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ABSTRACT
In recent research efforts, the integration of visual cues into
speech analysis systems has been proposed with favorable
response. This paper introduces a novel approach for lip ac-
tivity and visual speech detection. We argue that the large
deviation and increased values of the number of pixels with
low intensities that the mouth region of a speaking person
demonstrates can be used as visual cues for detecting speech.
We describe a statistical algorithm, based on detection the-
ory, for the efficient characterization of speaking and silent
intervals in video sequences. The proposed system has been
tested into a number of video sequences with encouraging
experimental results. Potential applications include speech
intent detection, speaker determination and semantic video
annotation.

1. INTRODUCTION

Speech analysis systems have attracted increased attention
in recent research efforts. At first, the focus was solely on
the audio information, however visual cues are currently be-
ing incorporated, providing supplementary information in
the analysis process. In [6], the authors argue that a ma-
jor improvement can be obtained by using joint audio-visual
processing, compared to the sole processing of the audio in-
formation.

Indeed, seeing the face of a speaking person facilitates
the intelligibility of the speech, particulary in noisy envi-
ronments. Laboratory studies have shown that visual infor-
mation allows a tolerance of an extra 4-dB of noise in the
acoustic signal [7]. This is a significant improvement con-
sidering that each dB of signal-to-noise ratio is reflected into
a 10-15% error reduction in the intelligibility of complete
sentences [8].

In human-to-human interaction, lip-reading performance
depends on a number of factors [6]. Viewing conditions af-
fect the quality of the visual information. For instance, poor
lighting causes difficulties in determining the mouth’s shape.
Furthermore, as the speaker and the listener move further
apart, it becomes more difficult to observe important visual
cues. Finally, the viewing angle has a major effect on the
recognition process. Inevitably, these limitations are inher-
ited into automatic visual speech analysis systems.

The main research topic in this area is automatic visual
or audio-visual speech recognition (ASR) [9]. Methods for
speech intent detection for human-computer interaction [10]
and multi-modal determination of speaker location and focus
[11] have been also proposed.
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(a) Closed mouth (b) Open mouth

(c) Closed mouth histogram (d) Open mouth histogram

Figure 1: Increase in the number of low intensity pixels in
the mouth region when mouth is open

In our work we present a statistical approach for vi-
sual speech detection, using mouth region intensities. Our
method employs face and mouth region detectors, applying
signal detection algorithms to determine lip activity. The
proposed system can be used for speech intent detection and
speaker determination in human-computer interaction appli-
cations, as well as in video telephony and video conferencing
systems. It can also be used as a component in a dialogue de-
tection system for movies and TV programs. Such a system
can be useful in multimedia data management or semantic
video annotation applications.

2. MOTIVATION

Our method is based on the significant variation of the in-
tensity values of the mouth region that a speaking person
demonstrates. Specifically, as it can be seen in Figure 1, the
opening of the mouth produces a radical increase in the num-
ber of pixels with low intensity values. This is due to the ex-
posure of a part of the oral cavity, which is revealed when a
person is speaking. The intensity values which the oral cavity
pixels possess, belong to the lower grayscale intensity range,
since the oral cavity is usually in the shade. Therefore, we
argue that a large number of mouth region pixels exhibiting
low intensity values can indicate lip activity. This fact can be
used for the visual detection of speech.

We denote byx the number of the low intensity pixels of
the mouth region at a single video frame. In particular,x is
the number of pixels of the mouth region whose grayscale
value is below an intensity thresholdt. Since video excerpts
from different movies, TV programs, or personal cameras
are acquired in diverse lighting conditions, we do not apply a
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Figure 2: Distribution of the number of low grayscale inten-
sity pixels of a video sequence. The rectangle encompasses
the frames where the person is speaking

global threshold for all videos, but a video specific threshold,
computed prior to the analysis of each video sequence. In
order to normalize the value ofx for different sizes of the
bounding box of the mouth region, we divide its value with
the area of the bounding box. Thus, for a video sequence
that consists ofM frames, we create a discrete sequencex[n],
n∈ [0,M−1].

In Figure 2 we depictx[n] for a video sequence display-
ing a person that is silent at first, speaking for a number of
frames – the frames included in the rectangle drawn in Fig-
ure 2 – and then silent again. It is obvious thatx[n] obtains
much higher values when the person is speaking. Moreover,
x[n] exhibits a larger deviation of its values in speaking in-
tervals, due to the moving lips that affect the visible area
of the mouth cavity. For instance, at frame 39x[n] takes a
very small value, even smaller than the values of some of the
‘silent frames’. This is because at this particular instance the
speaking person has his lips joined together to produce the
letter “m”. In the silent frames, the values are much lower
(in average) and exhibit a small deviation from their mean
value. The proposed algorithm exploits the attributes that a
video sequence of a speaking person exhibits. In particular
we make use of
• the increased values ofx[n]
• the large deviation ofx[n]

which are present at the sequence intervals where a person is
speaking.

3. SYSTEM OVERVIEW

Our system consists of three parts:
• Face detection
• Mouth region detection
• Visual speech detection

The main focus of this paper is in describing our approach
for visual speech detection. However, before applying our
detection algorithm, we first have to detect the face in the
video sequence under examination, and then assign at each
frame a bounding box encompassing the mouth region of the
detected face. The face detector we employ is based on the
techniques presented in [2, 3, 4].

For the detection of the mouth region we use the tech-
nique described in [5] for eye detection, modified to detect
mouth regions in facial images. In [5], each pixel is assigned
the slope and the magnitude of the vector from the pixel to

the closest edge point. Thus, a slope and a magnitude map
are formed for each candidate region. Eye detection is per-
formed by comparing these maps against the corresponding
maps of an eye model, in a suitable space derived through
PCA. In our case, a similar approach, employing a mouth
model is applied for mouth region detection.

The visual speech detection system is based on statisti-
cal algorithms, used in signal detection applications. At first
the intensity thresholdt is determined, as half the average
intensity of the mouth region in the first frame, and the num-
ber of pixels below it is computed. The intensity threshold
is increased iteratively when it can not provide sufficient in-
formation about the intensity values of interest, i.e. when
the threshold is low and the number of the selected pixels
is inadequate. The speaking and non-speaking intervals are
determined by applying anenergy detectorand anaverager
to a sliding window, which moves frame-by-frame, spanning
the whole video sequence. The outcomes of the detectors are
compared to their respective thresholds in order to determine
the presence of visual speech in each window. The thresholds
are computed according to the Neyman-Pearson theorem for
each video sequence and are depended on the distribution of
the silent frames.

4. VISUAL SPEECH DETECTION ALGORITHM

The proposed method for the efficient determination of
speaking and non-speaking intervals is based on statistical
signal processing principles, incorporating detection theory
algorithms. Our aim is to decide between two possible hy-
potheses; visual speech present versus no visual speech. We
can translate our hypotheses into a problem of signal detec-
tion within noise. We consider as noise the value ofx when
the mouth is closed, i.e. the value corresponding to the area
of the lips, and as signal the contribution of the area of the
oral cavity that is revealed when a person is speaking to the
value ofx. Hence, in both hypotheses there is noise present
(the pixels of the lip area) whereas when the person is speak-
ing there is signal present as well. Consequently, our hy-
potheses can be stated as follows

H0: Noise only (visual silence)
H1: Signal and noise (visual speech)

Both our signal and noise samples are obtained as the
sum of a number of pixels whose intensity is belowt. Thus,
according to the central limit theorem, we can consider that
the data samples,x[n], follow Gaussian distributions under
both hypotheses. Therefore, in order to discern between vi-
sual speech and silence, we can apply the detection theory
principles for detecting a Gaussian random signal in white
Gaussian noise. We assume that the signals[n] is a Gaussian
process with varianceσ2

s and meanµs and the noisew[n] is
zero mean white Gaussian, with varianceσ2. We have to
note that actually the distribution ofw[n] is not zero mean.
However, we can convert it to zero mean by estimating the
mean value of the noise samples, as presented in the follow-
ing subsection. Consequently, our detection problem can be
described as

H0 : x[n] = w[n], n = 0,1, ...,N−1
H1 : x[n] = s[n]+w[n], n = 0,1, ...,N−1

wherew[n] ∼ N(0,σ2), s[n] ∼ N(µs,σ2
s ), ands[n], w[n] are

assumed to be independent and identically distributed and
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also independent from each other. Hence, the signal can be
discriminated from the noise, based on its mean and variance
differences.

We define theN × 1 random vectorx, consisting of
the random variables (x[0],x[1], ...,x[N−1]). The Neyman-
Pearson theorem states that in order to maximize the proba-
bility of signal detectionPD for a given probability of false
alarmPFA, decideH1 if the likelihood ratioL(x) is larger than
a thresholdγ:

L(x) =
p(x;H1)
p(x;H0)

> γ (1)

wherep(x;H0), p(x;H1) are the multivariate probability den-
sity functions for the respective hypotheses.

From our modelling assumptions,x ∼ N(0,σ2I) under
H0 and x ∼ N(µs1,(σ2

s + σ2)I) underH1, where0 and 1
denote the all-zero and all-one vectors respectively. Thus,
by substituting the density functions in (1), manipulating the
likelihood ratio and incorporating the non-data terms in the
threshold, we have the test statisticT(x):

T(x) = Nµs · 1
N

N−1

∑
n=0

x[n]+
σ2

s

2σ2 ·
N−1

∑
n=0

x[n]2 > γ (2)

which is a function of anaveragerT1(x) = (1/N)
N−1
∑

n=0
x[n],

which attempts to discriminate between the two hypothe-
ses on the basis of the sample mean, and anenergy detector

T2(x) =
N−1
∑

n=0
x2[n], which attempts to discriminate on the ba-

sis of the variance. Withγ we denote the detection threshold.
Consequently, by applying these two detectors, we can

detect visual speech by exploiting the attributes that a speak-
ing person demonstrates. In order to determine the presence
of visual speech both criteria – increased values and large
variance ofx[n] – have to be satisfied. The two detectors are
applied to a sliding window, consisting ofN frames, which
moves frame-by-frame spanning the whole video sequence.
At each window, both detectors are compared to their respec-
tive thresholds,γ1 andγ2, which are computed according to
the analysis that follows. The non-data terms of (2) are in-
corporated in the thresholds.

The averager is used to detect a DC level in the pres-
ence of zero mean Gaussian noise. The detector compares
the sample mean to a threshold. The value of the threshold is
found by constrainingPFA. The probability of false alarm of
the averager is given by

PFA = Pr{T1(x) > γ1;H0}= Q(
γ1√

σ2/N
)

whereQ is the right tail probability of a Gaussian random
variable. Hence, the threshold can be found from

γ1 =

√
σ2

N
Q−1(PFA) (3)

whereQ−1 is the inverse right-tail probability.
The energy detector is used to detect a random Gaussian

signal in zero mean Gaussian noise. The detector computes
the energy of the data samples and compares it to a threshold.
If the signal is present, the energy of the data is large. Again,

the value of the threshold is found by constrainingPFA. The
probability of false alarm can be found by noting that under
H0, T2(x)/σ2 is distributed according to achi-squareddis-
tribution. The right-tail probability function of a chi-squared
random variable is expressed asQχ2

N
(x). Therefore, the prob-

ability of false alarm is

PFA = Pr{T2(x) > γ2;H0}
= Pr{T2(x)

σ2 >
γ2

σ2 ;H0}= Qχ2
N
(

γ2

σ2 )

Thus, the threshold is given by

γ2 = σ2Q−1
χ2

N
(PFA) (4)

However, we have not completely resolved the problem
yet, since in our case the noise standard deviation, which is
involved in threshold determination, and the noise mean, re-
quired to convert the noise into a zero mean process, are not
known a priori.

4.1 Noise Estimation

In the preceding analysis we have assumed zero mean
Gaussian noise and we have concluded that the noise stan-
dard deviation is a prerequisite for the computation of our
threshold. In order to find the actual values of the noise sta-
tistics, we apply an estimation algorithm based on the detec-
tion theory principles we have presented.

The philosophy of the estimation algorithm focuses on
distinguishing efficiently thesignal and noisesamples from
the noise onlysamples, and then calculating the noise’sµ
andσ . This is achieved iteratively, by applying the averager
and the energy detector to our data sequence, each time with
refined estimates of the noise statistics, until they converge to
their final values. This approach, referred to as anestimate
and plugdetector [1], suffers from the possibility that the
estimation will be biased if a signal is present in the initial
estimation.

The algorithm first computes initial estimates ofµ andσ ,
in order to apply the detectors. The initial estimates are com-
puted from the smaller 10% of the data set values, assuming
that these values belong to the noise samples. Thereafter, we
apply the detectors to our data set, employing the noise char-
acteristics we have computed. The detectors distinguish the
noise only samples from the signal and noise samples and
new noise characteristics emerge. This process is repeated
until the difference between two consecutive estimations of
σ is smaller than10−2.

The stages of the noise estimation algorithm for a video
sequence are displayed in Figure 3. It is obvious that the ini-
tial values of the noise statistics result in a modest estimation
of the noise, as depicted in Figure 3b, and only a portion of
the noise samples is identified. These noise samples, how-
ever, are used to obtain a better estimation of the noise char-
acteristics. After two more iterations of the algorithm, shown
in Figures 3c and 3d, where every time more noise samples
are identified and better estimations of the noise characteris-
tics are obtained, the noise only samples are efficiently dis-
tinguished. Hence, in the final step, an accurate estimation
of the noise statistics is available.

It should be noted here that the visual speech detection
procedure outlined in this section involves certain assump-
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Frames Speaking Silent PD PFA
10281 3849 6432 97.14% 3.56%

Table 1: Experimental results

tions as well as small deviations from the statistical detec-
tion theory formulae. However, the experimental results pre-
sented in the next section verify that the proposed methodol-
ogy is valid and efficient.

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of our system, we have
tested it in 28 short video sequences consisting of a total of
10281 frames, displaying individuals that exhibit both speak-
ing and silent intervals. In particular, our test data consist of
3849 speaking and 6432 silent frames, from 7 individuals.
The video sequences are recorded from news programs and
talk shows, hence they correspond to real-life conditions.

As we have already mentioned, the performance of a vi-
sual speech system is influenced by a variety of factors, such
as the viewing angle, the lighting and the distance of the
speaker. In our experiments, the displayed faces are predom-
inantly frontal with dimensions ranging from100× 145 to
195×315pixels. The video sequences selection for our test
data was performed so as to ensure visibility of the lips and
the deformation of the mouth cavity at the speaking inter-
vals. The frames of the video sequences have been manu-
ally marked as speaking or silent, in order to determine the
ground truth. The ground truth was acquired from the visual
perspective; no audio cues were used. The beginning of a
speaking interval is considered as the first frame where the
lips are slightly detached from one another.

In our experiments, we have (theoretically) constrained
PFA to 1% and we have applied the detectors to a data win-
dow consisting of 5 frames. The window was moving frame-
by-frame, spanning the whole data sequence. The decision
obtained for each window position characterized its central
frame, i.e. when it was determined that signal was present
in a certain window, the central frame of the window was
marked as “speaking”.

The probabilities of detection and false alarm were used
as performance indicators for the visual speech detection
problem. Probability of detection (PD) can be defined as
the ratio of the correctly detected speaking frames to the
total number of speaking frames, whereas probability of
false alarm (PFA) can be defined as the ratio of the silent
frames mis-detected as speaking, to the total number of silent
frames. The experimental results are displayed in Table 1.
Most of the false alarms are produced by the opening of the
speakers mouth, either to breathe or to establish his intent
to speak. Furthermore, the visual speech detection system is
prone to suffer from detection errors of the face and mouth
region detectors.

In Figure 4, we present the detection algorithm outcomes
for four video sequences.

6. CONCLUSION

We have presented a novel method for determining lip ac-
tivity and detecting visual speech. Our method uses the in-
tensity information of the mouth region. We argue that the

increase of the number of pixels with low intensity values
that is produced by the opening of a speaker’s mouth can be
used as a cue for the visual detection of speech.

We have implemented a system that employs face and
mouth region detectors and applies an averager and an en-
ergy detector to efficiently distinguish the speaking from the
silent frames of a video sequence. The proposed system has
been tested in a number of video sequences consisting of both
speaking and silent intervals with encouraging performance.
In the future, we plan to test our system to an even larger data
set, and explore the influence of the viewing conditions into
our method’s performance. Additionally, we intend to incor-
porate into our system further visual cues, such as edges, as
well as to examine the integration of audio cues.
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(a) Data set (b) Noise estimation: 1st iteration
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(c) Noise estimation: 2nd iteration (d) Final noise estimation-Signal detection

Figure 3: Noise estimation steps. Dark values: signal and noise present, bright values: only noise present
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(a) Video sequence 1 (b) Video sequence 2
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(c) Video sequence 3 (d) Video sequence 4

Figure 4: Visual speech detection. Dark values: Speaking frames, bright values: silent frames. The dashed rectangle encloses
the speaking frames as defined in the ground truth
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