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ABSTRACT
The problem of choosing the multipath components to be
employed at a selective Rake receiver, the finger selection
problem, is considered for an impulse radio ultra-wideband
system. First, the finger selection problem for MRC-Rake
receivers is considered and the suboptimality of the conven-
tional scheme is shown by formulating the optimal solution
according to the SINR maximization criterion. Due to the
complexity of the optimal solution, a convex formulation is
obtained by means of integer relaxation techniques. Then,
the finger selection for MMSE-Rake receivers is studied and
optimal and suboptimal schemes are presented. Finally, a
genetic algorithm based solution is proposed for the finger
selection problem, which works for various multipath com-
bining schemes. Simulation studies are presented to compare
the performance of different algorithms.

Index Terms— Ultra-wideband (UWB), impulse radio
(IR), Rake receiver, convex optimization, integer program-
ming, genetic algorithm (GA).

1. INTRODUCTION

Recently impulse radio (IR) ultra wideband (UWB) systems
([1]-[4]) have drawn considerable attention due to their suit-
ability for short-range high-speed data transmission and pre-
cise location estimation. In an IR-UWB system, very short
pulses with a low duty cycle are transmitted, and each infor-
mation symbol is represented by positions or polarities of a
number of pulses. Each pulse resides in an interval called
“frame”, and the positions of pulses within frames are de-
termined by time-hopping (TH) sequences specific to each
user, which prevents catastrophic collisions among pulses of
different users [1].

Commonly, users in an IR-UWB system employ Rake
receivers to collect energy from different multipath compo-
nents. A Rake receiver combining all the paths of the in-
coming signal is called an all-Rake (ARake) receiver. Since
a UWB signal has a very wide bandwidth, the number of re-
solvable multipath components is usually very large. Hence,
an ARake receiver is not implemented in practice due to its
complexity. However, it serves as a benchmark for the per-
formance of more practical Rake receivers. A feasible imple-
mentation of multipath diversity combining can be obtained
by a selective-Rake (SRake) receiver, which combines the M
best, out of L, multipath components [5]. Those M best
components are determined by a finger selection algorithm.

For a maximal ratio combining (MRC) Rake receiver,
the paths with highest signal-to-noise ratios (SNRs) are se-
lected, which is an optimal scheme for a linear modulation,
in the absence of interference, such as multi-access interfer-
ence (MAI), inter-symbol interference (ISI) or narrowband

0 This research is supported in part by the National Science Foundation
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interference (NBI). This finger selection method is called
hybrid-selection/MRC (H-S/MRC) scheme in [6] and gen-
eralized selection combining (GSC) in [7], [8]. Although the
strongest multipath components optimize the system perfor-
mance for linearly modulated IR-UWB systems, the optimal
finger selection can be more complicated for pulse-position
modulated (PPM) IR-UWB systems, as investigated in [9]
and [10].

Although finger selection techniques for MRC-Rake re-
ceivers have been considered, finger selection for minimum
mean square error (MMSE)-Rake has not been studied thor-
oughly before. As a straightforward solution, one can con-
sider a finger selection algorithm that chooses the paths with
the highest signal-to-interference-plus-noise ratios (SINRs).
However, this scheme is not necessarily optimal since it ig-
nores the correlation of the noise terms at different multipath
components. A finger selection algorithm for generalized
Rake (GRake) receivers is proposed in [11]. However, this
structure is usually not suitable for UWB systems, since it
considers a system in which the number of fingers is larger
than the number of multipath components, and the extra fin-
gers are used to obtain samples from the noise process. In
other words, the finger selection in [11] focuses on the selec-
tion of “noise fingers”.

In this paper, we provide a complete picture of the
finger selection problem for MRC- and MMSE-Rake re-
ceivers1. In both cases, we present optimal finger selection
algorithms that provide upper bounds on the receiver per-
formance. Then, we consider suboptimal algorithms with
lower complexity, which are obtained by means of integer
relaxation techniques and Taylor approximations. Moreover,
we present a genetic algorithm (GA) based approach to the
finger selection problem, which can be used independently
from the combining scheme; i.e., it is valid for MRC-Rake,
MMSE-Rake, etc.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the transmitted and received signal models in
a multiuser frequency-selective environment. The finger se-
lection problem for the MRC-Rake and the MMSE-Rake is
investigated in Section 3 and Section 4, respectively. Section
5 presents the GA based finger selection algorithm, which
can be applied to both the MRC-Rake and the MMSE-Rake
receivers. Simulation results are presented in Section 6, and
concluding remarks are made in the last section.

2. SIGNAL MODEL

We consider a synchronous, binary phase shift keyed IR-
UWB system with K users, in which the transmitted signal

1Note that the authors have considered the finger selection problem for
MMSE-Rake receivers before in [20] and [17]; however, the results of
those papers are briefly presented here again in order to provide a complete
overview of the finger selection problem.
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from user k is represented by:
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where ptx(t) is the transmitted UWB pulse, Ek is the bit en-
ergy of user k, Tf is the “frame” time, Nf is the number of
pulses representing one information symbol, and b

(k)
bj/Nfc ∈

{+1,−1} is the binary information symbol transmitted by
user k. In order to allow the channel to be shared by
many users and avoid catastrophic collisions, a TH sequence
{c(k)

j }, where c
(k)
j ∈ {0, 1, ..., Nc − 1}, is assigned to each

user. This TH sequence provides an additional time shift of
c
(k)
j Tc seconds to the jth pulse of the kth user where Tc is

the chip interval and is chosen to satisfy Tc ≤ Tf/Nc in
order to prevent the pulses from overlapping. We assume
Tf = NcTc without loss of generality. The random polar-
ity codes d

(k)
j are binary random variables taking values ±1

with equal probability [12]-[14].
Consider the discrete presentation of the channel, α(k) =

[α(k)
1 · · ·α(k)

L ] for user k, where L is assumed to be the num-
ber of multipath components for each user, and Tc is the mul-
tipath resolution. Note that this channel model can model
any channel of the form

∑L̂
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l ) if the chan-

nel is bandlimited to 1/Tc. Then, the received signal can be
expressed as
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(k)
j Tc − (l − 1)Tc) + σnn(t), (2)

where prx(t) is the received unit-energy UWB pulse, which
is usually modelled as the derivative of ptx(t) due to the ef-
fects of the receive antenna, and n(t) is zero mean white
Gaussian noise with unit spectral density.

For the simplicity of the analysis, we assume that the TH
sequence is constrained to the set {0, 1, . . . , NT − 1}, where
NT ≤ Nc − L, so that there is no inter-frame interference
(IFI). However, the finger selection algorithms considered in
this paper are valid for scenarios with IFI as well [15].

Due to the high resolution of UWB signals, chip-rate and
frame-rate sampling are not very practical for such systems.
In order to have a lower sampling rate, the received signal
can be correlated with symbol-length template signals that
enable symbol-rate sampling of the correlator output [16].
The template signal for the lth path of the incoming signal
can be expressed as

s
(1)
temp,l(t) =

(i+1)Nf−1∑

j=iNf

d
(1)
j prx(t− jTf − c

(1)
j Tc

−(l − 1)Tc), (3)

for the ith information symbol, where we consider user 1 as
the desired user, without loss of generality. In other words,
by using a correlator for each multipath component that we
want to combine, we can have symbol-rate sampling at each
branch, as shown in Figure 1.

Note that the use of such template signals results in equal
gain combining (EGC) of different frame components. This

Fig. 1. The receiver structure. There are M multipath com-
ponents that are used by the combiner to obtain a decision
variable.

may not be optimal under some conditions (see [15] for
(sub)optimal schemes). However, it is very practical since it
facilitates symbol-rate sampling. Since we consider a system
that employs template signals of the form (3), i.e. EGC of
frame components, it is sufficient to consider the problem of
selection of the optimal paths for just one frame. Hence, we
assume Nf = 1 without loss of generality. Note, however,
that we can directly apply the finger selection algorithms in
this paper for systems with Nf > 1 as well.

Let L = {l1, . . . , lM} denote the set of multipath com-
ponents that the receiver collects (Figure 1). At each branch,
the signal is effectively passed through a matched filter (MF)
matched to the related template signal in (3) and sampled
once for each symbol. Then, the discrete signal for the lth
path can be expressed, for the ith information symbol, as2

rl = sT
l Abi + nl, (4)

for l = l1, . . . , lM , where A = diag{√E1, . . . ,
√

EK},
bi = [b(1)

i · · · b(K)
i ]T and nl ∼ N (0 , σ2

n). sl is a K × 1
vector, which can be expressed as a sum of the desired signal
part (SP) and multiple-access interference (MAI) terms:

sl = s(SP)
l + s(MAI)

l , (5)

where the kth elements can be expressed as

[
s(SP)
l

]
k

=
{

α
(1)
l , k = 1

0, k = 2, . . . , K
(6)

and
[
s(MAI)
l

]
k

=
{

0, k = 1
d
(1)
1 d

(k)
1

∑L
m=1 α

(k)
m I

(k)
l,m, k = 2, . . . , K

,

(7)

with I
(k)
l,m being the indicator function that is equal to 1 if the

mth path of user k collides with the lth path of user 1, and 0
otherwise.

Out of L incoming multipath components, the received
signals from M of them can be expressed using a selection
matrix X as follows:

r = XSAbi + Xn, (8)

2Note that the dependence of rl on the index of the information symbol,
i, is not shown explicitly.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



where n is the vector of background noise components
n = [n1 · · ·nL]T , and S is the signature matrix given by
S = [s1 · · · sL]T , with sl as in (5). The M ×L selection ma-
trix X is defined as follows: M of the columns of X are the
unit vectors e1, . . . , eM (ei having a 1 at its ith position and
zero elements for all other entries), and the other columns
are all zero vectors. The column indices of the unit vectors
determine the subset of the multipath components that are se-

lected. For example, for L = 4 and M = 2, X =
[0 1 0 0
0 0 1 0

]

chooses the second and third multipath components.
Using (5)-(7), (8) can be expressed as

r = b
(1)
i

√
E1Xα(1) + XS(MAI)Abi + Xn, (9)

where S(MAI) is the MAI part of the signature matrix S.
Let ñ = S(MAI)Abi + n. Then, the received signal can

be expressed as the summation of the signal and the total
noise terms:

r = b
(1)
i

√
E1Xα(1) + Xñ. (10)

Note that this signal model can represent even more gen-
eral scenarios assuming that all the noise components are
collected in ñ. For example, we can include the effects of
the NBI as well. As long as the correlation matrix for ñ is
known, the algorithms in this paper are valid in general.

We consider a linear receiver structure that combines the
elements of r linearly,

y = θT r, (11)

where θ is the weighting vector, and obtain the bit estimate
as the sign of the decision variable, i.e. b̂i = sign{θT r}.

For the linear receiver structure defined above, the SINR
of the output y in (11) can be calculated as

SINR =
E1|θT Xα(1)|2
θT XRXT θ

, (12)

where R = E{ññT } is the correlation matrix of the total
noise vector.

3. FINGER SELECTION FOR MRC-RAKE

For the MRC scheme, the received signal samples selected
by the finger selection algorithm are weighed in proportion
to their channel gains such that the weight vector in (11) is
given by3

θ = Xα(1). (13)

¿From (12), the SINR for the MRC-Rake can be obtained
after some manipulation as

SINRMRC =
E1

(
xT q

)2

xT R̃x
, (14)

where x = diag{XT X},

q =
[(

α
(1)
1

)2

· · ·
(
α

(1)
L

)2
]T

, and (15)

R̃ = diag{α(1)
1 , . . . , α

(1)
L }Rdiag{α(1)

1 , . . . , α
(1)
L }, (16)

3Note that we consider real channel coefficients assuming a carrierless
system. In general, θ =

�
Xα(1)

�∗
, where ∗ denotes the complex conju-

gate operation.

with diag{a1, . . . , aL} denoting an L × L diagonal matrix
(ai representing the ith diagonal element).

Due to the structure of the selection matrix X, the L× 1
vector x in (14) has the structure that [x]i = 1 if the ith path
is selected, and [x]i = 0 otherwise; and

∑L
i=1[x]i = M .

In other words, x can be considered as an “assignment vec-
tor”, which selects the multipath components corresponding
to indices of its non-zero elements [17].

3.1. Conventional Scheme

The conventional way of choosing the multipath components
to be used at the MRC-Rake receiver is to select the signal
paths with the largest channel gains [6]-[8]. This scheme is
called H-S/MRC [6], or GSC [7] in the literature. In this
case, the assignment vector x is given by

[x]i =

{
1, if

∣∣∣α(1)
i

∣∣∣ ≥
∣∣∣α(1)

(M)

∣∣∣
0, otherwise

, (17)

where α
(1)
(1), . . . , α

(1)
(L) denotes the ordered set of channel co-

efficients such that
∣∣∣α(1)

(1)

∣∣∣ > · · · >
∣∣∣α(1)

(L)

∣∣∣. Then, the SINR
expression in (14) can be expressed as

SINRMRC =
E1

(∑
l∈S

∣∣∣α(1)
l

∣∣∣
2
)2

∑
i,j∈S α

(1)
i [R]ij α

(1)
j

, (18)

where S is the set of indices of the strongest multipath com-
ponents.

Note that the conventional scheme is optimal if R = σ2I;
i.e., if the noise components are i.i.d4. In that case, the SINR
is given by

SINR =
E1

σ2

∑

l∈S

∣∣∣α(1)
l

∣∣∣
2

. (19)

In some cases, the noise components are dependent and
R is not diagonal. For example, the MAI, IFI or NBI can
cause colored noise, hence dependent noise components. In
such cases, the conventional algorithm is not optimal, since
it does not the maximize the SINR expression in (18) in gen-
eral. In the next subsection, we investigate the overall opti-
mal scheme.

3.2. Optimal Solution

In order to evaluate the performance of the conventional fin-
ger selection algorithm for MRC-Rake receivers, we con-
sider the maximization of the SINR expression in (14) as-
suming that the correlation matrix R is known. This solution
not only provides an upper bound for the performance of any
finger selection algorithm that operates in the presence of un-
known colored noise, but also helps quantify the performance
loss due to the conventional finger selection algorithm.

¿From (14), the optimal finger selection algorithm for
MRC-Rake can be expressed as the solution of the follow-

4More generally, the MRC scheme weights the selected multipath com-
ponents in proportion to their SNR values. In that case, the MRC scheme
with conventional finger selection is optimal for independent noise compo-
nents.
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ing optimization problem:

arg max
x

xT qqT x
xT R̃x

(20)

subject to xT 1 = M (21)

x ∈ {0, 1}L (22)

Note that this is a combinatorial problem, and the optimal so-
lution requires an exhaustive search. Therefore, we consider
a suboptimal solution in the next subsection.

3.3. Suboptimal Solution

Since the optimization problem in (20) is NP-hard, we aim
to simplify the problem in such a way to obtain a convex
optimization problem. Because over the past decade, both
powerful theory and efficient numerical algorithms have been
developed for nonlinear convex optimization, it is now rec-
ognized that the watershed between “easy” and “difficult”
optimization problems is not linearity but convexity. For ex-
ample, the interior-point algorithms for nonlinear convex op-
timization are highly efficient, both in worst case complexity
(provably polynomial time) and in practice (very fast even
for a large number variables and constraints) [18].

As a first step to obtain a convex problem, we first relax
the integer constraint in (22). In other words, instead of opti-
mizing the objective function in (20) over all possible binary
values, we relax the constraint to a convex region, such as
a hypercube, and optimize the objective function consider-
ing this convex constraint. Assuming that we relax (22) to a
hypercube, we can replace (22) by the following constraint:

0 ¹ x ¹ 1, (23)

where u º v means that [u]1 ≥ [v]1, . . . , [u]L ≥ [v]L.
After the relaxation of the integer constraint, we still need

some manipulation in order to formulate the problem as a
convex optimization problem. To that end, we define new
variables w = x/(qT x) and z = (qT x)−1. Then, the opti-
mization problem in (20)-(22) can be expressed as

arg min
w,z

wT R̃w (24)

subject to wT 1−Mz = 0 (25)
z ≥ 0 (26)
w º 0 (27)
w − z1 ¹ 0 (28)

qT w = 1 (29)

Note that the optimization problem given by (24)-(29) is
convex in the new variables, since the objective function is
quadratic and the constraints are linear. In other words, this
is a linearly constrained quadratic programming (LCQP),
which can be solved by interior-point algorithms [18] for the
optimal [wT z]T . Then, the optimal x is obtained by the rela-
tion x = (z)−1w, and the indices of the largest elements of
the optimal x vector determines the multipath components to
be used at the MRC-Rake receiver.

4. FINGER SELECTION FOR MMSE-RAKE

For an MMSE-Rake receiver, the received signal samples se-
lected by the finger selection algorithm are combined in such
a way to minimize the MSE between the information bit b

(1)
i

and the decision variable in (11). In this case, the weighting
vector θ in (11) is given by [19]

θ = R̂−1Xα(1), (30)

where R̂ = XE{ññT }XT is the correlation matrix of noise,
with ñ = S(MAI)Abi+n. Note that, for equiprobable binary
symbols, R̂ can be expressed as

R̂ = XS(MAI)A2(S(MAI))T XT + σ2
nI. (31)

Hence, the SINR of the system can be obtained from (10),
(11), (30) and (31) as

SINRMMSE(X) =
E1

σ2
n

(
α(1)

)T

XT

×
(
I +

1
σ2

n

XS(MAI)A2(S(MAI))T XT

)−1

Xα(1). (32)

4.1. Conventional Scheme

Instead of minimizing the SINR expression in (32), the
“conventional” finger selection algorithm for MMSE-Rake
chooses the M paths with largest individual SINRs, where
the SINR for the lth path can be expressed as

SINRl =
E1(α

(1)
l )2

(s(MAI)
l )T A2s(MAI)

l + σ2
n

, (33)

for l = 1, . . . , L.
This algorithm is not optimal because it ignores the cor-

relation of the noise components of different paths. There-
fore, it does not always maximize the overall SINR of the
system given in (32). For example, the contribution of two
highly correlated strong paths to the overall SINR might be
less than the contribution of one strong and one relatively
weaker, but uncorrelated, paths. The correlation between the
multipath components is the result of the MAI from the other
users in the system5.

4.2. Optimal Scheme

The optimal finger selection problem can be formulated as

arg max
X

SINRMMSE(X), (34)

where SINRMMSE(X) is given by (32) and X has the previ-
ously defined structure.

Note that the objective function to be maximized is not
concave and the optimization variable X takes binary val-
ues, with the previously defined structure. In other words,
two major difficulties arise in solving (34) globally: noncon-
vex optimization and integer constraints. Either makes the
problem NP-hard. Therefore, it is an intractable optimiza-
tion problem in this general form.

4.3. Suboptimal Schemes

Since the optimal solution in (34) is quite difficult, we first
consider an approximation of the objective function in (12).
When the eigenvalues of 1

σ2
n
XS(MAI)A2(S(MAI))T XT are

5More generally, the correlations can result from any colored noise pro-
cess.
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considerably smaller than 1, which occurs when the MAI is
not very strong compared to the background noise, we can
approximate the SINR expression in (12) as follows6:

SINRMMSE(X) ≈ E1

σ2
n

(α(1))T XT

×
(
I− 1

σ2
n

XS(MAI)A2(S(MAI))T XT

)
Xα(1). (35)

Then, the SINR expression can be expressed, after some ma-
nipulation, as follows [20]:

SINRMMSE(x) =
E1

σ2
n

(
qT x− 1

σ2
n

xT Px
)

, (36)

where x is the L× 1 assignment vector, q is as in (15), and

P = diag{α(1)
1 · · ·α(1)

L }S(MAI)A2(S(MAI))T diag{α(1)
1 · · ·α(1)

L }.
(37)

Then, we can formulate the finger selection problem as
follows:

minimize
1
σ2

n

xT Px− xT q

subject to xT 1 = M,

x ∈ {0, 1}L. (38)

Note that the objective function is convex since P is pos-
itive definite, and that the first constraint is linear. However,
the integer constraint increases the complexity of the prob-
lem. Similar to the previous section, we consider integer re-
laxation techniques to obtain convex problems. In this case,
we consider two different relaxation techniques.

4.3.1. Case-1: Relaxation to Sphere

Consider the relaxation of the integer constraint in (38) to a
sphere that passes through all possible integer values. Then,
the relaxed problem becomes

minimize
1
σ2

n

xT Px− xT q

subject to xT 1 = M,

(2x− 1)T (2x− 1) ≤ L. (39)

Note that the problem becomes a convex quadratically con-
strained quadratic programming (QCQP) [18]. Hence it can
be solved for global optimality using interior-point algo-
rithms in polynomial time.

4.3.2. Case-2: Relaxation to Hypercube

As an alternative approach, we can relax the integer con-
straint in (38) to a hypercube constraint and get

minimize
1
σ2

n

xT Px− xT q

subject to xT 1 = M,

0 ¹ x ¹ 1. (40)

6More accurate approximations can be obtained by using higher order
series expansions for the matrix inverse in (12). However, the solution of
the optimization problem does not lend itself to low complexity solutions in
those cases.

Note that the problem is now an LCQP, and can be solved by
interior-point algorithms [18] for the optimal x.

After solving the approximate problem (39) or (40), the
finger locations are obtained by the indices of the M largest
elements of the optimal x vector.

5. FINGER SELECTION VIA GENETIC
ALGORITHMS

Note that the low-complexity finger selection schemes in
Section 4.3 for the MMSE-Rake receiver are suboptimal due
to both the integer relaxation and objective function approx-
imation steps. Similarly, the scheme in Section 3.3 for the
MRC-Rake is suboptimal due to the integer constraint relax-
ation.

Another approach to Rake finger selection is to employ
binary GAs to solve the finger selection problem without us-
ing any integer relaxation or objective function approxima-
tion [20].

The GA is an iterative technique for searching for the
global optimum of an objective function [21]. It starts with a
set of binary vectors7, and iteratively searches for the optimal
value by updating the set of vectors in each iteration.

For the finger selection problem, we consider the exact
SINR expression given by (14) for the MRC-Rake or by
(32) for the MMSE-Rake. Then, we try to maximize the
exact SINR expression over the assignment vector x. The
GA-based finger selection algorithm can be summarized as
follows [20]:

• Generate Nipop different assignment vectors ran-
domly.

• Select Npop of them with the largest SINR values.

• Pairing: Pair Ngood of the finger assignments accord-
ing to the weighted random scheme [21], in which
each assignment vector is chosen with a probability
that is proportional to its SINR value.

• Mating: Generate two new assignments from each
pair (as described below).

• Mutation: Change the finger locations of some as-
signments randomly except for the best assignment
(one 1 and one 0 are randomly chosen and flipped from
a selected assignment vector).

• Choose the assignment vector with the highest SINR
if the threshold criterion is met; go to the pairing step
otherwise.

In the mating step, from each assignment pair, two new
pairs are generated in the following manner: Let x1 and x2
denote two finger assignments, and let px1 and px2 consist of
the indices of the multipath components chosen as the Rake
fingers. Then, the indices of the new assignments are chosen
randomly from the vector p = [px1 px2 ]. If the new assign-
ment is the same as x1 or x2, then the procedure is repeated
for that assignment.

Commonly, the algorithm is stopped after a certain num-
ber of iterations. In other words, the threshold criterion is
that the number of iterations exceeds a given value. The pa-
rameters that determine the tradeoff between complexity and
performance of the algorithm are the number of iterations,
Nipop, Npop, Ngood, and the number of mutations at each
iteration.

7Although we consider only the binary GA, continuous parameter GAs
are also available [21].
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Fig. 2. Average SINR of an MRC-Rake receiver versus Eb/N0 for
M = 5 fingers, where Eb is the bit energy.

6. SIMULATION RESULTS

Simulations have been performed to evaluate the perfor-
mance of various finger selection algorithms for an IR-
UWB system with Nc = 20 and Nf = 1. In these sim-
ulations, there are five equal energy users in the system
(K = 5) and the users’ TH and polarity codes are ran-
domly generated. We model the channel coefficients as
αl = sign(αl)|αl| for l = 1, . . . , L, where sign(αl) is
±1 with equal probability and |αl| is distributed lognor-
mally as LN (µl, σ

2). Also the energy of the taps is ex-
ponentially decaying as E{|αl|2} = Ω0e

−λ(l−1), where λ

is the decay factor and
∑L

l=1 E{|αl|2} = 1 (so Ω0 =
(1 − e−λ)/(1 − e−λL)). For the channel parameters, we
choose λ = 0.1, σ2 = 0.5 and µl can be calculated from
µl = 0.5

[
ln( 1−e−λ

1−e−λL )− λ(l − 1)− 2σ2
]
, for l = 1, . . . , L.

We average the overall SINR of the system over different re-
alizations of channel coefficients, TH and polarity codes of
the users.

In Figure 2, we plot the average SINR of an MRC-Rake
receiver for different noise variances when M = 5 fingers
are to be chosen out of L = 15 multipath components. For
the GA, Nipop = 32, Npop = 16, and Ngood = 8 are used,
and 8 mutations are performed at each iteration. As is ob-
served from the figure, the convex relaxation of the optimal
finger selection and the GA based scheme perform consid-
erably better than the conventional scheme, and the GA gets
very close to the optimal exhaustive search scheme after 10
iterations. Note that the gain achieved by using the proposed
algorithms over the conventional one increases as the back-
ground noise decreases, since the noise correlation increases
in that case as the MAI becomes more dominant. Also note
that the GA performs considerably better than the suboptimal
solution based on the convex relaxation.

In Figure 3, the same performance evaluation is obtained
for an MMSE-Rake receiver with various finger selection al-
gorithms. Note the increase in the average SINR levels com-
pared to Figure 2, which is due to the optimal linear MMSE
combining after the selection step. Another significant ob-
servation is that the suboptimal solutions based on convex
relaxations and the GA are very close to the optimal solu-
tion. Also the conventional scheme is within 3.3 dB of the
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Fig. 3. Average SINR of an MMSE-Rake receiver versus Eb/N0

for M = 5 fingers.
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Fig. 4. Average SINR versus number of fingers M . There are 10
users with each interferer having 10dB more power than the desired
user.

optimal scheme in this case.
Finally, we plot, in Figure 4, the average SINR at an

MMSE-Rake receiver using the proposed suboptimal and
conventional techniques for different numbers of fingers,
where there are 50 multipath components and Eb/N0 =
20dB. The number of chips per frame, Nc, is set to 75, and
10 users with E1 = 1 and Ek = 10 ∀k 6= 1 are considered
(all other parameters are kept the same as before). In this
case, the optimal algorithm takes a very long time to simu-
late since it needs to perform exhaustive search over many
different finger combinations and therefore it was not imple-
mented. The improvement using the convex relaxations of
optimal finger selection or the GA based scheme over the
conventional technique decreases as M increases since the
channel is exponentially decaying and most of the signifi-
cant multipath components are already combined by all the
algorithms. Also, the GA based scheme performs very close
to the suboptimal schemes using convex relaxations after 10
iterations with Nipop = 128, Npop = 64, Ngood = 32, and
32 mutations.
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7. CONCLUSIONS

We have investigated the finger selection problem for MRC-
and MMSE-Rake receivers, and presented optimal and sub-
optimal finger selection schemes. Specifically, the con-
ventional finger selection algorithms have very low com-
plexity; however, performance loss can be considerable in
interference-limited scenarios compared to the other subopti-
mal algorithms. Also, the GA based scheme provides a good
performance-complexity trade-off due to its iterative nature
with flexible parameters.
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