single BS-MS combination as in [4]. It
uses the recent data and the range variation model to estimate
the current range a priori, and then it corrects it according to
the most recent measurement. The Kalman filter is known
to work well even if the range variation model is not exactly
known. [4]

2.1 Model Used in Kalman Filter
The mobile station motion model for this approach is defined
as:

(
rk+1
vk+1

)
=

(
1 ∆t
0 1

)(
rk
vk

)
+

(
0
∆t

)
wk

xk+1 = Φxk +Γwk

(4)

where:

rk : is the range value at time sample k.
vk : is the speed of the range values at time sample k.
∆t : is the sampling period.
wk : is the random change in speed from time sample k to
k +1 .

wk is used to compensate the effect of a random velocity
change as well as the effect of a random route change. Here
Q is defined as the covariance matrix of wk.

And the measurement model is:

yk = ( 1 0 )
(

rk
vk

)
+uk

yk = M xk +uk

(5)

where:

yk : is the measured range value
M : is the observation matrix
uk : is the measurement error whose covariance matrix is R.

The iterative operations are as follows:

x̂−k+1 = Φ x̂k (6)

P−k+1 = Φ Pk ΦT +ΓQΓT (7)

Kk+1 = P−k+1MT (M P−k+1MT +R)−1 (8)

Pk+1 = P−k+1−KM P−k+1 (9)

x̂k+1 = x̂−k+1 +K(yk+1−M Φ x̂−k+1) (10)

2.2 Biasing the Kalman Filter
The NLOS condition causes very high errors in range mea-
surements. When the TOA value is identified as NLOS, it is
directed to a highly biased Kalman filter. This filter is biased
in the sense that range error variance in the covariance matrix
Q is assumed to be very high compared to that of the LOS
case. This, in turn decreases the dependence of the output
to the NLOS measurement. Here the filter’s output follows
previous outputs more closely.

The error covariance matrix of the Kalman filter is mul-
tiplied by a so called bias parameter, which is chosen here
experimentally based on the simulation whose results are
shown in figure 3. The idea in this simulation is to mini-
mize the RMSE of the TOA time series at the output of the
filter by carefully selecting the best bias parameter.

3. CONSTRAINED WEIGHTED LEAST SQUARES

Given the current values of the Kalman filtered range se-
quence of three or more BS’s, the current location of the
MS can be estimated via a series of equations given in 11
through CWLS. The CWLS algorithm reorganizes the non-
linear hyperbolic equations into a set of linear equations by
introducing an intermediate variable,R2 [5]. Then the rela-
tion of R2 with the source position is imposes a constraint
and the resulting constrained least square function is mini-
mized by employing Lagrange multipliers.

The range measurements with a measurement error are
modeled as [5]

ri = di +ni =
[
(x1−Xi1)2 +(x2−Xi2)2]1/2

+ni (11)

where i = 1,2,3, .....,M
ni : is the measurement error in the corresponding range
measurement ri.
Xi1 : is the x coordinate of the ith base station.
Xi2 : is the y coordinate of the ith base station.
x1 : is the x coordinate of the estimated mobile station.
x2 : is the y coordinate of the estimated mobile station.
di : is the distance between the ith base station and the
estimated mobile station position.

If the measurement error is omitted, the following equa-
tion can be obtained by squaring both sides, as

r2
i = R2−2x1Xi1−2x2Xi2 +(X2

i1 +X2
i2)

=⇒ x1Xi1 + x2Xi2−o.5R2 = (1/2) · [(X2
i1 +X2

i2)− r2
i ]

where R2 = (x2
1 + x2

2)is the intermediate variable.
These equations can be represented in matrix notation as:

A Θ = b (12)

where:

A =




X11 X12 −0.5
...

...
...

XM1 XM2 −0.5


 Θ =




x1
x2
R2




b =
1
2




X2
11 +X2

12− r2
1

...
X2

M1 +X2
M2− r2

M



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This equation is solved indirectly by finding a least
squares fit to AΘ−b subject to the constraint R2 = x2

1 + x2
2,

which is expressed in terms of Θ, as

qT Θ+ΘTPΘ = 0 (13)

where:

P =

( 1 0 0
0 1 0
0 0 0

)
q =

( 0
0
−1

)

In the model of eq.s of 11, for small values of the mea-
surement noise, its effects can be approximated as:

r2
i = (di +ni)2 ≈ d2

i +2dini (14)

As a result the difference between the squares of the mea-
sured and the true distances, which corresponds to [AΘ−b]i,
is approximated by

εi = r2
i −d2

i = 2dini (15)

where εi value is defined as the disturbance.
Therefore the true values of the distance and the noise are

not known, the covariance matrix of the disturbance εi can be
approximated by

E
[
(ε1ε2.....εM)(ε1ε2.....εM)T ]

= BQB (16)

where

B =




2r1 0 0

0
. . . 0

0 0 2rM


 and Q =




2σ2
1 0 0

0
. . . 0

0 0 2σ2
M




If each range error variance σ2
i is assumed known, the

disturbances can be weighted using a weighting matrix W =
(BQB)−1. This turns the solution of eq. 12 into the following
optimization problem:

Θ̆ = argmin
Θ

(AΘ−b)TW(AΘ−b) (17)

subject to the constraint of eq. 13.
This turns to be a Lagrange multiplier problem whose

solution requires finding the roots of a 5th order polynomial
[5],[6]. The roots of this polynomial are found using the
’roots’ function of MATLAB. The root which minimizes the
objective function (AΘ−b)TW(AΘ−b), gives the global
solution of the CWLS.

Although in [5] CWLS is proposed for LOS cases, it is
used here after the mitigation of NLOS error. CWLS pro-
vides us the ability to weight each range measurement ac-
cording to its variance. In addition, here each range error
variance is estimated before NLOS mitigation.

4. SIMULATION ENVIRONMENT AND RESULTS

4.1 Simulation Environment
In these simulations, the base stations are located at the
points BS1 = [4

√
3,12] km; BS2 = [4

√
3,20] km; BS3 =

[8
√

3,16] km; BS4 = [8
√

3,8] km; BS5 = [4
√

3,4] km. The
MS speed is 30 m/s. The TOA sampling period is 0.2 sec-
onds.

In the first scenario, the MS is assumed to be moving
along a straight line beginning from the point (x1,x2) =
(1.7,8) km. The MS is moving within the coverage area of
one BS.

In the second scenario, the MS is again moving within
the coverage area of one BS, though its motion is no longer
linear but piecewise linear. The MS changes its direction
randomly at undetermined times.

A LOS error,which is assumed to be additive white Gaus-
sian noise with zero mean and σ2

BSi
= 1502, is added to

the true BS-MS ranges in both scenarios to obtain range
measurements. An additional NLOS error, when it exists,
is assumed to have uniform distribution over the interval
(0− 1000m) [4] and to persist for 250 m over each BS-MS
range sequence. Several sub-scenarios, which assume a pre-
determined number of BS’s at NLOS condition to the MS are
considered for both scenario 1 & 2.

4.2 Simulation Results

The simulation results for first scenario is shown on table 1
and figure 5. It can be seen that the Kalman filter reduces the
error significantly. Also the use of constrained weighted least
squares provides a better performance then that of a simple
least squares method. Table 1 shows the accuracy at 50 per-
cent, 67 percent and 95 percent of all the position estimates
for different LOS/NLOS conditions. The 1999 FCC require-
ments are achieved when there are at least two base stations
in line of sight situation. Figure 5 shows the RMS errors for
different algorithms at different LOS/NLOS conditions. It is
obvious that the Kalman and CWLS algorithms decrease the
error at each LOS/NLOS condition. In figure 4 an example
of the filtered range measurements can be seen.

The simulation results for second scenario is shown on ta-
ble 2 and figure 6. The result show that use of Kalman filter
and constrained weighted least squares algorithms together
improves the performance significantly. The error in the sec-
ond scenario is greater then the first one, as expected. The
reason is, as the mobile station changes direction, it takes the
Kalman filter some time to catch up with the new situation
and follow the track.

5. CONCLUSION

In the proposed method, a biased Kalman filter is used to
mitigate NLOS error in range measurements for each BS-MS
combination. The filtered range measurements are then used
to obtain a location estimate with CWLS. The Kalman fil-
ter includes LOS/NLOS decisions, based on range variances,
which are calculated from the recent range measurements
with a sliding time window. Next a constrained weighted
least squares algorithm is used to extract the location infor-
mation from the range measurements. Each range measure-
ment is weighted inversely proportional to its variance. Sim-
ulation results show that the proposed combined algorithm
offers improved NLOS mitigation. In addition, in most of the
simulations, the proposed algorithm satisfies the 1999 FCC
requirements.

©2007 EURASIP 532

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



REFERENCES
[1] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network

Based Wireless Location,” IEEE Signal Processing Mag-
azine, pp. 24–40, July 2005.

[2] C. D. Wann, Y. M. Chen, and M. S. Lee, “Mobile
Location Tracking with NLOS Error Mitigation,” in
Proc. Global Telecommunications Conference (GLOBE-
COM’02), November 17-21. 2002, pp. 1688–1692.

[3] G. Apaydin, Comparison of Location-Estimation Tech-
niques of GSM Phones with the Simulations Master’s
thesis, Bogazici University, 2003.

[4] B. L. Lee, K. Ahmet, and H. Tsuji, “Mobile Location
Estimation with NLOS Mitigation Using Kalman Filter-
ing,” in Proc. IEEE Wireless Communications and Net-
working (WCNC’03), New Orleand, LA, March 2003,
pp. 1969–1973.

[5] K. W. Cheung, and H. C. So, and W. K. Ma, and Y. T.
Chan, “Least Squares Algorithms for Time-of-Arrival-
Based Mobile Location,” IEEE Transactions on Signal
Processing, vol. 52, number 4, April 2004.

[6] M. B. Zeytinci and F. Alimoglu, Nlos Mitigation Tech-
niques Based On Time Of Arrival Measurements Bache-
lor’s thesis, Bogazici University, 2006.

Figure 1: Block diagram of the Proposed Scheme
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Figure 2: ROC curve for LOS/NLOS detection

Figure 3: Kalman bias parameter for nonlinear motion of MS

Figure 4: Filtered range measurements
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Figure 5: Performance comparison of algorithms for sce-
nario 1

Figure 6: Performance comparison of algorithms for sce-
nario 2

Table 1: Location Error for Proposed Algorithm( Scenario 1)
95 % 67 % 50 %

accuracy(m) accuracy(m) accuracy(m)
3BS 1NLOS 132.43 62.31 46.88
3BS 2NLOS 400.00 137.90 97.87
4BS 1NLOS 73.09 39.80 30.85
4BS 2NLOS 137.59 60.57 45.69
4BS 3NLOS 330.11 131.69 91.17
5BS 1NLOS 53.27 30.28 23.65
5BS 2NLOS 84.56 42.45 32.64
5BS 3NLOS 168.02 66.85 49.26
5BS 4NLOS 337.51 153.17 106.68

Table 2: Location Error for Proposed Algorithm( Scenario 2)
95 % 67 % 50 %

accuracy(m) accuracy(m) accuracy(m)
3BS 1NLOS 229.88 90.24 62.15
3BS 2NLOS 634.10 226.53 150.24
4BS 1NLOS 156.72 68.85 44.99
4BS 2NLOS 283.93 112.08 77.35
4BS 3NLOS 545.94 236.26 163.69
5BS 1NLOS 146.01 57.13 35.27
5BS 2NLOS 194.48 82.11 54.47
5BS 3NLOS 311.31 129.80 90.45
5BS 4NLOS 537.41 254.34 183.08
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