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ABSTRACT thatis amenable to parallel —i.e., distributed — computation. We first

: b P - consider estimation when the observation model is known at each
We consider distributed estimation of a deterministic parametervec-ensor; in some sense generalizing the work of [8] on distributed

Rregsg:g cz)ilr)]t:iger:jogs\,\gglljeti)sn:%?Sc%rnrs]tert;/\ilr?(relt(j. ngseisémﬁg;iggbnsensus (Section 3). To solve this problem we utilize the method
problems. Using the method of multipliers in conjunction with a f multipliers to find the optimal solution as the minimum of the

block coordinate descent approach we demonstrate how the res'aggmented Lagrangian function. We then use a block coordinate

tant algorithms can be decomposed into a set of simpler tasks su lescent algorithm to decompose the minimization of the augmented

able for distributed implementation. We show that these algorithm%agram‘]’ian into simple separable tasks [1] leading to a distributed

have guarateed comvergence to properly defined optimum estimgg S (ST AN VO ol R CE Y,
tors, and further exemplify their applicability to solving estimation (Section 4). While inherently more complicated, the same steps of

problems where the signal model is completely or partially know recasting the estimator as the minimum of a convex function; ii)
at individual sensors. Through numerical experiments we illustrat vina th hod of multinliers: and i ina th bl
that our algorithms outperform existing alternatives pplying the method of multipliers; an ii) separating the problem
’ with a block coordinate descent algorithm, lead to a distributed suc-
cessive refinement algorithm with guaranteed convergence to the
1. INTRODUCTION optimal estimate. We provide corroborating simulations in Section

A major challenge in wireless sensor networks (WSNs) is the com® @nd conclude the paper in Section 6.
putation of parameter estimates based on distributed observations
collected at individual sensors. Severe energy and bandwidth lim- 2. PROBLEM FORMULATION

rithms that are efficient in terms of reducing communication overthe \WSN are represented by a graph whose vertices are the sensors
head and computational cost. o o ~and its edges are formed by the available communication links; see
Arecently introduced class of distributed estimation algorithmsrig. 1. The set of sensors having an active link with th sensor

is based on successive refinement of local estimates maintained @mprise the neighborhood’. The WSN is deployed to estimate
individual sensors. These approaches rely on communication wit| J

X - p . 4 p x 1 parameter vectas based on distributed observati(m§e

one-hop neighbors only, to develop iterative algorithms that even- " * © ) )

tually converge to the desired estimate. In a nutshell, each iteratioR '~ With x; taken at thej-th sensor. Observations are related to

comprises a transmission step in which sensors communicate cehe unknown vector by the linear model

tain information to their neighbors, and an update step in which the )

information collected from all neighbors is used to update the lo- x;=Hjs+n;, je[LM] @)

cal estimate. The notion @bnsensus averagirfgr the estimation

of deterministic unknown parameters using linear data models waghere H. ¢ R-i*P, and the zero-mean noise; € RLi*! has

introduced in [1, 7, 8], whereby each sensor updates its local estj- . . T . T T T .

mate by appropriate weighting the estimates of its neighbors. ACYaManceZnn, = E[njnj]. Definingx := [x;...xy]", H=

more elaborate approach entailing distributed computation of thgH],...,H]T and 2y, = E[nn'], the minimum variance (best)

sample average estimator with the aid of dual decomposition tectinear unbiased estimator (BLUE) is [3]

nigues was studied in [4]. For distributed estimation of a Gaussian 1

random parameter in a scalar linear model, [2] applied the Jacobi 5= (HTz—lH)f H s 1x:— Cx 2

iteration. The same scalar linear model in a dynamical system was nn nn ’

also considered in [6]. While different in focus, these works share 1

the common thread of being successive refinement algorithms basathere C := (H' =, 'H) "H'z,! andH is assumed to be full

on communicating information with one-hop neighbors only. rank. Linear estimators are particularly attractive given the limited
In the present paper, we deal with estimation of unknown detereomputing capabilities of the sensors. If t{'lej }'j‘":1 are normally

ministic parameters of linear (but not necessarily) Gaussian obseistributed sin (2) is also the minimum variance unbiased estimator

vation models. We further consider cases where the signal model {§1VUE) among all (not necessarily linear) estimators.

completely or partially known at individual sensors. Our approach  Notice that the information contained #nis scattered around

amounts to recasting estimators of interest as minimizers of conveshe sensor network. One approach to computing the desietb”

functions under a set of linear constraints. Quite surprisingly, waransmitx; for j = 1,....,M to a fusion center (FC) and then directly

are able to formulate these convex optimization problems in afom&omputa{using (2). Besides being communication costly, this ap-

proach is also prone to FC failures. In this work, we will develop
and Networks Consortium sponsored by the U. S. Army Reseaatio-L Eecerlltraallze% allj%orghms_fforusolvmg (Z)éVIthtdlfferent d_eg!’ees of
ratory under the Collaborative Technology Alliance Progr&ooperative now e. ge aboul. Specifically, we consider two scgnarlos. .
Agreement DAAD19-01-2-0011. The U. S. Government is auteorio (1) With C :=[C,,..., Cy], we assume that senspihas avail-
reproduce and distribute reprints for Government purposgsithstanding able its corresponding pa@j- This may be the case when
any copyright notation thereon. H and X, are known to every sensor. Moreover;Hfj =1,

T Prepared through collaborative participation in the Comioations
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The equivalence between (3) and (4) whetis a bridge set of
sensors is claimed in the following proposition.

Proposition 1 If o/ is a bridge set of sensors, the optimization
problems(3) and (4) are equivalent in the sense that

§=8;, Vi€ [LM] ®)

with § the solution of(3) and {s _ 1 the solution of(4).

Proof: We will show first that the constrain!§ = s_I forl € o/ and
Figure 1: An ad-hoc wireless sensor network. j € /] are equivalent te; ='s; . To this end, conside, |, € </
with Il € andly €4, with the existence off;, 1, guaranteed

by «7’s definition [cf Def 1-(a)]. From the constraints in (4) we

. . . . 2 know that,
is the p x p identity matrix and>nn, = 0“Ip, we have that s :S_| fori=1.2 ©)

C; =Ip/M. The latter is assumed by the vector consensus av- li
eraglng setup in [8]. Onthe other hand, for a connected graph there exists a path of nodes

(s2) The j-th sensor has available its corresponding part of the sig?’ that connect$,, |, € /. Moreover, from Def. 1-(b) we know

nal model; i.e.H; andZn n . This problem is considered in [7]. that every sensdre % must have at least two neighbdssls €
Matricesznjnj can be found in sensgrby sample averaging, o/ NP, otherwise there would be sensorsin .« for which there

. . : T is no sensor in7 at a distance of at most 2 edges from them. We can
while H; can be obtained via model estimation. thus build a path from, tol,, of the forml, — '1 — 1 iy |2

Our approach isto ertbeI the est:jmzﬁtors as the solution of an ap- . _, |J —iy—1,, for WhIChS| =5 = SI, P SI’ =s;=5,.
propriate optimization problem, and then use convex optimizatio
techniques to split the original problem into simpler subtasks th '%:ombmlng the latter with (6), 't fOHOWS thail =5, for arbltrary
can be implemented in parallel [1]. As in e.g., [2,7,8], we assumd 1 J» € [1.M]. Thus, any feasible point of (4) is such tisat=s, for
that: i) the communication channels between neighbor sensors aadl j € [1,M] implying that the arguments of (3) and (4) are equal,
ideal; and ii) the communication graph of the WSN is connected. which completes the proof. |

3. GENERALIZED CONSENSUS AVERAGE The j-th sensor in (4) is associated wkﬂp eRP1 Iflisa

We begin by considering scenario (s1) whereby we want to computeridge sensor, i.el,€ «7, it is also associated wit) € RP*1. The
the BLUE estimator in (2) WheICJ- is available at sensoy. It variables{s, }, ., appear only in the constraints of (4) and guar-

follows easily that the quantity= YV , C. x, is the solution of the ~ 2Nt€€ thas, = ... = sy, imposing in that way the “consensus’ re-
following mir{imizationqproblgm' 2105, quirement across all the sensors. Different from (3), (4) can be im

plemented in a distributed fashion as we describe in the next section.

3.1 A coordinate descent algorithm

To solve (4), we will use a coordinate descent algorithm combined
with the method of multipliers [1]. Consider the augmented La-
Notice that (3) is formulated in terms of the variablemaking itan  grangian of the optimization problem in (4), that is given by
unlikely candidate for distributed implementation. This prompt us

—arg min Z Is —MCx; 5. 3)
=

SGRF’><1

: : M
to define a subset of nodeg C [1,M] and modify (3) as Lalu,5v] = Z Is; —MC|x; 12 @)
" -
N . c _
{Sj}'jwzl = mlnz ”sj_Mijj”% + CONE —S| )+ ||S'—S|||%7
=1 |ezmjezm J 2|ezgmem .
st.sj=s,led, jeN 4)

where we definedu := {sj}g"‘:l, s = {8 }jcy and v =

where we associate the varialﬂe with the j-th sensor. We can {v }'Jeefw The constant > 0 is arbitrary and/']- is the Lagrange

|nterprets] as the local estimate and ideally we would like to haVemuInpher associated with the constraisjt=s;, for j € [1,M] and
s] =sforall j.

The latter would be the case if we impose the constrajnt

= s, Which amounts to settingV [1,M] in (4). Indeed, if
s, = ... = sy, then the arguments in (3) and (4) coincide and so do

the optima. "It turns out, that a relaxed requirementedrsuffices  prghosition 2 Consider the iteration defined for each sensoe |
to guarantee the equivalence of (3) and (4). This requirement 'Fl M] by:

introduced in the following definition.

(S ///j. The multlpllervj is located at thg-th sensor.
The process that relies on (7) to yield a distributed implemen-
tation is described in the following proposition.

1 _
Definition 1 We say that# is a bridge sensor set if and only fif, S (k+1) = Pl 2MCjx; v k)+c s, (k)
(a) V¥ j € [1,M] there exists at least oned < so that I .4]; and - le., le.,
(b) for every sensor;lc 7 there exists a sensoj £ <7 such that ®)
the shortest path betweepdnd L, has at most two edges. _
e shortest path betweepdnd |, has at most two edges 5 (k1) — iV Z v'-(k) /V 5 (k1) led,
As an example, consider the WSN in Fig. 1 where the black ¢l jen A

sensors represent a possible selection of the/&b be a bridge 9)

s,/;z; oi s/e/a;ogrys. The set of bridge neighbpmsill be denoted as (k+1) | ( )+C[S (k+1) -5 (k+1), 1€ ///j (10)
Mi= NN
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Algorithm 1 : C; known at each sensor The algorithm formed by [S1-a], [S1-b], [S2] belongs to the
- M e, class of the so called alternative multipliers methods which as [S1]-
Initialize(s; (0)}Y.4,{5,(0)},.,, and {v( 0)};Z;! ytozero [S2] also converge to the unigue global minimum for any constant
for k=0,1,...do ¢ > 0[1, Chpt. 3]. However, note that (10), (15) and (17) entalil
Bridge sensorke «7: transmits, (k) to its neighbors in4/ local variable updates hinting to the possibility of distributed im-
; . I plementation as we show later; see also Algorithm 1.
Al J € [1,M]: update{v;(K)}; # by (10) To conclude the proof it suffices to show that (8)-(10) are equiv-
Al j € [1,M]: updates; (k-+ 1) using (8). alent to (13), (15) and (17). But since the cost functions involved in
Al je[1L,M]: transmitc*lv'j(k) +sj(k+ 1) to eachl € ., (15) e_md (17)_are convex, _the _optimal 's_olution can be obtained by
Bridge sensorbe .«7: computes;(k+ 1) using (9) applying the first order optimality conditions
end for — .
DSjZa[u(k+ l),S(k),V(k)} = 07 J € [17 M] (18)
Dglfa[u(k+ 1),s(k),v(k)]=0, je «. (19)

where|.#;| and |.4/| denote the cardinality of the set&; and.4

respectively. Then, as  the network reaches consensus; i.e., The gradientsinvolved in (18) and (19) can be easily computed after
differentiating (7) and are given by:

kIim sj(k+1) = kIim s|(k+1) =5, Vje[LM]. (11)
Sl Sl Do Za=2s;~2MCjx;+ § ViK+c ¥ [sjfs—,(k)],
Proof: We wish to show that (8)-(10) generates a succession that le., le.,
converges to the solution of the optimization problem in (4). This _ |
follows from using the method of multipliers [1] to minimize the Dsﬁ‘iﬂa = C‘z// [SI 7sj(k+l)] N Z/i<k>~ (20)
jeM jeM

augmented Lagrangian in (7) and update appropriately the corre-

ding L ltipliers. Let (k) denote the L I-
s.pc.m g agrange mg plers eg( ) ean e. ©Lagrange mu Substituting (20) into (18) and (19), equations (8) and (9) foIIow
tipliers at thek-th iteration. The(k+ 1)-st iteration of the method readily; and thus, (10) coincides with (13).

of multipliers consists of the following two steps:
(k) and definev(k) := {Vl.( )}'6//1 to min- The iteration (8)-(10) can be implemented with a distributed al-
je[LM)’ gorithm whereby all sensorjse [1,M] keep track of the local esti-
mates: j (k) and the Lagrange multlpllel{w (K)}1c.z - The sensors
M,

that also belong ta keep track of these variables and the con-
[u(k+1),5(k+1)] = argminZa[u,s, v(K)] (12)  sensus enforcing variableg(k). The resulting coordinate descent
u,s ' scheme is summarized as Algorithm 1; see also Fig. 2. Akthe
th iteration, sensoj receives the consensus variabiggk) from

[S1] Setv'- = Vli

imize the augmented Lagrangian function in (7) and obtain
sj(k+1) ands,(k+1) as:

with s(k) := {sj(k)}le%j andu(k) := {s-( )}je[1 M all its bridge neighbors € .#;. It uses this information to update
[S2] Update the Lagrange multiplie{w'( KM as its Lagrange muItipIiers{v'j(k)}le//{J using (10) and the result to
computes; (k+ 1) through (8). After completing this iteration step,

vi(k+1) = v} (k+1)+c[s i(k+1) =5 (k+1)], j € [L,M]. sensorj transmits to each of its bridge neighbors .#; the vec-

(13)  torc=vh(k) +s;(k+1). The bridge sensdrreceives the vectors

It is known that if Z3[u, s, v]) is the augmented Lagrangian of a 11

convex optlmlzatlon problem, then [S1]-[S2] converge to the unlqueC (k) 1S (k+ 1) from all its neighborg €./ and proceeds to

global minimum for any constart> 0. omput&sI (k+ 1) using (9). This completes tHeth iteration, and
Notice though that [S1] requires joint minimization of (7) with the bridge sensors proceed to transspik +- 1) to all their neigh-

respect tqu,s) and as such it is not amenable to distributed imple-borsj € .4 starting the(k+ 1)-st iteration.

mentation. A customary turn around is to apply a block coordinate During thekth iteration, a sensof € [1,M] sends to all its

descent method, where we minimiz€{u, s, v(k)] wrt to one vari-  pridge neighbors in#; the vectorss vl (k) +s; (k+1) § (k) €
able at a time, effectively replacing [S1] with px1. . J . ! i
S1-a] For fixedv! = v (k), ands, = s, (k) minimize (7) wrtu to RPPS thus, it transmitgl. ;.\ (J)| scalars. Notice, that for a sen-
[ obtain IS A = sor j € [1,M]\« it holds that|.#Z;\(])| = |.#;]; but for a sensor
u(k+1) = argminZa[u, 5(k), v(K)]. (14) | € &/ it holds that\g//ll\(_l)\ = 4] - 1, since a bridge sen;tbr
u does not have to transm;f(l? +1) to itself. Based on the previous

Since we have from (7) that the variables are decoupled in discussion we can readily infer that each sensor in the WSN has

Za[u,5(K),v(K)], the optimization in (14) is equivalent to the to trgnsmltp\///j\ scalars per iteration. Thus, the ar.noun.t of.lnfor-
M separate optimizations mation that each sensor has to communicate per iteration is in the
orderO(p), which is intuitively reasonable since each sensor wants

S (k+1) = argmina[u,s(k), v(K)]; j € [1,M]. (15) to computes’e RP*1.
Sj

4. DISTRIBUTED BLUE

We now conside( scenario (s2) in which sensors have available only
5(k+1) = argminZafu(k + 1),5,v(K)]. (16) the!r corresponding part of the signal _merI, nanHIJyandannj.
Asin e.g., [7], we assume that the noise is uncorrelated across sen-

_ sors which means th = diag(Z, L2 . The BLUE
As in [S1-a], thes, variables are decoupled ia[u(k+  ggtimator can then beé\,tvnrr:tten asg( uny - Zg)

1),s,v(k)] and (16) is equivalent to [c.f. (7)]

[S1-b] Settings; = s;(k+ 1) we minimize wrt to{s} to obtain

M Y
5 - ' s . L Ts-1 Ts-1
§5/(k+1)=arg nsjlln,%a[u(k—k 1),s,v(K)]; | € & a7 Spiue = (jlej znjnjHj) jZlHj znjnjx]_ (21)
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{81(k) hiem; ~ {1V (R) + 50k + Dies, Algorithm 2 : H; andZn o, known at each sensor
> > s — le.

; ek{i ) Initialize {s;(0)})., {5, (0)},., and{v} (0)}; 11y tozero.
Perform Cholesky factorizatiofB; = L; L]} ;.

for k=0,1,...do o ) . )

{e= (k) + 55k + 1)}je_v,/-\ 5(k+1) Brld.ge sensorbe 7. trelmsmns, (k) tg its neighbors inA;

) > All je[1,M]: update{vj(k)}le%,,j using (27);
le A All je[1,M]: updates; (k+ 1) using (25);

Al j € [1,M]: transmitc v} (K) +s; (k+ 1) to eachl € .;;
Bridge sensorke o: computes, (k+ 1) by solving lower and
upper triangular systems in (29) and (30).

end for

Figure 2: Distributed implementation of Algorithm 1

We assume in (21) that;, H; andZn,n, are known only to thg-

th sensor. In this sense, the estimation algorithm needs not only to Te 1

disseminate the observations but also the signal model. Even thougfith B = 2Hj 2, H; +c|.#j[Ip. Then, as k- o the network
this problem is seemingly more difficult than the one in Section 3yeaches consensus in the sense that

we will develop a similar algorithm. We start by writisg, . in (21)

as the solution of a convex optimization problem in the following lim s;(k+1) = lim s (k+1) =8,,, Vj€[1,M]. (28)
propositior. koo koo
. . . L From (25)-(27) we obtain the distributed Algorithm 2. Interestingly,
Proposition 3 The BLUE estimator if21)is given by: the matrix inversion in (25) can be avoided. Indeed, the marix
M 5 is time invariant, symmetric and positive definite becaug¢| > 0
arg min ‘ ZE.%/.ZHJ-S _ Zﬁ_n/_zxj H ) (22)  for j € [1,M]. Thus, thejth sensor can perform, during the start-up
ueRpt & 11700 17 2 period of the WSN, Cholesky factorization Hj, to find a lower

triangular matriij such thatB]- = LJ-LJ-T. Then during iteratiotk

Similar to (3), the minimization problem in (22) does not lead to of the distributed algorithm,lj(k+ 1) can be computed by solving

distributed implementation motivating the introduction of the fol-

lowing alternative formulation. the lower triangular system
Ts-1 | =
Proposition 4 If o is a set of bridge sensors, the minimization ~ Ljzj(K+1) =2HjZ 5 x;— 5 vi(k)+c 3 s/(k), (29)
problem in (22) is equivalent to le, le,
Y M /2 12, |12 and then obtaining; (k+1) with backward substitution in the upper
{sj}jz1:=arg m'njzl} 2o Hjs) — 2o 17X H2 triangular system

sts;=s,led, jeA, (23) LJTsj(k+ 1) =z(k+1). (30)

inthe sense that=§; Vj € [1,M]. The computational cost for obtainirg(k+ 1) is thusO(p?).

: : : Ts1
The j-th sensor in (23) maintains the local estimsagewith thel-th Since each sensgre [1,M] has available the vectd | 2, x;

bridge sensors also maintainisg The augmented Lagrangian of and the Lagrange muItipIier{s/'j(k)}|€///l, and it receives the con-

the optimization problem in (23) can be written as sensus variableg (K) from all its bridge sensor neighbdrs ./, it
M 2 is able to update the Lagrange multiplien% (K)}ic. 4 through (27)
a(u,s,v) = Z niny ST Sngny Xl and compute; (k+ 1) using (25). Next, sensgrtransmits to all its

=1
l bridge neighbors the vectou:slv'j (K)+s;(k+1)forl € ;. Then,

every sensare «f receives the vector{s:*lv'j (K)+sj(k+1)} e

and formss, (k+ 1) through (26). The communication cost for each
aensor is as in Section 3.1, i,tai,///j| scalars per sensor.

EY SO mee Y S A

e jen leos jeN

Proceeding as in Section 3.1, we minimize (24) using an alternatin
multipliers approach to obtain the following proposition.
Remark 1 Another scheme for computing the BLUE estimator
Proposition 5 Consider the iteration given by: in a distributed fashion was developed in [7] where separate
consensus algorithms are run to determine the mdiyjx,. =

$IL H] =, 4 Hy and vectorfy = Y11 H 2§ ;. With re-
sj(k+1) =Bt ZH}-ZEJ-:II’:IJ-XI' - > v (k) +¢ > sk, spect to [7], our method has the same computational complexity
le.#; le.#, O(p?) while the communication cost is reduced fr@fp?) for the

(25) method in [7] toO(p) for Algorithm 2. Also, as we verify in Sec-
tion 5 our can approach exhibit a considerably faster convergence

_ 1 - )
Ak = 50 3 ViR +si(k+ 1), 1€, (26)  rato.
JEN
vk 1) = vl (9 + cls; (k- 1) — 5 (K+ 1)), | €., @7 5. NUMERICAL RESULTS

In this section, we provide numerical results comparing the perfor-
1Proofs of claims in this paper can be found in [5]. mance of Algorithm 2 in Section 4 against the consensus averaging
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Figure 3: Randomly generated 50-sensor WSN.

Algorithm 2
— — — Consensus Aver.— Max Degree|
N Consensus Aver. — Metropolis

Total Normalized Error E

1078

. .
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Iteration index k

2000

Figure 4: Normalized total error vs iteration indiekor Algorithm
2 and the consensus averaging scheme in [7].

scheme in [7]. The metric used for comparison is the Euclidean
norm of the error between the local estimates and the BLUE estimethod of multipliers, coordinate descent and other optimization

mate. The total normalized error is thus given by

M Jls;(K) = Spqell®

Froml = 2 T el

; (31)
=

wheres; (k) is the local estimate at thigh sensor for thé-th itera-
tion.

techniques to enable parallel/distributed implementation. The resul-
tant algorithms are guaranteed to converge to the (optimal) BLUE
estimate. Numerical results corroborated the asserted convergence
claims and indicated that our algorithms attain faster convergence
rates than existing alternatives.

Future research topics include generalizing our approach to es-
timation of random parameters as well as a better understanding of

the convergence rafe.

We consider a sensor network consisting of 50 sensors; see Fig.
3. The WSN is generated by randomly placing nodes according to
a uniform distribution in the unit squat®, 1] x [0,1]. We assume
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