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ABSTRACT The rest of the paper is organized as follows.dctien 2 we
present the theory of particle filtering by insigtion the SIR or
SIS techniques which are fundamental tools in @aler
filtering. We propose then in section 3 to derive a
stochastically model for our communication systerhiclv
allows to represent the transmitted symbols assthte of a
stochastic system which can be estimated by padfiictrs. In
section 4, we detail the structure of our partiileer based
equalizer and we discuss about some implementation
considerations to improve the performances of tlasich
structure. Section 5 is devoted to the simulati@sults
including some interesting comparisons with thefqgrerances

of the EKF structure. Finally, conclusion is giviersection 6.

In this paper, we present the application of paetifiltering to
build efficient equalizer structures for mobiletsta terminals.
We begin by recalling the theory of particle filteg and we
put the emphasis on the key point of such a tedkenithe
sampling importance resampling (SIR) or the sedaknt
importance sampling (SIS). Then, we present a malieal
model which allows to represent the transmittedtsyimas the
state of a stochastic system which can be estintatqzhrticle
filters. Furthermore, we propose a basic equalizgucture
with particle filters and we investigate severalpiovement
strategies which help to obtain better estimatiesults with a
lower number of particles. Finally, simulation rétsuin the
context of GSM/EDGE are given which show that tlopased
particle filter equalizer, outperforms the well kmo extended 2. PARTICLE FILTERING THEORY

Kalman filter. The particle filter aims to estimate the sequentenidden

parametersx, for k =0,1,2...n, based only on the observed
1. INTRODUCTION

) ] ) data y, for k=0,1,2..n. All Bayesian estimates ofk
Particle filters, also known as Sequential Montel@eethods tollow f h ior distributi b htran the full
(SMC) are sophisticated model estimation techniduzesed on 0 OW. rom the posterior distribution, u't rat n the fu
simulation. They are usually used to estimate Bayesiodels posterior p(x;, X, ..., >§| % Y- ¥ » Which would be the
and are the sequential analogue of Markov ChaintM@arlo ysual MCMC or importance sampling approach, paticl

(MCMC) batch methods. If well designed, particlkefis can ; T P

be much faster than MCMC. They are often an alterado methods estimate the filtering d|str|but|op(xK|yO, Yoes ¥)-
the Extended Kalman Filter (EKF) with the advantdbat, Model Particle methods assume thgt and the observations
with sufficient samples, they approach the Baeysiptimal

estimate. So they can be made more accurate tleaiKIk. Y, can be modeled in this form

Since the pioneering work of Gordon, Salmond andtiSf], > X, X,...,% is a first order Markov process such that
particle filters are used in many fields. For exéampnage ) L
recognition or positioning systems. In the recessrg, one can X |Xk—l - pxk\xk_l(xi %) and with an initial

find several papers [2-5] devoted to application to
communication systems. In the case of applicatiobaseband
algorithms of a mobile station receiver, one cad three main » The observations y,,VY,,...Y are conditionally
areas of interest for particle filters, symbol esttion, channel
estimation and combined, symbol and channel estmat
(blind symbol estimation). Blind symbol estimatiomeans to other words, eacly, only depends orx, .
estimate the transmitted symbols without any ab&lahannel
estimation. This estimation technique, usually egsplwhen no
training data are available to estimate the Chammglulse
Response (CIR) of the wireless link. In fact, blisgmbol % = F(X) Y
estimation with particle filters is only suggestivieno training Y, =h(x)+ z
symbols are used in a communication system. Becalutee k

existence of a Training Sequence Code (TSC) in G&#®I, where bothv, and z are mutually independent and identically

decide not to apply particle filters for blind syatkestimation. gistributed sequences with known probability dgniinctions
Channel estimation algorithms are well investigatet 5 f() and h() are also known functions. These two

GSM/EDGE. Commonly ~ Least Mean Square (LMS())quations can be viewed as state space equati@hdoak

algorithms are used which obtain good estimaticulte [6]. ~.°" ; :
For this work, those channel estimation algorithmsre similar to the state space equations for the Kalfifizem. If the

applied to estimate the channel. Then, this chaestination functions f(.) and h(.) were linear, and if bothy, and

is used as an input parameter for the presentetitlpafilter z, were Gaussian, the Kalman filter finds the exacyeBan
symbol estimation algorithm.

distribution p(x,) .

independent provided that, x,,...,x are known. In

One example form of this scenario can be writtenthia
following way

@)
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filtering distribution. If not, Kalman filter basemethods are a
first-order approximation. Particle filters are a@lsan
approximation, but with enough particles can be mowre
accurate.

Monte Carlo approximation Particle methods, like all

sampling-based approaches (e.g. MCMC) generatet afse
distribution

p(xk|y0, Y, .- Y, ). So, with P samples, expectations With3_|:Or L=1..

samples that approximate the filtering

respect to the filtering distribution are approxiethby

POV % Yo )= H(F) @

and f(.), in the usual way for Monte Carlo, can give ak th

moments of the distribution up to some degree
approximation. Generally, the algorithm is repdateratively
for a specific number df values (call thidN). When done, the

mean of x, over all the particles is approximately the actual

value of x, .

Sampling Importance Resamplin¢SIR), is a very commonly
used particle filtering algorithm, which approximat the

filtering distribution p(xK|yo, Y, ..., Y, )by a weighted set of

(L) X(L)

particles{(wk ) Xy ):L:1,...,P}

W(kL) are approximations to the relative posterior praiizs

)
(or densities) of the particles such thatw” =1. SIR is a

L=1
sequential (i.e. recursive) version of importanamgling. As
in importance sampling, the expectation of a fuorctf (.) can

be approximated as a weighted average.

1106)P0% ] %, X,...,x).d%g:évxfk”.f(i%)) @A)

The algorithm performance is dependent on the ehofcthe
importance  distribution, 77(x, |x0:k_1, Yox)- The optimal

distribution is given aszr(x, |>%:k-1’ Yox) = K 4| X Y. and
is often named importance sampling function. Hosvethe
transition prior is often used as importance fuorctisince it is

easier to calculate, and also simplifies, the sybset
importance weight calculations
706 Yo You) = UK %00) (4)

SIR filters with transition prior as importance @fion are

commonly known as bootstrap filter and condensati
algorithm. Resampling is used to avoid the problefm

degeneracy of the algorithm, that is, avoiding stteation that
all but one importance weights are close to zerdhe

performance of the algorithm can be also affectectwper

choice of resampling method. For example the S§idlti
resampling proposed by Kitagawa [7] is optimal énnts of

variance. A single step of sequential importansamgpling is

as follows

1-For L=1,...P draw sample
distributions

from the
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X&L) - ﬂ()ﬂ‘){)!})—l’ yO:k) (5)
2-For L=1,...,P evaluate the importance weights up to a
normalizing constant

) POy [X9). pOE| )
Wi =wt. (6)
L)
ﬂ(xk‘ :k-17 yO:k)
.,P compute the normalized importance weights
~ P ~
wi =W /> Wl (7

=1
4-Compute an estimate of the effective number ofigias as

~ P

N =J/ wi Y 8
of or =Y T ) ®)
5-If the effective number of particles is less thangiven
threshold Neﬁ < N,,, then perform resampling

a) Draw P particles from the current particle set with
probabilities proportional to their weights. Repabe
current particle set with this new one.

b) ForL =1,...,P setw!” =1/P.

The term Sequential Importance Resampling is alsoetimes
used when referring to SIR filters.

. The importance weights Sequential Importance SamplingSIS), is the same as SIR,

but without the resampling stage.

A direct version of the particle filtering algorith may be
implemented in the following way.

“Direct version” algorithm-The direct version algorithm is
rather simple, it uses composition and rejectiom.génerate a

single sample atk from pxk\m(x| Vi) s

1-Setp=1
2-Uniformly generate. from {1,...,P}

3-Generate a test from its distribution pxk\xk (x
-1

4-Generate the probability ofy using X from py‘x(yk|3<)

where y, is the measured value
5-Generate another uniformfrom [0, m ]
6-Compareu and y
a) ifu is larger then repeat from step 2
b) ifu is smaller then sav&as x, |k and incremenp
7-If p> P then quit
Yhe goal is to generafe particles ak, using only the particles

fromk — 1. This requires that a Markov equation can Ldem
and computed to generatex@ based only uponx,_,. This
algorithm uses composition of tHe particles fromk — 1 to
generate a particle ad and repeats (steps—bB) until P
particles are generatedkatThis can be more easily visualized,
if x is viewed as a two-dimensional array. Note thdt, L)

would be theL™ particle atk and can also be writter" (as

IMPOrtanc&one above in the algorithm). Step 3 generatestenpal X,

based on a randomly chosen parti¢k")) at timek — 1 and
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rejects or accepts it in step 6. In other words, thvalues are
generated using the previously generatgd.

If the probability density functions of (13) atenown,
p(xk|yk) could be calculated for every statg . However,

for practical systems with a discrete state spheeeffort to do

MATHEMATICAL MODEL FOR THE
COMMUNICATION SYSTEM

For many communication systems (e.g. GSM/EDGE) t
mobile radio channel with the effects of multipgattopagation
and noise, can be described with a Finite ImpulsspBnse
(FIR) filter and an additional random variabge usually

assumed to be a sample from a Gaussian distribution

This model can be represented in the followingesigace
form similar to (1).

3.

hy S
X, =F .X,_, +bs
TEXATOSC o) here by =| ¥ | x, 2| 3 | (0)
Y = he X +vy : :
h»(L SK—L+1
0 00 00 [1]
100 00 0
andF =0 1 0 - 0 O;b=|0 (11)
000 - 10 0

The matrixF is used to perform the shifting operation of th
input values inside the FIR filterh! represents a vector

this in real time is too high. For example a typis@ate space

of the channel model for 8PSK modulation in an EDGE
eceiver has the size of the order of &@ments (with a typical
fiannel length of 8 with 8 possible values per syinb

Additionally, the equalization problem cannot belved

analytical. That means for exact calculation of teximum a
posteriori probability the required pdf has to halaated for
every state of the state space. Thus, for practipplication

P(X, |yk) is only approximated and this is done by SIR, Wwhic

is implemented as follows. If the desired ppifx, |yk) would

be known, it could be sampled to obtain a seNcfo called

particles
N

_f.m
Q {xk }1 (14)
For N - oo it can be shown that [8]
_1u )
P(% | ¥i) = 200 =x) (15)

That means that if a large number of random expanm
according to the probability functiorp(xk|yk) can be done,
the number of outcomes of, during these experiments can be

e
used as an approximation @f(x, | y,) - Practically, this pdf is

containing the filter coefficients of the multipath channel FIRC be estimated so it cannot be sampled directwéver, as

model, and x, represents a vector of tHe data symbols

[Se: Seir - $- e ]» transmitted through the channel. Generally

as pointed out by the indelk the vector of the modelled

attenuation coefficientd is time variant. For the presente(ﬁJ

application we will consider a quasi static fadigttgannel that
is channel parameters remain constant over theidnraf one
GSM burst but vary from burst to burst. The ideausing
particle filters for equalization was to employ ié¢o estimate

this state vector, . For symbol estimation, the desired symbol

is then extracted out of the most probable statéovev, is a
complex noise sample from a Gaussian distributicth mean

. 2
zero and variance .

4. THE PARTICLE FILTER BASED EQUALIZER

The desired pdf p(xk|yk) can be principally computed
according to Bayes theorem
p(yk‘xk)'p(xk|xk—l)

P(Y)
Because only the maximum probability is to be fouod

symbol estimation,p(y,) can be omitted

p(xk|yk) D IX yk‘xk)' F(Xk|xk—1)

(12)

p(X | ¥i) =

(13)
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we mentioned in section I, if samples can be gateerfrom a
different pdf n(xk|xk_1,yk), which is called importance
sampling function, a correct weighting of the paes
enerated froms(x) makes an estimation ofp(xk|yk)

possible. This weighting factor is called (as inct&m II)
importance weightv .

OING)
e PO Y ) oy (16)
k n P Wk
(" %y
That means an estimation value
N
(x| ¥ = le(kn) A(x, = x\™) 17)
o

could be calculated. The estimaticﬁ(xk|yk) of the posterior

probability function is equal top(xk|yk), if N tends to

infinity. The choice of a suitable importance saimgplfunction
is of great importance to obtain good performaresilts of a
particle filter. In this paper, we use the priorpiontance
function for the distribution

7(x) : (%, %5, ¥,) = PO |x{%) which results in

(n) (n-1) (n)
w, Ow, .p(yk‘xk)

(n)

X k-1

(18)
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By using this importance sampling function, onlye thwo also a high probability. For this reason resampliogly
o ; ; | (n (n) duplicates particles with a high probability, andpgresses
probability density function p(x,"[X;) and P(Y [X,"), - ticles with a low probability. The higher theopability of
have to be known to perform state estimation. particle, the more often a particle is resamplelis Tmethod
can dramatically improve the performance of theiglerfilter
T . _ _ algorithm. It prevents the algorithm from degenierat[8-9]
state transition in the first equation of (9). Thenction and it has the additional advantage that the inapog weight
(X, |X,,) consists of a deterministic pafx,, and the of a particle from a prior computation step must be taken
into consideration explicitly as in (18). To safisthe
stochastic partbs , because the inpu$, is unknown at the assumption that particles with a high probabilitpr f

receiver. It is of great use that the sent symmbmgs to a €dualization, a prefilter [10] was applied to théacnel
limited known alphabetA . This alphabet consists of twoCC€fficients to ensure declining coefficients.

symbols for GSM (GMSK) and eight symbols for EpGEMPlementation concerns The algorithm shown before for
(8PSK). Since we consider uncoded transmissiomsbeig of particle filter synthesis is highly parallelizablét. can be

this alphabet are assumed to have the same priopaboil implemented in a structure similar as those showfig. 1.
occur. so this leads to Most of the operations applied to a particle can dome

independently of other particles. Only the resanplprocess

cannot be implemented that easily in parallel thizen other
(19) operations. This leads to a very flexible structorerealization

in hardware. The SIS part of the algorithm can baedwith

particle filtering units (PF units) consisting of particle
Because the noise is assumed to be sampled frootraah memory and an operational unit of the SIS algoritithe
number of these units can be defined as a tradeeiffieen
area usage and computation speed.

The probability p(x, [x,_;) can be derived directly from the

1

—forx, =F.x,_, +bs,s 0OA

p(xk‘xk_l): |A| k k-1 k
0 else

distribution ,p(y, ‘xk) can be calculated

_‘ yk—hT.xk‘2
e O (20)

1
P(Y %) = F7—-
k‘ k 77'_0'2

Using these probability density functions, a newoathm
based on th®irect Version Algorithmpresented in Section I,
can be formulated as shown just below.
1-For every time step do
2-For every particle index from 1,...N do

3-Draw new particlex” = F.x\" +b.s” with s uniformly

sampled out 0fA,;q, OF Agpce s psi Figure 1 - Hardware implementation for particlécfilequalizer
‘yk‘hT'Xlgn)‘z
S For hardware realization, additional improvements tioe

iy = algorithm can be implemented. In the SIS part efdlgorithm

4-Compute importance weightsi, " =e

N the generation of a random symbol sampled from ifoum
5-Normalize importance weightswf(") = Vv(k”)/Z W™ distribution is needed. Mostly, random numbers geaerated

m=1 with a linear congruential generator [11]. This fnemis then
6-End For used as index to select a valid symbol out of detalhich
7-Resample particles contains the valid symbols according to the usedutation.

8-Select the stat&, which occurs most times after resamplin@y simulation, we find that nearly the same perfance of the
particle filter algorithm can be achieved when gsif21),

as most likely state ! ; .
y instead of a linear congruential generator, toctedepseudo

9-End For
In this algorithm new particles are drawn using #tate random symbol out of the tabled of the valid symbols

transition (9). For creating new patrticles, onlyues out of the according to the used modulation.

set of valid symbols,A;,, OF Acpce/spsk: are used. After that m =(m_ +1) mod{A| +1) 1)
the importance weight of the particles is calculatehe steps 2
to 6 are called SIS. For our particular study amlitaahal
resampling step was used. In fact, particles initevation of circular counting out of the last table indew _,. An other
the particle filtering algorithm are generated frparticles of

the iteration before. The assumption' when usisgm”ng' is improvement comes from the fact that the Variaﬂéehas to
that particles with a high probability create chyidrticles, with be precisely estimated to calculate the importaveight of the

That means a new table index, is simply generated by
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particles. In the case of the GSM/EDGE systami is
estimated using the training sequence code (TCS) GSM
burst. Because of its small length of 26 symbais ¢istimation
is not accurate. It was found by simulations, emdlgcat high
SNR’s, that the performance of the algorithm ccugdslightly
improved by using already estimated symbols foremion of
this noise variance.

5. SIMULATION RESULTS

This section shows performance evaluations of ttepgsed
equalization algorithm. For the tested channel \Wweose a
quasi-static frequency selective fading channehiite mean
equal power taps in its CIR. That means the CIRans five
taps with mean power 0.2 since we consider norealEower
channels. Fig. 2 shows the performance result&MEK. The
simulation was done using different number of géas. In this
figure the bit error rate (BER) without any forwamdror
coding (FEC) is shown. The performance was comptued
state of the art reduced state Viterbi algorithr2][1As an
additional performance comparison, the partickerfiequalizer
was compared to a state of the art estimation éfgoy the

Kalman filter. Simulation showed that with compdeab,,

computation efforts, particle filters outperform IKan filter
algorithms for symbol estimation as shown in FigoB8PSK
modulation. As shown in Fig. 2 and Fig. 3 the biberate of
the particle filter algorithm is scalable by thenther of
particles used for estimation. For GMSK, satisfyiegults can
be achieved with about 50 particles. For 8PSK apprately
200 particles are needed to obtain good results.itSis
supportable that the amount of particles needed gmod
estimation results also depends on the constellaiphabet
size.

6. CONCLUSION

This paper deals with the application of particléerfing to
equalization for
frequency selective fading channels. It was shdvah particle
filters can outperform some existing performing a&@qation

structures such as the Viterbi equalizer or the m&a

equalizer. However its complexity is much highearththe

commonly reduced state Viterbi method. One key tpisithat,

it seems the computational effort for particleefit depends
only linearly on the number of channel coefficieotdhe CIR.

This entails that this kind of equalizer could bgramising

solution for broadband communication systems wibimgl
channel impulse responses. Further works shouldsiigate
the feasibility to use the particle filter basedua&liger to

interface with a channel decoder to obtain a tugboalizer
structure.
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