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ABSTRACT 
Some 2q-th (q ≥ 2) order extensions of the MUSIC method, ex-

ploiting the information contained in the 2q-th (q ≥ 2) order statis-
tics of the data and called 2q-MUSIC methods, have been proposed 
recently for direction finding of non Gaussian signals. These meth-
ods are asymptotically robust to a Gaussian background noise 
whose spatial coherence is unknown and offer increasing resolu-
tion and robustness to modeling errors jointly with an increasing 
processing capacity as q increases. However, 2q-MUSIC methods 
have been mainly developed for arrays with space diversity only 
and cannot put up with arrays of sensors diversely polarized. The 
purpose of this paper is to introduce, for arbitrary values of q (q ≥ 
1), three extensions of the 2q-MUSIC methods able to put up with 
arrays having polarization diversity, which gives rise to the so-
called PD-2q-MUSIC (Polarization Diversity 2q-MUSIC) algo-
rithms. These algorithms are shown to increase resolution, robust-
ness to modeling errors and processing capacity of 2q-MUSIC 
methods in the presence of diversely polarized sources from arrays 
with polarization diversity.  

1. INTRODUCTION 

 Some 2q-th (q ≥ 2) order extensions of the MUSIC [13] 
method, exploiting the information contained in the 2q-th (q 
≥ 2) order statistics of the data and called 2q-MUSIC meth-
ods, have been proposed recently for direction finding (DF) 
of non Gaussian signals [4-5]. Note that the 4-MUSIC 
method proposed in [12] is a particular case of 2q-MUSIC 
methods for q = 2. The 2q-MUSIC methods with q > 1 are 
asymptotically robust to a Gaussian background noise 
whose spatial coherence is unknown and generate a virtual 
increase of both the number of sensors and the effective 
aperture of the considered array, introducing the higher or-
der (HO) virtual array (VA) concept [2], which generalizes 
the fourth order (FO) one’s introduced previously in [7] and 
[3]. A consequence of this property is that, despite of their 
higher variance [1], 2q-MUSIC methods are shown in [5] to 
have resolution, robustness to modelling errors and process-
ing capacity increasing with q. However, 2q-MUSIC (q ≥ 2) 
algorithms have been mainly developed for arrays of sensors 
with space diversity only (i.e. arrays with identical sensors 

at different locations), or for sources with the same polariza-
tion, and cannot put up with arrays of sensors having diverse 
polarizations. The exploitation of arrays with polarization 
diversity, possibly in addition to the space diversity, is very 
advantageous since for such arrays, multiple signals may be 
resolved on the basis of polarization as well as direction of 
arrival (DOA). However, most of methods which are cur-
rently available for DF from arrays with polarization diver-
sity exploit only the information contained in the second 
order (SO) statistics of the observations, among which we 
find [8] [11]. HO methods of this kind are very scarce [10]. 
In order to increase the performance of the 2q-MUSIC algo-
rithms in the presence of sources having different polariza-
tions, the purpose of this paper is to introduce, for arbitrary 
values of q (q ≥ 1), three extensions of the 2q-MUSIC 
methods able to put up with arrays having polarization di-
versity, which gives rise to the so-called PD-2q-MUSIC 
algorithms. For a given value of q, these algorithms are 
shown in this paper to increase the resolution, the robustness 
to modeling errors and the processing capacity of the 2q-
MUSIC methods in the presence of diversely polarized 
sources and from an array with polarization diversity. 

2. HYPOTHESES AND DATA STATISTICS 

2.1. Hypotheses 

We consider an array of N narrow-band (NB) potentially 
different sensors and we call x(t) the vector of complex en-
velopes of the signals at the output of these sensors. Each 
sensor is assumed to receive the contribution of P zero-mean 
stationary NB sources, which may be statistically independ-
ent or not, corrupted by a noise. We assume that the P 
sources can be divided into G groups, with Pg sources in the 
group g, such that the sources in each group are assumed to 
be statistically dependent, but not perfectly coherent, while 
sources belonging to different groups are assumed to be sta-
tistically independent. Of course, P is the sum of all the Pg 
over all the groups. Under these assumptions, the observa-
tion vector can approximately be written as follows 
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    x(t) ≈ ∑
P

i = 1

 mi(t) a(θi, βi) + η(t) = ∑
G

g = 1

 Ag mg(t) + η(t)    (1) 

where η(t) is the noise vector, assumed zero-mean, station-
ary and Gaussian, mi(t) is the complex envelope of the 
source i, θi =

Δ (θi, ϕi) where θi and ϕi are the azimuth and 
the elevation angles of source i, βi is a (2 x 1) vector charac-
terizing the state of polarization of source i and whose com-
ponents will be defined hereafter, a(θi, βi) is the steering 
vector of source i, Ag is the (N x Pg) matrix of the steering 
vectors of the sources belonging to group g, mg(t) is the 
associated (Pg x 1) vector with corresponding mi(t). In par-
ticular, in the absence of coupling between sensors, assum-
ing a plane wave propagation, component n of vector a(θi, 
βi), denoted an(θi, βi), can be written, in the general case of 
an array with space and polarization diversity, as [6] 

an(θi, βi)  =  fn(θi, βi)                                                            
exp{j2π[xncos(θi)cos(ϕi)+ynsin(θi)cos(ϕi)+znsin(ϕi)]/λ} (2) 
In (2), λ is the wavelength, (xn, yn, zn) are the coordinates of 
sensor n of the array,  fn(θi, βi) is a complex number corre-
sponding to the response of sensor n to a unit electric field 
coming from the direction θi and having the state of polari-
zation βi [6]. Let βi1 and βi2 be two distinct polarizations for 
the source i (for example vertical and horizontal) and a1(θi) 
=Δ a(θi, βi1) and a2(θi) =Δ  a(θi, βi2) be the corresponding 
steering vectors for DOA θi. We assume that the vectors 
a1(θ) and a2(θ) can be calculated analytically or measured 
by calibration whatever the value of θ. Considering an arbi-
trary polarization βi for the source i, the complex electric 
field of the latter can be broken down into the sum of two 
complex fields, each arriving from the same direction, and 
having the polarizations βi1 and βi2 [6]. The steering vector 
a(θi, βi) is then the weighted sum of the steering vectors 
a1(θi) and a2(θi) given by     

           a(θi, βi) = βi1 a1(θi) + βi2 a2(θi) =
Δ A12(θi) βi         (3) 

In (3), A12(θi) is the (N x 2) matrix of the steering vectors 
a1(θi) and a2(θi), βi1 and βi2 are complex numbers such 
that |βi1|2 + |βi2|2 = 1 and βi is the (2 x 1) vector with com-
ponents βi1 and βi2, which can be written, to within a phase 
term, as βi = [cosγi, e

jφi sinγi]
T, where γi and φi are two an-

gles characterizing the polarization of source i and such that 
(0 ≤ γi ≤ π/2, −π ≤ φi < π). 

2.2. Data statistics 

The 2q-th (q ≥ 1) order DF methods considered in this 
paper exploit the information contained in the (NqxNq) 2q–
th order covariance matrix, C2q,x, whose entries are the 2q–
th order cumulants of the data, Cum[xi1(t),…, xiq(t), 
xiq+1(t)*, …, xi2q(t)*] (1 ≤ ij ≤ N) (1 ≤ j ≤ 2q), where * cor-
responds to the complex conjugation. However, the previous 
entries can be arranged in C2q,x in different ways, indexed 
by an integer l such that (0 ≤ l ≤ q), as it is explained in [2] 

[5], and giving rise, under hypotheses of section 2.1, to the 
C2q,x(l) matrix given by [5] 

     C2q,x(l)  =  ∑
G

g = 1

  C2q,xg(l)  +
 
η2 V(l) δ(q − 1)  (4) 

In (4), η2 is the mean power of the noise per sensor, V(l) is 
the (N x N) spatial coherence matrix of the noise for the ar-
rangement indexed by l, such that Tr[V(l)] = N, Tr[.] means 
Trace, δ(.) is the Kronecker symbol. The (NqxNq) matrix 
C2q,xg(l) contains the 2q-th order cumulants of xg(t) for the 
arrangement indexed by l, which can be written as 

 C2q,xg(l) ≈ [Ag   
⊗l⊗Ag           

*⊗(q–l) ]C2q,mg(l)[Ag   
⊗l⊗Ag           

*⊗(q–l) ]H(5) 

In (5), C2q,mg(l) is the (Pg
q x Pg

q) matrix of the 2q-th order 
cumulants of mg(t) for the arrangement indexed by l, H cor-
responds to the conjugate transposition, ⊗ is the Kronecker 
product and Ag   

⊗l  is the (Nlx Pg 
l ) matrix defined by Ag   

⊗l  =Δ 
 Ag ⊗ Ag ⊗.....  ⊗ Ag with a number of Kronecker prod-
uct equal to l – 1. Note that it is shown in [2] and verified in 
this paper that the parameter l determines in particular the 
maximal processing power of PD-2q-MUSIC algorithms. In 
situations of practical interests, the 2q-th order statistics of 
the data, Cum[xi1(t),…, xiq(t), xiq+1(t)*, …, xi2q(t)*], are 
not known a priori and have to be estimated from L samples 
of data, x(k) =Δ x(kTe), 1≤ k ≤ L, where Te is the sample pe-
riod, in a way that is completely described in [5] and which 
is not recalled here. 

3. PD-2Q-MUSIC ALGORITHMS 

3.1. Hypotheses 

To develop PD-2q-MUSIC algorithms for the arrange-
ment indexed by l, we need extra assumptions: 
H1) ∀ 1 ≤ g ≤ G, Pg < N  
H2)  ∀ 1 ≤ g ≤ G, Ag   

⊗l⊗Ag           
*⊗(q–l) has full rank Pg  q 

H3) P(G, q)  =Δ
1

G q
gg

P
=∑  < Nq 

H4) Ãq,l =Δ [A1   
⊗l⊗A1           

*⊗(q–l),…, AG   
⊗l ⊗AG           

*⊗(q–l) ] has full 
rank P(G, q) 

3.2. KP-PD-2q-MUSIC algorithm     
Noting r2q,mg(l) the rank of C2q,mg(l) (r2q,mg(l) ≤ Pg

q), 
we deduce from H1 and H2 that C2q,xg(l) for q > 1 has also 
rank r2q,mg(l). Hence, using H4 and for q > 1, matrix C2q,x(l) 
has a rank r2q,x(l) equal to the sum, over all the groups g, of 
r2q,mg(l) and such that r2q,x(l) < Nq from H3. As matrix 
C2q,x(l) is Hermitian, but not positive definite, we deduce 
from the previous results that C2q,x(l) has r2q,x(l) non zero 
eigenvalues and Nq− r2q,x(l) zero eigenvalues for q > 1. The 
eigendecomposition of C2q,x(l), for q > 1, gives  
C2q,x(l)=U2q,s(l)Λ2q,s(l)U2q,s(l)

H+U2q,n(l)Λ2q,n(l)U2q,n(l)H  

                                                                                                                                   (8) 

where Λ2q,s(l) is the diagonal matrix of the non zero eigen-
values of C2q,x(l), U2q,s(l) is the unitary matrix of the associ-

©2007 EURASIP 258

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



ated eigenvectors, Λ2q,n(l) is the diagonal matrix of the zero 
eigenvalues of C2q,x(l) and U2q,n(l) is the unitary matrix of 
the associated eigenvectors. As C2q,x(l) is Hermitian, all the 
columns of U2q,s(l) are orthogonal to all the columns of 
U2q,n(l). Moreover, Span{U2q,s(l)} = Span{Ãq,l} when the 
matrices C2q,mg(l), 1 ≤ g ≤ G, are full rank whereas 
Span{U2q,s(l)} ⊂ Span{Ãq,l} otherwise. Defining aq,l(θ, β) 
=Δ a(θ, β)⊗l ⊗ a(θ, β)*⊗(q–l) and noting (θig, βig) the DOA 
and polarization parameters of the ith source in the gth group, 
it can be easily verified that, in all cases, the vector aq,l(θig, 
βig), always belongs to Span{U2q,s(l)}. Consequently, all 
vectors {aq,l(θig, βig), 1 ≤ i ≤ Pg , 1 ≤ g ≤ G} are orthogonal 
to the columns of U2q,n(l) and are solutions of the following 
equation          
 aq,l(θ, β)H U2q,n(l) U2q,n(l)H aq,l(θ, β)  =  0         (9) 

Using (3) into (9), removing the redundancy of βq,l =Δ [β⊗l 

⊗β*⊗(q−l)] and normalizing the left hand side of (9) to ob-
tain no minima in the absence of sources, the problem of 
sources DOA estimation by the PD-2q-MUSIC algorithm for 
the arrangement l then consists to find the P sets of parame-
ters (θ̂i, β̂i) = (θ̂i, ϕ̂i, γ̂i, φ̂i), (1 ≤ i ≤ P), which are solution of 
the following equation  

          [β
∼

l
 ⊗β∼q−l

* ]HQq,l,1(θ)[β∼l
 ⊗β∼q−l

* ]________________________
[β∼l

 ⊗β∼q−l
* ]HQq,l,2(θ)[β∼l⊗β∼q−l

* ]
 = 0              (10)      

 
In (10), the ((l+1)(q−l+1) x (l+1)(q−l+1)) Qq,l,1(θ) and 
Qq,l,2(θ) matrices are defined by 

  Qq,l,1(θ)  =Δ                                    (11)  
[Bl⊗Bq−l]

HA12,q,l(θ)HU2q,n(l)U2q,n(l)HA12,q,l(θ) [Bl⊗Bq−l] 

  Qq,l,2(θ)  =Δ [Bl⊗Bq−l]
HA12,q,l(θ)HA12,q,l(θ)[Bl⊗Bq−l]  (12) 

where A12,q,l(θ) is equal to A12(θ)⊗l⊗A12(θ)*⊗(q–l), β∼l is 
the ((l+1)x1) vector with components β∼l[j] = β1

l–j+1β2
j–1, 

β1 and β2 are components of β and Bl is the (2lx(l+1)) ma-
trix such that β⊗l= Bl β

∼
l. For sources with unknown polari-

zations, the previous algorithm has to implement a searching 
procedure in both DOA and polarization, which is very com-
plex. We thus limit the use of this algorithm to situations 
where the polarization of sources is known and we call this 
algorithm KP-PD-2q-MUSIC algorithm (Known Polarization 
PD-2q-MUSIC). In practical situations, Qq,l,1(θ) is not 
known and has to be estimated from the eigenvalue decom-
position of an estimate of C2q,x(l), by replacing U2q,n(l) by 
its estimate. In this case, the estimated left-hand side of (10) 
has to be minimized over θ.   

3.3. UP-PD-2q-MUSIC algorithms     
For sources with unknown polarizations, a simple way to 

remove the searching procedure with respect to the polariza-
tion parameter consists, for any fixed DOA, to minimize the 
left-hand side of equation (10) with respect to vector β∼q,l =  
[β∼l

 ⊗β∼q−l
* ], as it is proposed in [8] for q = 1. This gives rise to 

the UP-PD-2q-MUSIC (Unknown Polarization PD-2q-
MUSIC) algorithms whose first version for the arrangement 

indexed by l, called UP-PD-2q-MUSIC(l)-1, consists to find 
DOA which cancel the pseudo-spectrum given by  
       PUP-PD-2q-Music(l)-1(θ) =Δ λq,l,min(θ)       (13)  

 
In (13), λq,l,min(θ) is the minimum eigenvalue of matrix 
Qq,l,1(θ) in the metrics Qq,l,2(θ). Note that the associated 
optimal vector β∼q,l, noted β∼q,l,min(θ), corresponds to the 
associated eigenvector. Note that one way in which the ei-
genvalue λq,l,min(θ) can be computed is by determining the 
minimum root of the following equation  
 det[Qq,l,1(θ)  −  λ Qq,l,2(θ) ]   =  0         (14) 
where det[X] means determinant of X. Thus, for each value 
of θ, searching in polarization space has been avoided by 
finding the roots of an equation of order (l+1)(q−l+1), which 
corresponds to a substantial reduction in computation, at least 
for small values of q. We deduce from (14) and [9], that find-
ing θ such that λ = λq,l,min(θ) is zero is equivalent to find 
θ such that det[Qq,l,2(θ)−1Qq,l,1(θ)] = det[Qq,l,1(θ)] / 
det[Qq,l,2(θ)] = 0. A second version of the UP-PD-2q-
MUSIC algorithm for the arrangement indexed by l, called 
UP-PD-2q-MUSIC(l)-2, consists to find DOA which cancel 
the pseudo-spectrum given by 

 PUP-PD-2q-Music(l)-2(θ)  =Δ   
det[Qq,l,1(θ)]  ______________
det[Qq,l,2(θ)] 

      (15) 

 
which allows a complexity reduction with respect to (13). 
Again, in practical situations, Qq,l,1(θ) is not known and has 
to be estimated from the eigenvalue decomposition of an 
estimate of C2q,x(l). The problem then consists to find the P 
sets of parameters θ̂i = (θ̂i, ϕ̂i), (1 ≤ i ≤ P), for which esti-
mates of (13) or (15) are minimized.  

4. IDENTIFIABILITY 

The maximum number of sources to be processed by a 
given DP-2q-MUSIC algorithm is obtained for statistically 
independent sources. Under this assumption, assuming no 
coupling between the sensors, we deduce from the HO VA 
theory [2] that the KP-PD-2q-MUSIC algorithm for the ar-
rangement indexed by l is able to process up to Pmax=N2q

l  – 1 
sources, provided that the associated VA has no ambiguities 
up to order N2q

l  –1, where N2q
l  is the number of different vir-

tual sensors of the associated VA. It has been shown in [2] 
that N2q

l  is a function of q, l and the true array of N sensors. 
Besides, table IV of [2] shows, for a general array with 
space and polarization diversities having sensors arbitrary 
located with different responses, the expression of an upper-
bound, Nmax(2q,l), of N2q

l  as a function of N for 2 ≤ q ≤ 4 and 
several values of l. A very useful case for practical situa-
tions, which was not studied in [2], corresponds to an array 
of N = 2M sensors composed of two subarrays of M sensors 
having orthogonal polarizations. Two kinds of such arrays 
are considered in this section and correspond to arrays for 
which the sensors of the two subarrays are either collocated 
or not. Table 1 shows, for non collocated and collocated 
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subarrays respectively, the expression of Nmax(2q,l) as a 
function of N for q = 2 and several values of l. Note that this 
upper-bound corresponds to N2q

l  in most cases of array ge-
ometry with no particular symmetry, which is in particular 
the case for uniform circular array of M vectorial sensors 
with two components, when M is a prime number. In addi-
tion, table 1 shows the expression of N2q

l  as a function of 
N=2M for q = 2 and several values of l, for an array com-
posed of two collocated and orthogonally polarized Uni-
formly spaced Linear Array (ULA) of M identical sensors. 

  Non-collocated 
subarrays 

collocated 
subarrays 

Collocated 
ULA subarrays 

2q l Nmax(2q,l) Nmax(2q,l) N2q
l  

4 2 N(N +1)/2 3N(N+2)/8 3(N − 1) 
4 1 N2−N+2 N2−2N+4 4(N − 1) 

Table 1 – Nmax(2q, l) as a function of N = 2M  for q = 2 and several 
values of l, and for arrays with two orthogonally polarized subarrays 

Under the same assumptions, following the same reasoning 
as that presented in [8], we deduce that the UP-PD-2q-
MUSIC algorithms for the arrangement indexed by l are able 
to process up to Pmax = N2q

l  – (l+1)(q−l+1) sources, which 
corresponds to N–2 for q = 1, result obtained in [8]. 

5. SIMULATIONS 

The results of the previous sections are illustrated in this 
section through computer simulations. To do so, two criteri-
ons [5] are computed, from 300 realizations, in the follow-
ing in order to quantify the quality of the associated DOA 
estimation: a Probability of Non-Aberrant Results (PNAR) 
generated by a given method for a given source and the cor-
responding Root Mean Square Error (RMSE). The sources 
are assumed to have a zero elevation angle and to be zero-
mean stationary sources corresponding to QPSK sources 
sampled at the symbol rate and filtered by a raise cosine 
pulse shaped filter with a roll-off = 0.3. Moreover, the statis-
tical arrangement index used hereafter is l=1 and no model-
ing error is considered. 

 

 
Figure 1 – PNAR results of source 2 as a function of samples 

 
Figure 2 – RMSE results of source 2 as a function of samples 

5.1. Overdetermined mixtures of sources 

We consider a Uniform Circular Array (UCA) of N = 6 
crossed-dipoles with a radius r such that r = 0.3 λ. One di-
pole is parallel to the x-axis whereas the other is parallel to 
the z-axis. Three of these crossed-dipoles are combined to 
generate a right sense circular polarization in the y-axis while 
the three other dipoles are combined to generate a left sense 
circular polarization in the y-axis. The array is then com-
posed of two orthogonally polarized overlapped (non-
collocated) circular subarrays of M = 3 sensors so that adja-
cent sensors always have different polarizations. In this con-
text, two QPSK sources with the same input SNR equal to 5 
dB are received by the array. They are assumed to be weakly 
separated in both DOA and polarization, such that (θ1, γ1, 
φ1) =  (50°, 45°, 0°) and (θ2, γ2, φ2) = (60°, 45°, 10°) respec-
tively. Under these assumptions, figures 1 and 2 show the 
variations, as a function of the number of samples, of the 
PNAR criterion for the source 2, PNAR2, and the associated 
RMSE2 criterion (we obtain similar results for the source 1), 
at the output of the 12 methods mentioned on figure 1. For 2-
MUSIC, 4-MUSIC and 6-MUSIC algorithms, the 6 sensors 
of the UCA are assumed to be identical with responses of 
sensor 1. Figures 1 and 2 show, at least for UP algorithms, 
better performance of methods exploiting both HO statistics 
and polarization discrimination and increasing performance 
with q for UP-PD-2q-MUSIC methods. 

5.2. Underdetermined mixtures of sources 

To illustrate the capability of PD-2q-MUSIC (q>1) algo-
rithms to process underdetermined mixtures of sources, we 
limit the number of sensors of the previous circular array to 
N = 3 sensors. Under these assumptions, we deduce from 
tables II and IV of [2], and section 4 that KP-PD-4-MUSIC, 
UP-PD-4-MUSIC, KP-PD-6-MUSIC and UP-PD-6-MUSIC 
can process up to Pmax=7, Pmax=4, Pmax=14 and Pmax=9 
sources, respectively. We deduce from tables VI and VII of 
[2] that 4-MUSIC and 6-MUSIC can process up to Pmax=6 
and Pmax=11 sources, respectively. We assume now that the 
array receives 4 statistically independent QPSK sources with 
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the same input SNR equal to 15 dB and DOA and polariza-
tion parameters equal to (θ1, γ1, φ1) =  (15°, 45°, -75°), (θ2, 
γ2, φ2) =  (45°, 45°, 0°), (θ3, γ3, φ3) =  (95°, 22.5°, 75°), (θ4, 
γ4, φ4) = (122.5°, 45°, 150°) respectively. Under these as-
sumptions, figures 3 and 4 show the variations, as a function 
of the number of samples, of the lower PNAR and the high-
est RMSE results, among all the sources, at the output of the 
eight methods, namely the 2q-MUSIC, the KP-PD-2q-
MUSIC and the UP-PD-2q-MUSIC-m algorithms for 
q∈{2,3} and for m∈{1,2}. Note the capability of PD-2q-
MUSIC methods to process underdetermined mixtures of 
sources provided P ≤ Pmax. Note the poor performance of 
2q-MUSIC methods for the considered scenario due to the 
low input power of the weakest source at the output of the 
sensors. Better performance would be obtained for higher 
values of samples. 

 

 
Figure 3 – Minimal PNAR results of sources 

 
Figure 4 – Maximal RMSE results of sources 

6. CONCLUSION 

Three versions of the 2q-MUSIC (q ≥ 1) algorithm able 
to put up with arrays having polarization diversity and giving 
rise to PD-2q-MUSIC algorithms have been presented in this 
paper for several arrangements of the 2q-th order data statis-
tics. The first version is well-suited for sources with known 
polarization whereas the two others do not assume any 
knowledge about the sources’ polarization. For a given value 

of q, these algorithms have been shown to increase the reso-
lution, the robustness to modeling errors (at least for several 
poorly angularly separated sources) and the processing ca-
pacity (at least for VA without any HO ambiguities) of the 
2q-MUSIC method in the presence of diversely polarized 
sources and from an array with polarization diversity. More-
over, despite a higher variance in the statistics estimation, 
performance of UP-PD-2q-MUSIC algorithms have been 
shown to generally increase with q when some resolution is 
required. This occurs in particular for sources which are 
poorly separated in both DOA and polarization. This result 
shows off for these scenarios the interest to jointly exploit 
polarization diversity and HO statistics for DF. Finally, iden-
tifiability issue of all of these methods has been addressed.    
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