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ABSTRACT

The aim of this work is to present an alternative method for
estimating the direction-of-arrival (DoA), that is, the incom-
ing angle, of a signal impinging on an antenna array. The
proposed method is similar to ESPRIT (estimation of signal
parameters via rotational invariance techniques) algorithm,
which is the most widely used technique for this applica-
tion. The new algorithm exploits the structural similarities
between ESPRIT and the Tong-Xu-Kailath method for blind
channel equalization. The result is an ESPRIT-like algo-
rithm for DoA estimation with substantially reduced compu-
tational complexity. Simulation results are included to verify
the properties and performance of the new covariance-based
DoA algorithm, in comparison to ESPRIT and to the theoret-
ical Cramer-Rao lower bound.

1. INTRODUCTION

The use of antenna arrays has emerged as a very powerful
technique for improving the receiver performance in digi-
tal communications. Several signal processing applications
are employed for estimating some parameters or the whole
waveform of the received signals [1]. In some situations, the
estimation of the incoming signals is equivalent to estimating
the direction of the transmitting sources [2] [3]. Examplesof
applications of array techniques to mobile communications
systems can be found in [2].

The earliest algorithms for estimating signals in a space-
time framework were based on the maximum likelihood
paradigm. However, such solutions are very computationally
intense. Subsequently, lower complexity algorithms were de-
veloped, such as MUSIC (multiple signal classification) [4]
for performing direction-of-arrival (DoA) estimation. Nev-
ertheless, MUSIC does not take any advantage of the array
geometrical configuration. Then, an algorithm for estima-
tion of parameters via rotational invariance techniques (ES-
PRIT) [5] [6] was proposed, which uses an invariance prop-
erty induced by a constant spacing between antennas in a
doublet pair. ESPRIT presents substantially lower compu-
tational complexity than MUSIC for performing DoA esti-
mation [3], which is one of the main reasons for its large
popularity.

This work was partially supported by the Brazilian Council for Research
and Development (CNPq).

In this paper, we discuss the close relationship be-
tween ESPRIT and a blind-equalization technique, the so-
called Tong-Xu-Kailath (TXK) [7] algorithm solely based on
second-order statistics of the cyclostationary incoming sig-
nal. By exploiting the link between ESPRIT and the TXK
algorithm, a new algorithm is proposed and referred to as
the covariance-based DoA (CB-DoA). It is then verified that
the CB-DoA algorithm presents performance comparing fa-
vorably to the standard ESPRIT method, with substantially
lower computational complexity.

This work is organized as follows: Sections 2 and 3 de-
scribe the DoA framework and total least-squares (TLS) ES-
PRIT algorithm, respectively. Then, the CB-DoA algorithm
is introduced in Section 4, by exploiting the underlying sim-
ilarities between ESPRIT and the TXK algorithm, as dis-
cussed in Section 5. Section 6 compares the implementation
aspects for both TLS-ESPRIT and CB-DoA. Experimental
results presented in Section 7 address the CB-DoA perfor-
mance in distinct setups, emphasizing its reduced computa-
tional load when compared to the TLS-ESPRIT algorithm.
Besides that, mean-square error performance is compared to
the theoretical Cramer-Rao lower bound. Finally, Section 8
draws some conclusions highlighting the main contributions
of the paper.

2. DOA ESTIMATION

Consider a MIMO (multiple-input multiple-output) environ-
ment with M transmitting narrowband sources and 2N re-
ceiving antennas, withN > M, as represented in Fig. 1. It is
assumed that each of the sub-channels has an additive white
Gaussian noise (AWGN) as the only interference source.
Also, the receiving antennas are grouped in pairs, as de-
scribed in [5], with a constant displacementδ between the
antennas in each pair.

At time t, let sm(t) represent the signal transmitted by
the mth antenna, with 0≤ m < M, and letxi(t) and yi(t)
be the two signals in theith receiving-antenna doublet, with
0 ≤ i < N. Considering that the incoming signals reach the
ith antenna doublet with an angle denoted byθm, the gain
provided by the antennas for such an angle is represented by
ai(θm). If nx,i(t) andny,i(t) represent the noise components
received by each antenna in theith doublet, the description of
the received signals as functions of the transmitted signals is
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Figure 1: MIMO Environment.

given by [5]

xi(t) =
M−1

∑
m=0

sm(t)ai(θm)+ nx,i(t), (1)

yi(t) =
M−1

∑
m=0

sm(t)e
jωδ

c sin(θm)ai(θm)+ ny,i(t), (2)

wherej =
√
−1,ω is the frequency of the narrowband signal,

andc is the speed of light.
By defining the auxiliary vectors and matrices in the

discrete-timek domain as

x(k) =
[

x0(k) x1(k) . . . xN−1(k)
]T

, (3)

y(k) =
[

y0(k) y1(k) . . . yN−1(k)
]T

, (4)

nx(k) =
[

nx,0(k) nx,1(k) . . . nx,N−1(k)
]T

, (5)

ny(k) =
[

ny,0(k) ny,1(k) . . . ny,N−1(k)
]T

, (6)

s(k) =
[

s0(k) s1(k) . . . sM−1(k)
]T

, (7)

A =











a0(θ0) a0(θ1) . . . a0(θM−1)
a1(θ0) a1(θ1) . . . a1(θM−1)

...
...

. . .
...

aN−1(θ0) aN−1(θ1) . . . aN−1(θM−1)











, (8)

Φ = diag
[

e
jωδ

c sin(θ0),e
jωδ

c sin(θ1),. . .,e
jωδ

c sin(θM−1)
]

(9)

then, the input-to-output relationships given in Equations (1)
and (2) can be rewritten as

x(k) = As(k)+nx(k), (10)

y(k) = AΦs(k)+ny(k). (11)

Matrix A is the so-called array manifold matrix [5], and its
elements are the gains of the antenna array as a function of
the incoming angle.

Considering that signal sources are uncorrelated to noise,
then the covariance matrices of the received and transmitted

signals are related by

E[x(k)xH(k)] = Rx(0) = ARs(0)AH+σ2Rn,x(0),(12)

E[x(k)yH(k)] = Rxy(0) =

= ARs(0)ΦHAH +σ2Rn,xy(0), (13)

whereσ2 is the noise variance. Besides that,

Rs(0) = E[s(k)sH(k)], (14)

Rn,x(0) = E[nx(k)n
H
x (k)], (15)

Rn,xy(0) = E[nx(k)n
H
y (k)]. (16)

3. ESPRIT ALGORITHM

By grouping together the doublet signals into a single vector

z(k) =

[

x(k)
y(k)

]

, the transmission modeling becomes [5]

z(k) = Ās(k)+nz(k), (17)

whereĀ =

[

A

AΦ

]

andnz(k) =

[

nx(k)
ny(k)

]

.

The ESPRIT algorithm performs a generalized eigende-
composition on the matrices

{

Rz(0) = E[z(k)zH(k)]

Σn(0) = E[nz(k)nH
z (k)]

, (18)

such that

Rz(0)−σ2Σn(0) = ĀRs(0)ĀH . (19)

Hence, the generalized eigenvectors corresponding to theM
largest generalized eigenvalues can be used as the columns
of Us, determining

Es = Σn(0)Us, (20)

whereEs andĀ are related by a non-singular linear transfor-
mationT [5], such that

Es = ĀT =

[

AT

AΦT

]

=

[

Ex

Ey

]

. (21)

The ESPRIT algorithm then determines the following eigen-
decomposition,

[

EH
x

EH
y

]

[

Ex Ey
]

= EΛEH . (22)

Following, the resulting eigenvector matrixE is partitioned
into sub-matrices, such that

E =

[

E11 E12

E21 E22

]

, (23)

allowing the definition of an auxiliary matrix

Ψ = −E12E
−1
22 . (24)

At last, the ESPRIT algorithm performs an eigendecomposi-
tion onΨ to estimate the desired DoA matrixΦ,

Ψ = TΦT−1. (25)

The ESPRIT algorithm described in this section corresponds
to the most popular implementation of ESPRIT, known as
TLS-ESPRIT (total least-squares ESPRIT) [5].
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4. COVARIANCE-BASED DOA ALGORITHM

Using a similar structure employed by the TXK algo-
rithm [7], in the blind channel-equalization setup, one can
perform an eigendecomposition directly on the matrix pen-
cil [Rx(0)−σ2Rn,x(0)], yielding

R0 = Rx(0)−σ2Rn,x(0) = UΣ2UH . (26)

As a result, one may form the matricesΣ2
s andUs with the

M largest eigenvalues ofR0 and their corresponding eigen-
vectors, respectively, such that matrixA satisfies

A = UsΣsV. (27)

Thus, one can define an auxiliary matrixF such that

FA = V. (28)

Therefore,
F = Σ−1

s UH
s , (29)

and, consequently, another auxiliary matrixR1 can be deter-
mined as

R1 = F(Rxy(0)−σ2
xyRn,xy)F

H . (30)

From Equations (27), (28), and (30), one has that the DoA
matrixΦ satisfies

R1 = VΦHVH . (31)

SinceΦ is a diagonal matrix, its conjugate transpose can be
found by performing an eigendecomposition onR1. From
the rotational invariance property, the elements ofΦ are
known to have unit norm, then an improved estimate ofΦ

is generated with normalized elements.

5. CB-DOA AND TXK

The new CB-DoA algorithm follows a similar structure as of
the TXK algorithm for blind channel equalization. In fact,
both algorithms use properties related to the received-signal
second-order statistics, performing subspace decompositions
on the associated covariance matrices.

Naturally, some differences between the TXK and the
CB-DoA algorithms emerge due to the distinct setups as-
sociated to each application. While the TXK is based on
a single receiver with uniform oversampling, the CB-DoA
method uses multiple receivers, grouped in doublets, simi-
larly to the ESPRIT algorithm. It can be shown that the uni-
form oversampling, in the channel equalization framework,
yields the rank difference between the covariance matricesat
lags zero and one [7]. Such rank reduction is exploited by
the TXK technique for determining the multichannel matrix.
Meanwhile, in the DoA estimation problem, the proposed
algorithm takes advantage of the rotational invariance prop-
erty, which guarantees the full-rank characteristic for both
received-signal covariance matrices at lag zero [6].

The reciprocal relationship comprising ESPRIT and
blind equalization is described in [8], where the rotational
invariance of ESPRIT is exploited in a frequency-domain de-
scription of the blind equalization algorithm.

6. COMPUTATIONAL COMPLEXITY

In order to allow the comparison between the TLS-ESPRIT
and the CB-DoA algorithms, the computational complexity
of both methods is investigated in this section. For that pur-
pose, Table 1 summarizes the basic operations for each al-
gorithm. The acronyms ED and GE stand for eigendecom-
position and generalized eigendecomposition, respectively.
When referring to multiple lines or columns, Matlab nota-
tion was used. Recalling thatM is the number of sources and
2N is the number of sensors, the number of operations for
each algorithm can be determined.

Table 1: Short descriptions of TLS-ESPRIT and CB-DoA
algorithms.

ESPRIT CB-DoA

[Us, σ̂2] = GE(R̂z(0), Σ̂n(0)) [Us, σ̂2] = GE(R̂x(0),R̂n,x(0))

Es = Σn(0)Us F = Σ
−1
s U

H
s

Ex = Es(0 : M−1, :) Ra = R̂xy(0)−σ̂2
xyR̂n,xy(0)

Ey = Es(M : 2M−1, :)

Ea =

[

E
H
x

E
H
y

]

[

Ex Ey
]

[E,Λ] = ED(Ea) R1 = FRaF
H

E12 = E(0 : M−1,M : end) [V,ΦH ] = ED(R1)

E22 = E(M : end,M : end)

Ψ = −E12E
−1
22

[T,Φ] = ED(Ψ)

From Table 1, one verifies that the TLS-ESPRIT algo-
rithm requires:

• 1 generalized eigendecomposition of a pair of 2N ×2N
matrices;

• 2 eigendecompositions (1 for a 2M×2M Hermitian ma-
trix and 1 for anM×M non-Hermitian matrix);

• 1 full-matrix inversion of anM×M matrix;
• 6 matrix multiplications (5 for a pair ofM ×M matrices

and 1 for the product of a 2N ×2N and a 2N ×M matri-
ces).

On the other hand, the new CB-DoA method requires:

• 1 generalized eigendecomposition of a pair ofN×N ma-
trices;

• 1 eigendecomposition of a 2N ×2N Hermitian matrix;
• 1 diagonal-matrix inversion of anM×M matrix;
• 3 matrix multiplications of anM ×M by anM ×N ma-

trices;
• 1 matrix subtraction of a pair ofN ×N matrices.

Although the computational cost of each method is highly
implementation dependent, it is straightforward to verifythat
the proposed algorithm presents a smaller complex than ES-
PRIT algorithm. In fact, CB-DoA requires fewer matrix

©2007 EURASIP 102

15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, September 3-7, 2007, copyright by EURASIP



multiplications, includes a simpler (diagonal) matrix inver-
sion, and requires a smaller generalized eigendecomposition,
which is a very computationally intensive operation. In fact,
according to [9], the generalized eigendecomposition of a
pair of 2N × 2N matrices is equivalent to one eigendecom-
postion of a 2N × 2N matrix followed by an inversion of a
matrix of equivalent dimensions. In Table 2, a detailed com-
parison is provided which shows the asymptotic complexity
of the basic operations, according to [9]. In the next section,
computer experiments are provided in order to quantify this
computational complexity improvement.

Table 2: Comparison for the number of operations required
by TLS-ESPRIT and CB-DoA.

Operation Compl. [9] ESPRIT CB-DoA
Non-Herm. Eig. O(25n3) 2 1
Herm. Eigendec. O(n2) 1 1

Full Inversion O(2n3/3) 2 1
Diag. Inversion O(n) – 1
Multiplication O(n3) 6 3
Subtraction O(n2) – 1

7. COMPUTER SIMULATIONS

7.1 Comparison between CB-DoA and ESPRIT

Some experiments were included to verify the performance
of the CB-DoA algorithm. The symbols from each source
were randomly generated from a Gaussian distribution with
meanµ = 0.5 and varianceσ2 = 0.5. Both the array man-
ifold matrix and the DoA gain vector were randomly deter-
mined, following a similar Gaussian distribution as above.
For estimating the covariance matricesRx(0) andRxy(0),
5,000 sample values were employed.

The metric used for performance assessment is the mean-
square error (MSE), defined here as the arithmetical mean of
the squared differences between the estimated and the actual
arriving angles,̂θi andθi, respectively, that is

MSE=
1
M

M−1

∑
i=0

|θi − θ̂i|2, (32)

where the anglesθi and its relation to the invariance matrix
Φ are defined in equation (9).

The MSE value, referring to an ensemble average over
300 runs, was determined for distinct values of the signal-to-
noise ratio (SNR) measured at the receiver input.

Several distinct DoA setups were investigated in our sim-
ulations, including Setup 1 (withM = 4 signal sources and
N = 9 receiving doublets) and Setup 2 (withM = 7 and
N = 12). The MSE results for these two setups are depicted
in Figs. 2 and 3, respectively, for the TLS-ESPRIT and CB-
DoA algorithms. These figures indicate that both methods
have similar MSE performances for a wide range of receiving
SNR, and CB-DoA presents a slightly lower MSE. To assess
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Figure 2: Estimate MSE for TLS-ESPRIT and CB-DoA al-
gorithms as a function of the receiving SNR in Setup 1.

the computational complexity of each technique, the running
time for several DoA setups was measured in a Pentium IV
3GHz PC, using a Matlab 7.0 platform on a Fedora Linux
operating system. The results were averaged over 300 runs
in the ensemble, for 5,000 samples. The running times were
measured only for the algorithm themselves. Time spent on
covariance estimations were not taken into account. The re-
sults are presented in Table 3. The columnRatio is defined
as

Ratio =
Time for CB-DoA
Time for ESPRIT

. (33)

From Table 3, one can observe that in Setup 1 the CB-
DoA running time was about 66% of the complexity associ-
ated to TLS-ESPRIT. This relationship improves even further
favouring CB-DoA as the numbers of sources and sensors in-
crease as also shown in Table 3.

Table 3: Average running time for TLS-ESPRIT and CB-
DoA algorithms for distinct number of transmitting sources
and receiving doublets.

Trans. Doub. TLS-ESPRIT CB-DoA Ratio
1 4 1.17·10−3s 9.36·10−4s 0.795
4 9 1.92·10−3s 1.28·10−3s 0.668
7 12 3.64·10−3s 1.67·10−3s 0.459
14 30 1.34·10−2s 3.28·10−3s 0.243
18 39 2.91·10−2s 5.80·10−3s 0.199

7.2 Comparison to the Cramer Rao Lower Bound

In order to assess the performance of CB-DoA algorithm
in comparison to the theoretical limit represented by the
Cramer-Rao Lower Bound (CRLB) [10], a new simulation
environment was used, withM = 1 source andN = 4 uni-
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Figure 3: Estimate MSE for TLS-ESPRIT and CB-DoA al-
gorithms as a function of the receiving SNR in Setup 2.

formly spaced sensors. The expression used for the CRLB is
the approximation presented in [10] forM = 1 source and a
large number of samples,

CRLB =
6

SNR·N3K
, (34)

whereK denotes the number of samples and SNR is sup-
posed to be equal in each sub-channel and represented in lin-
ear scale. MSE values were averaged over 300 runs in the
ensemble. The simulation results are presented in Fig. 4.
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Figure 4: MSE Comparison for CB-DoA, ESPRIT, and ap-
proximate CRLB forM = 1 andN = 4.

8. CONCLUSIONS

A new method for estimating the direction-of-arrival (DoA)
in an antenna array with the rotational invariance property

between two subsets of antennas is described. The pro-
posed covariance-based (CB) DoA algorithm originates from
the TXK algorithm for the blind channel-equalization setup.
The CB-DoA may be seen as an improved ESPRIT method,
due to its lower computational complexity, while achieving
equivalent performance for several receiving-SNR values.
The improvement in computational complexity of ESPRIT
is significant, since ESPRIT is known as a low-complexity
algorithm for DoA estimation. Computer simulations con-
firm the CB-DoA reduced computational complexity and its
robustness to the scalability of the DoA problem. Further-
more, the proposed CB-DoA presents an MSE performance
closer to the approximate CRLB, given by Equation (34),
than ESPRIT.
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