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ABSTRACT

In this work we review some of the most recent in-network
computation capabilities that can be used in sensor networks
to alleviate the information traffic from the sensors towards
the sink nodes. More specifically, after briefly reviewing dis-
tributed average consensus techniques, we will concentrate on
consensus mechanisms based on self-synchronization of cou-
pled dynamical systems, initialized with local measurements.
We will show how to achieve globally optimal distributed de-
tection and estimation through minimum exchange of infor-
mation between nearby nodes in the case where the whole
network observes one common event.

1. INTRODUCTION

In sensor networks, there is typically an evident contrast be-
tween very demanding performance requirements on the whole
network and, at the same time, very limited capabilities avail-
able at the single sensor [1]. This contrast can be overcome
through the employment of large scale networks, composed
of a large number of tiny, cheap sensors: Collecting and ap-
propriately processing a high number of measurements, gath-
ered by many sensors, in a fusion center can indeed provide
the performance improvement necessary to satisfy the user re-
quirements, even if the individual performance of each sensor
is limited. The performance improvement can be in terms of
detection capabilities, estimation accuracy and fault tolerance
with respect to breakdown or stand-by of a significant number
of nodes.

To contrast the performance limitation due to scarcity of
resources of each node, namely energy, bandwidth and com-
putational complexity, many recent works have addressed the
problem of finding optimal uses of the available resources for
sending the information from the sensors to a fusion center,
according to alternative optimization and constraint criteria
[2, 3, 4, 5, 6]. This is a very interesting research field, as it
merges distributed detection/estimation theory with medium
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access control schemes and optimal power/rate allocation on
each link, as a function of the final accuracy or detection prob-
ability. However, in many relevant applications, e.g., the de-
tection of hazardous events, it is likely that many nodes would
send an alarm towards the control node at the same time, i.e.,
when the event occurs. Hence, a congestion event around the
sink node is more likely to happen just when the network is
required to react in the most reliable manner. This boils down
to the so calledscalabilityproblem and it motivates the search
for distributed strategies capable of increasing the network
reliability, under critical situations, especially for large scale
networks. Some recent works have derived the fundamental
limits in the transport capacity of a wireless network, under
simple interference models. It was proven in [7] that in a
wireless network with several one-to-one links, the transport
capacity for each user scales with the numbern of sources as
1/
√

n log n, for largen. More recently, this result was ex-
tended to more general communication models in [8]. The
result of [7] pertains primarily to communication networks
with many sources and as many destinations. In a sensor net-
work, where many sensors send data to a sink node, it was
proven in [9] that the transport capacity scales as1/n. This
capacity is achievable through proper scheduling of the trans-
missions from each sensor, in order to limit interference while
having, at the same time, the highest number of simultaneous
transmissions. This entails some kind of coordination among
the sensors that might compromise the overall simplicity. A
further fundamental step was derived in [10], where it was
shown that if the function to be computed by the network is
a symmetricfunction of the measurements, i.e., it is invariant
to any permutation of the observed variables, the transport
capacity scales as1/ log n. This is an important result that re-
flects thedata-centricnature of sensor networks, where what
is important is the measurement per se and not the knowledge
of which node has taken which measurement.

In [9], it was also shown that a performance improve-
ment is achievable by endowing the network with a hierarchi-
cal structure where the nodes organize themselves in clusters
electing a cluster head. All sensors in a cluster send their data

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



to their cluster head, who takes care of forwarding the data
to a fusion center, possibly through a multihop path. In [9] it
was also shown that some kind ofin-networkprocessing, as a
form of distributed source-channel coding, is useful to better
exploit the available resources. A procedure for in-network
processing was proposed in [12], based on successive refine-
ment of initial estimates obtained through local exchange of
information among nearby nodes. In [12], it was also shown
that, as the number of nodes grows, in-network processing
always uses less energy than a centralized algorithm, for a de-
sired level of accuracy. Another interesting approach to asyn-
chronous algorithms for distributed computation of functions
of the sensor measurement without a fusion node is provided
by the so calledgossipalgorithms [13].

In this paper, after reviewing some recent distributed pro-
cessing techniques, we will concentrate on techniques that
allow the totally distributed computation of some important
(symmetric) functions of the measurements, using a simple
coupling mechanism between nearby nodes.

2. AVERAGE CONSENSUS

An example of distributed computation for achieving an aver-
age consensus in ad hoc networks was proposed, for example,
in [11], [14]. A lot of related work has also been done in the
decentralized coordination of mobile agents [15], [16]. In its
simplest form, average consensus can be achieved through the
following strategy. Let us consider a network composed ofN
nodes and denote withxi, i = 1, . . . , n, the measurement
taken from nodei. The network connectivity is given through
the coefficientsaij , with aij = 1 if nodesi andj are directly
connected, otherwiseaij = 0. Let us indicate withx[n] the
N size column vector formed with all the sensor measure-
ments, at time indexn. Let us assume, with no loss of gen-
erality, that each sensor takes a measurement at timen = 0,
so thatx[0] indicates the set of initial measurements. After
the initial measurements, each sensor exchanges its estimate
with its neighbors and modifies its own estimate by taking a
linear combination of the estimates received by its neighbors,
according to the following equation

x[n] = Wx[n− 1] + v[n], n = 1, 2, . . . , (1)

wherev[n] is the noise vector at stepn andWij is the weight
associated by nodei to the signal received from nodej (Wij 6=
0 if aij 6= 0, i.e., if nodesi andj are connected). It was shown
in [11] that, when the noise is absent, i.e.v[n] = 0, if the ma-
trix W is symmetric and satisfies the following properties:

W1 = 1;
λ1 = 1;
|λi| < 1, for 2 ≤ i ≤ N, (2)

where{λi}N
i=1 denote the eigenvalues ofW in nonincreasing

order and1 is the vector of all ones, then all sequencesxi[n],

i = 1, . . . , n, converge to the average valuex̄ , (1/N)
∑N

i=1 xi,
i.e.,

lim
n→∞

‖xi[n]− x̄‖ = 0, ∀i, (3)

where‖ · ‖ denotes the ordinary Euclidean norm. Conditions
in (2) mean thatW must be a symmetric matrix whose largest
eigenvalue is1 and the eigenvector associated to this eigen-
value is the vector1. A possible matrix structure satisfying
(2) is the following [14]:

Wij =





1/(d + 1), if nodesi andj are connected;
1− di/(d + 1), i = j;
0, if i andj are not connected.

,

(4)
wheredi is the degree of nodei and the network degreed =
maxi{di}. This choice ofW would require each node to
know its own degree and also the network degree, but alter-
native choices could relax this constraint. In any case, model
(1) requires that each receiver is capable to discriminate all
the received signals, to be able to assign to each of them, the
proper weightWij .

Furthermore, the algorithm (1) suffers from high sensitiv-
ity to noise, as already noticed in [14]. In fact, if we pre-
multiply (1) by1T and divide byN , we get [14]:

x̄[n] = x̄[n− 1] +
1
N

N∑

i=1

vi[n], (5)

with x̄[n] , (1/N)
∑N

i=1 xi[n]. This shows that the running
averagex̄[n] undergoes a random walk, thus implying that
its variance increases linearly with the time index. Hence,
as already observed in [14], the average consensus achieved
through (1) does not converge in any statistical sense (except
in the mean). It was shown in [14] that, with average consen-
sus, what converges to a constant value is the variance of the
deviationszi[n] := xi[n]− x̄[n]. As a numerical example, in
Fig. 1 we report the valuesxi[n], i = 1, . . . , N vs. n, for a
network composed ofN = 21 nodes, fully connected. Each
node is initialized with the measurementxi[0] = i and the
matrixW is built as in (4), withdi = 20. The additive noise
is Gaussian with zero mean and unit variance. We can clearly
see that, even though all nodes move together (thus implying
that the variance of the deviations tends to remain constant),
the estimates follow a random walk that does not converge in
any statistical sense. To alleviate this problem, in [14] it was
shown how to optimize the choice of the matrixW in order to
minimize the mean square deviationδ[n] = E{‖z[n]‖2}. But
still, this only mitigates the problem, but it does not remove
it.

3. IN-NETWORK PROCESSING THROUGH A
SELF-SYNCHRONIZATION MECHANISM

An alternative way to reach consensus through a decentralized
strategy was proposed in [17], based on the self-synchronization
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Fig. 1. Running consensus for each sensor vs. time index.

capabilities of a population of mutually coupled pulsed os-
cillators, borrowed from physiological models describing the
heart beating [23]. The system proposed in [17] required
full connectivity and it is strongly affected by propagation
delays, as a delay is intrinsically indistinguishable from the
time shift associated to the sensor measurement. An alter-
native approach was proposed in [18], where it was shown
that a population of nonlinearly coupled dynamical systems
can be designed to reach a globally optimal maximum like-
lihood estimate, also in the case of local coupling, provided
that the network is connected, i.e., there is a path, possibly
composed of several hops between any pair of nodes, and the
global coupling strength exceeds a threshold that depends on
the network topology, the observation and the coupling func-
tion.

In the sensor network proposed in [18], [19], each node
has a dynamical system that evolves in time according to the
following equation

θ̇i(t) = g(xi) +
K

ci

N∑

j=1

aij f [θj(t)− θi(t)] + vi(t), (6)

for i = 1, . . . , N, whereθi(t) is the state function of the
i-th sensor (θi(0) may be initialized to zero or to any ran-
dom number,g(xi) is a function of the local measurementxi

taken by nodei, the summation takes into account the cou-
pling with all other nodes,f(·) is a monotonically increasing,
odd function of its argument and it describes the mutual cou-
pling among the sensors1; K is a global control loop gain;ci

is a local coefficient that depends on the SNR at nodei (its
effect will be clarified later on); the amplitudesaij account
for the local coupling between oscillators and are assumed to
be symmetric (aij = aji) and non negative. We assume that
two oscillators are coupled (i.e.,aij 6= 0) if their distance is
smaller than the coverage radius of each sensor2. The run-

1Without loss of generality,f(x) is normalized so thatdf(0)/dx = 1.
2The coverage radius is assumed to be the same for all sensors, even

ning decision, or estimate, of each sensor is encoded in its
pulsationθ̇i(t).

We define the synchronization of the population of dy-
namical systems as the situation where all the derivativesθ̇i(t)
converge to the same functionθ̇

∗
(t), for i = 1, . . . , N .

Multiplying each equation (6) byci and summing over
i, for i = 1, . . . , N , it is easy to check that, thanks to the
symmetry of the coefficientsaij and of the anti-symmetry of
the functionf(x), if the system synchronizes, in the sense
defined above, all the derivativesθ̇i(t) tend to

·
θ
∗
(t) =

∑N

i=1
cig(xi)

∑N

i=1
ci

+

∑N

i=1
ci vi(t)

∑N

i=1
ci

, ω∗ + v(t). (7)

In [20], it was proved that, in the noiseless case wherevi(t) =
0, if the network is connected andK is greater than a crit-

ical valueKc, then the equilibrium
·
θ
∗
(t) = ω∗ is globally

asymptotically stable. This means that all derivatives
·
θ
∗
i (t)

converge, asymptotically, to the unique (constant) valueω∗,
irrespective of the initial conditions. The critical valueKc is
upper bounded by the following inequality [20]:

KU =
2 ‖Dc∆ω‖2
fmaxλ2(LA)

, (8)

whereDc = diag(c1, . . . , cN ), ∆ω , ω − ω∗1N, with
ω , g(x) and ω∗ defined in (7),fmax , maxx∈R f(x);
λ2(LA) is the so calledalgebraic connectivityof the graph,
i.e., the second smallest eigenvalue of the weighted Lapla-
cianL , BDA BT , whereB is the incidence matrix of the
graph associated to the network. The algebraic connectivity
provides important information about the network connectiv-
ity. For example, if the network is disconnected,λ2(LA) = 0.
Conversely, the higher is the degree of connectivity, the higher
is the value ofλ2(LA). The rate of convergence to the unique
synchronization state is given by the productKλ2(LA). This
means that a higher network connectivity (degree) increases
the convergence speed, but at the same time it requires more
energy to guarantee a higher node degree. But a higher con-
vergence speed implies also a reduced energy to reach the
final value. Hence, in general, considering both the energy
spent to establish a link and the energy spent to reach the
global equilibrium, we may expect an optimal degree of con-
nectivity.

If the coupling functionf(x) is linear (or nonlinear un-
bounded),fmax = ∞, so that a linear coupling system can
be always made to converge to the common consensus, as,
from (8), the critical threshold is zero. Conversely, a nonlin-
ear bounded coupling system has a nonnull critical valueKc

though this could be changed to accommodate for different network topo-
logical models, like small worlds or scale-free networks.
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that makes possible a variety of behaviors, impossible with
linear coupling systems, that could be used when one does
not want the whole network to converge to a common value,
but rather to form clusters.

The final decision, or estimate, achievable by each sen-
sor is then a functionh(ω∗). Choosing the functionsh(·)
andg(·), as well as the coefficientsci, appropriately, we can
design the network to converge to a large class of functions
of the initial measurementsf(x1, . . . , xN ), like the mean,
the maximum, the geometric mean, and so on. The mean
is achieved by simply settingci = 1, for all i andg(x) =
h(x) = x. The maximum can be achieved, approximately,
by settingci = 1 and choosingg(xi) = xp

i andh(ω∗) =
(Nω∗)(1/p), with p a large integer value. The geometric mean
corresponds toci = 1 g(xi) = log(xi) andh(ω∗) = exp(Nω∗).

There is a basic difference that makes system (6) more
robust than (1), against additive noise. In fact, different from
(1), the additive noisev(t) in (7) has a constant variance. This
is a consequence of having encoded the global estimate on the
derivativeθ̇i(t) of the state, rather than on the stateθi(t). Fur-
thermore, if each sensor knows its own noise varianceσi, it
can setci = 1/σi. From (7), this implies that the sensor with
the smallest noise is the one that mostly influences the final
equilibrium and thus the other sensors estimates. Ideally, if
one sensor has a vanishing noise, it forces all other sensors to
converge to its own estimate. Interestingly, this happens with-
out requiring any sensor to know which other sensor has the
smallest noise. An example of application is reported in Fig.
2, showing the behavior of the state derivativesθ̇i(t) for each
sensor, for the same network topology and noise properties as
in Fig. 1. We can clearly see that in this case, each oscilla-
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Fig. 2. State derivative of each sensor, as a function of itera-
tion index.

tor converges to a noisy estimate, with a constant estimation
variance.

4. GLOBALLY OPTIMAL ESTIMATION THROUGH
LOCAL INTERACTIONS

In the case of linear observation models, the self-synchronization
algorithm described before can be used to achieve globally
optimum maximum likelihood estimates, using only local ex-
change of information, provided that the network is fully con-
nected, as proposed in [18]. Let us consider the observation
model

yi = Aix + wi, (9)

wherex is the unknown parameter vector, assumed to be the
same for all sensors;Ai is the mixing matrix of sensori, and
wi is the observation noise vector, modeled as a circularly
symmetric complex Gaussian vector with zero mean and co-
variance matrixCi. We assume that the noise vectors af-
fecting different sensors are statistically independent of each
other (however, the noise vector present in each sensor may
be colored). Let us denote withL the number of unknowns,
so thatx is a column vector of sizeL. The observation vector
yi has dimensionM . We consider the case where the sin-
gle sensor must be able, in principle, to recover the parameter
vector from its own observation. This requires thatM ≥ L
and thatAi is full column rank. Generalizing the strategy de-
scribed in the previous section to the vector case, in this case
the dynamical system in each node evolves according to the
following vector state equation

θ̇i(t) = x̂
(i)
ML+K(AH

i C−1
i Ai)−1

N∑

j=1

aij f (θj(t)− θi(t)) ,

(10)
with i = 1, . . . , N , wherex̂(i)

ML = (AH
i C−1

i Ai)−1AH
i C−1

i yi

is the local ML estimate. Hence, if the system has the capa-
bility to reach a synchronization state, whereθ̇i(t) = θ̇

∗
(t),

for all i, that state must necessarily be

θ̇
∗
(t) =

(
n∑

i=1

AH
i C−1

i Ai

)−1 (
n∑

i=1

AH
i C−1

i yi

)
. (11)

The conditions insuring the global asymptotic stability of the
synchronized state (11) were established in [20] and are of
the same form as (8). Hence, ifK is sufficiently large, every
sensor reaches the globally optimum ML estimate. The same
approach was also extended to achieve globally optimum de-
centralized detection in [21].

In the presence of propagation delays, the system (6) be-
comes

θ̇i(t) = ωi +
K

ci

N∑

j=1

aij f (θj(t− τ ij)− θi(t)) , (12)

whereτ ij denotes the propagation delay of the signal going
from nodej to nodei. In [22], we proved that, iff(x) is lin-
ear and the maximum delay is bounded, also this system may
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be guaranteed to converge to a unique stable equilibrium. If
the system is capable to detect the sign of the delay (i.e., to
distinguish between delay and anticipation), the final equilib-
rium converges to the equilibrium achievable with no delays,
otherwise the final equilibrium is biased. In the case of a non-
linearf(x), the analysis is more complicated. Nevertheless,
in [22] a small perturbation analysis was used to validate sim-
ulation results showing the convergence of the network.

In summary, in-network processing based on self synchro-
nization mechanisms appears to be a promising strategy. Fur-
ther research developments include the possibility of imple-
menting a totally distributed spatial smoothing, instead of sim-
ple averaging. An interesting aspect to be studied is energy
consumption, in relationship with both network connectivity
and convergence rate. The analysis of time-varying and in-
homogeneous phenomena through a network with, possibly,
time-varying topology, is another topic of interest. Finally, it
can be shown that (6) can be rewritten, under specific assump-
tions on the weightsaij and on the topology, as a diffusion
equation. This remark suggests that information can propa-
gate through the network simply as a diffusion process. This
would pave the way to totally innovative mechanisms to route
the information from where the event occurred to the control
centers.
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