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ABSTRACT

In current cellular communication systems the time-selective
fading process is highly oversampled. We exploit this fact for
time-variant flat-fading channel prediction by using dynami-
cally selected predefined low dimensional subspaces spanned
by discrete prolate spheroidal (DPS) sequences. The DPS
sequences in each subspace exhibit a subspace-specific band-
width matched to a certain Doppler frequency range. Ad-
ditionally, DPS sequences are most energy concentrated in
a time interval matched to the channel observation interval.
Both properties enable the application of DPS sequences for
minimum-energy (ME) bandlimited prediction. The dimen-
sions of the predefined subspaces are in the range from one
to five for practical communication systems. The subspace
used for ME bandlimited prediction is selected based on a
probabilistic bound on the reconstruction error.

By contrast, time-variant channel prediction based on
non-orthogonal complex exponential basis functions needs
Doppler frequency estimates for each propagation path
which requires high computational complexity. We compare
the performance of this technique under the assumption of
perfectly known complex exponentials with that of ME ban-
dlimited prediction augmented with dynamic subspace se-
lection. In particular we analyze the mean square prediction
error of the two schemes versus the number of discrete prop-
agation paths.

1. INTRODUCTION

In mobile communication systems channel state information
at the transmitter proves to be beneficial for increasing the
system capacity. In a time-division duplex (TDD) system
channel state information can be obtained while a data block
is received and used for the subsequent transmission period
by exploiting channel reciprocity. However, for moving users
at vehicular speed the channel state information gets out-
dated rapidly and thus appropriate prediction is necessary.

In mobile communication systems the Doppler band-
width is much smaller than the actual channel bandwidth.
Thus the time-selective fading process is highly oversam-
pled. Time-limited snapshots of the sampled fading process
span a subspace with small dimension. The same subspace
is also spanned by time-limited discrete prolate spheroidal
(DPS) sequences [1]. The energy concentration of the DPS
sequences in time is matched to the length of the observa-
tion interval, i.e. the length of the data block. The band-
limitation is chosen according to the Doppler bandwidth of
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the time-selective fading process. Slepian [2] showed that
time-limited snapshots of a bandlimited sequence can be con-
tinued uniquely in the minimum-energy (ME) bandlimited
sense. We use this property for ME bandlimited prediction
of time-variant flat-fading channels [3].

In [4, Sec. 12.7] a solution to the prediction problem is
shown using a linear MMSE (Wiener) filter. This filter can
be closely approximated by a reduced-rank maximum like-
lihood (ML) filter according to [5]. For both predictors full
knowledge of the Doppler power spectral density is required.
By contrast the ME bandlimited predictor [3] needs knowl-
edge of the Doppler bandwidth only. We show in [6] that ME
bandlimited prediction is equivalent to reduced-rank maxi-
mum likelihood prediction for a process with flat Doppler
spectrum. Using analytic performance results we prove that
the prediction error is strongly dependent on the Doppler
bandwidth, while the actual shape of the Doppler spectrum
is of minor importance [6].

The ME bandlimited predictor in [3] utilizes the Doppler-
bandwidth estimator proposed in [7]. The estimator in [7]
assumes a Doppler spectrum according to Clarke’s model [8].
Thus specular Rice components lead to biased estimates as
well as channels with a small number of specular propaga-
tion paths. The estimator proposed in [9] is less sensitive to
deviations from Clarke’s model, however requires large obser-
vation intervals and an SNR larger than 30 dB. In this paper
we develop a subspace selection procedure for ME bandlim-
ited prediction that avoids the need for an explicit Doppler
bandwidth estimate.

Contributions of the Paper

• We use a predefined set of subspaces. The DPS sequences
in each subspace exhibit a subspace-specific bandwidth
matched to a certain Doppler frequency range. The en-
ergy concentration of the DPS sequences is matched to
the channel observation time interval. We obtain prob-
abilistic bounds on the reconstruction error of each sub-
space using the method from [10]. The subspace with the
smallest reconstruction error is used for channel predic-
tion.

• We present numerical performance results in terms of
mean square error versus Doppler-bandwidth for ME
bandlimited prediction with dynamic subspace selection.
The results are compared with those of a Wiener predic-
tor [4, Sec. 12.7] and a predictor that is derived based on
the assumption that the channel is composed by a finite
number of specular paths [11].

Notation

We denote a column vector by a and its i-th element with
a[i]. Similarly, we denote a matrix by A and its (i, ℓ)-th ele-
ment by [A]i,ℓ. The transpose of A is given by AT, its con-
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jugate transpose by AH. A diagonal matrix with elements
a[i] is written as diag(a) and the Q × Q identity matrix as
IQ. The absolute value of a is denoted by |a| and its com-
plex conjugate by a∗. The largest (smallest) integer that is
lower (greater) or equal than a ∈ R is denoted by ⌊a⌋ (⌈a⌉).

Organization of the Paper

We introduce the signal model in Section 2. ME bandlim-
ited prediction is reviewed in Section 3. In Section 4 we
describe the dynamic subspace selection method and Monte-
Carlo simulation results are presented in Section 5. Finally,
concluding remarks are provided in Section 6.

2. SIGNAL MODEL FOR TIME-VARIANT
FLAT-FADING CHANNELS

We consider a time division duplex (TDD) communication
system transmitting data in blocks of length M over a time-
variant channel. The symbol duration is much longer than
the delay spread of the channel, i.e. TS ≫ TD. Hence we
assume the channel as frequency-flat. Discrete time at rate
RS = 1/TS is denoted by m. The channel incorporates the
transmit filter, the transmit antenna, the physical channel,
the receive antenna, and the receive matched filter. The
data symbols b[m] are randomly and evenly drawn from a
symbol alphabet with constant modulus, i.e. |b[m]| = 1.
The discrete-time signal at the matched filter output

y′[m] = h[m]b[m] + n′[m] (1)

is the superposition of the data symbol multiplied by the
sampled time-variant channel weight h[m], and complex
white Gaussian noise n′[m] with variance σ2.

We assume an error-free decision feedback structure [12,
13]. Thus we are able to obtain noisy channel observations

using the error-free data symbol estimates b̂[m] = b[m]:

y[m] = y′[m]̂b[m]∗

= h[m] + n′[m]̂b[m]∗ = h[m] + n[m] . (2)

Notice that n[m] has the same statistical properties as n′[m].
The signal-to-noise ratio (SNR) is SNR = 1/σ2.

The transmission is block oriented. A data block corre-
sponds to the time interval IM = {0, . . . ,M − 1}. The noisy
channel observations y[m], m ∈ IM , obtained during a single
date block are used to predict the channel weight up to N
symbols into the future.

The electromagnetic field at the receiver is the superpo-
sition of the contribution of the individual fields of P im-
pinging wave fronts. Each wave front is conceived as orig-
inating from a specific scatterer. For a user moving with
velocity v the time-variant fading process {h[m]} will be
bandlimited by the one-sided normalized Doppler bandwidth
νD = vfCTS/c0 where fC is the carrier frequency and c0
stands for the speed of light.

Without loss of generality {h[m]} is a zero-mean, circu-
larly symmetric, unit-variance (due to power control) pro-
cess. We assume a time-variant block-fading channel model.
Hence the fading process {h[m]} with correlation function
Rh[k] = E{h∗[m]h[m + k]} is wide-sense stationary over the
limited time interval IM+N (c.f. Section 5.1).

3. MINIMUM-ENERGY BANDLIMITED
PREDICTION

In this section we review the concept of ME bandlimited
prediction of a time-variant flat-fading channel [3,6].

3.1 Channel Estimation

The channel coefficients for a single block of length M are
collected in the vector h = [h[0], h[1], . . . , h[M − 1]]T and
the covariance matrix is defined as Σh = E{hhH} with el-
ements [Σh ]ℓ,m = Rh[ℓ −m]. The noisy observation vector
y = [y[0], y[1], . . . , y[M − 1]]T is used for channel prediction.
Its covariance matrix reads Σy = Σh + (1/SNR)IM .

We consider a subspace-based approximation which ex-
pands the vector h in terms of D orthonormal basis vectors
ui = [ui[0], ui[1], . . . , ui[M − 1]]T, i ∈ {0, . . . ,D − 1}:

h ≈ Uγ =

D−1X
i=0

γiui . (3)

In this expression U = [u0, . . . ,uD−1] and γ =
[γ0, . . . , γD−1]

T contains the basis expansion coefficient. The
least square estimate of γ simplifies to γ̂ = UHy due to the
orthogonality of the basis functions.

The reconstruction error per data block is defined as

z =
1

M
‖h − ĥ‖2 =

1

M
‖UH

n‖2 +
1

M
‖V H

h‖2 (4)

where ĥ = Uγ̂, V = [uD, . . . ,uM−1] contains the
basis vectors spanning the subspace orthogonal to the
signal subspace U and the noise vector is defined as
n = [n[0], n[1], . . . , n[M − 1]]T. The mean square recon-
struction error writes MSE = E{z}.

We seek basis vectors ui minimizing the reconstruction
error per data block. Discrete prolate spheroidal (DPS) se-
quences {ui[m]} time limited to IM form such basis vec-
tors for a fading process with flat Doppler spectrum [1].
The properties of DPS sequences are analyzed by Slepian
in [2]. DPS sequences are bandlimited to the frequency
range [−νD, νD] and simultaneously most concentrated in
IM . They are defined as

M−1X
ℓ=0

sin(2πνD(ℓ−m))

π(ℓ−m)
ui[ℓ] = λiui[m] , (5)

for m ∈ Z where Z denotes the set of integers. The sequences
{ui[m]} and the eigenvalues λi depend on the Doppler band-
width νD and the observation interval length M . We omit
this dependence to keep the notation simple.

Both, the DPS sequences {ui[m]} and their restriction
on IM form orthogonal sets. The eigenvalues λi decay ex-
ponentially for i ≥ D′. The essential subspace dimension is
defined as

D′ = ⌈2νDM⌉ + 1 . (6)

The vectors ui satisfy the eigenvalue decomposition
Cui = λiui, where

[C ]l,m =
sin(2πνD(ℓ−m))

π(ℓ−m)
, ℓ,m ∈ IM . (7)

Knowing ui we can continue the sequence {ui[m]} over Z in
the ME bandlimited sense [2] by evaluating (5).

The subspace dimension minimizing the MSE for a given
SNR is found to be [14]

D = argmin
D̃∈{1,...,M}

0� 1

2νDM

M−1X
i=D̃

λi +
D̃

M

1

SNR

1A . (8)
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Figure 1: Symmetric bandlimiting regions with (one sided)

bandwidth ν
(q)
D = q/Q νDmax, q ∈ {1, . . . , Q} used to define

a set of Q subspaces. The q-th subspace is spanned by the
columns of U q.

3.2 Channel Prediction

So far we treated the channel estimation problem for a chan-
nel observed over a time interval IM . We used orthogonal
basis vectors that result from time limiting an infinite se-
quence to the interval IM . The DPS sequences are most
energy concentrated in this interval.

However, the main interest of this paper lies on chan-
nel prediction. Slepian points out [2, Sec. 3.1.4] that there
are infinitely many ways to choose the channel samples h[m],
m ∈ Z\IM such that the infinite sequence {h[m]} is bandlim-
ited. However, there exists a unique way to extend a ban-
dlimited sequence in the sense of a ME continuation. This
is achieved by using the DPS sequences {ui[m]}.

We can express the ME bandlimited prediction of the
fading process for any m ∈ Z as

ĥ[m] = f [m]Tγ̂ =

D−1X
i=0

γ̂iui[m] , (9)

where f [m] = [u0[m], . . . , uD−1[m]]T.
For a processes with flat spectrum the mean square

prediction error per symbol MSE[m] can be expressed by

MSE[m] = E{|h[m] − ĥ[m]|2} = 1 −PD−1
i=0 λi|ui[m]|2. For a

general Doppler power spectral density (mismatched case)
this expression provides a lower bound (for more details
see [6]).

4. DYNAMIC SUBSPACE SELECTION

We are interested in a low-complexity channel predictor. To
this end we develop a dynamic subspace selection scheme for
ME bandlimited prediction that does not need an explicit
Doppler bandwidth estimate. Firstly, we define a set of sub-
spaces. The orthogonal basis vectors spanning each subspace
are calculated once and then kept fixed. Secondly, we pro-
pose a subspace selection method based on the observation
of a single data block.

4.1 Subspace Definition

We define the maximum Doppler bandwidth νDmax =
vmaxfCTS/c0 as system parameter given by the maximum
user velocity vmax. We define a set of Q subspaces with (one

sided) Doppler bandwidth ν
(q)
D = q/Q νDmax, q ∈ {1, . . . , Q},

see Fig. 1. The DPS sequences {ui[m, ν
(q)
D ]} correspond-

ing to a Doppler bandwidth ν
(q)
D are calculated according to

(5). We define the subspace U q = [u0(ν
(q)
D ), . . . ,uDq

(ν
(q)
D )],

where the vectors ui(ν
(q)
D ) are the sequences {ui[m, ν

(q)
D ]}

time-limited to IM . The dimension of the subspace Dq

spanned by U q grows with increasing q due to the increasing

spectral support 2ν
(q)
D (c.f. (6) and (8)).

4.2 Subspace Selection

In [10] an information theoretic subspace selection scheme is
proposed. This method uses the observable data error

xq =
1

M
‖y − ĥq‖2 (10)

where
ĥq = U qU

H
q y , (11)

to obtain a bound on the reconstruction error

zq =
1

M
‖h − ĥq‖2 (12)

which cannot be observed directly. For the subspace selec-
tion h is considered deterministic. We adapt the results
from [10] to complex valued variables. The reconstruction
error zq is a sample of a random variable Zq which is dis-
tributed as [10, Lemma 1]

2M

σ2

�
Zq − 1

M
‖V H

q h‖2

�
∼ χ2

2Dq
(13)

where χ2
2Dq

is a Chi-square random variable of order 2Dq .

Assuming ‖V H
q h‖2 is known, the reconstruction error is

bounded with probability p1 according to z′q ≤ zq ≤ z′q,

where z′q = Dqσ
2/M + 1/M‖V H

q h‖2 −Gq(p1, σ, 2Dq)

and z′q = Dqσ
2/M + 1/M‖V H

q h‖2 +Gq(p1, σ, 2Dq).
The term Gq(p1, σ, 2Dq) is calculated by solving
p1 = F (2Dq + 2GqM/σ2, 2Dq) − F (2Dq − 2GqM/σ2, 2Dq)
numerically for Gq . The Chi-square cumulative distribution
function with n degrees of freedom is denoted by F (x,n).

The data error xq is a sample of a random variable Xq

which is distributed as [10, Lemma 2]

2M

σ2
Xq ∼ χ2

2(M−Dq) . (14)

Because 2(M −Dq) is large we can invoke the Central Limit
Theorem to approximate Xq with a Gaussian random vari-
able. The term 1/M‖V H

q h‖2 is bounded with probability p2,

i.e. Bq ≤ 1/M‖V H
q h‖2 ≤ Bq . The bounds Bq and Bq are

given in [10, Theorem 1]. Finally, we use the upper bound

zq =
Dq

M
σ2 +Bq +Gq(p1, σ, 2Dq) ≥ z′q (15)

on the reconstruction error to select the appropriate sub-
space q spanned by the columns of U q, q = argminq zq. The
chosen subspace U q is used for ME bandlimited prediction.

5. MONTE-CARLO SIMULATIONS

5.1 Physical Wave Propagation Channel Model

We simulate the fading process {h[m]} using physical wave
propagation principles [8, 15]. The electromagnetic field at
the receiver is the superposition of the contribution of the
individual fields of P impinging plane waves. Each plane
wave is conceived as originating from a specific scatterer.
Under these assumption the channel weight is of the form

h[m] =
P−1X
p=0

ape
j2πfpTSm =

P−1X
p=0

ape
j2πνpm . (16)

Here fp is the Doppler shift of wave p. For easier notation
we define the normalized Doppler frequency as νp = fpTS.
Notice that |νp| ≤ νD < 1/2. The gain and phase shift of
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path p are embodied in the complex weight ap ∈ C. We
model the random parameter sets ap and νp, p ∈ {0, . . . , P −
1} as independent. The random variables in each set are
independent and identically distributed. The path angles
αp are uniformly distributed over [−π, π) and the Doppler
shift per path νp = cos(αp)νD. The path weights are defined

as ap = 1/
√
P [cos(ψp) + j sin(ψp)] where ψp are uniformly

distributed over [−π, π). Under the above assumptions, the
covariance function of h[m] converges to Rh[k] = J0(2πνDk),
for P → ∞ where J0 is the zeroth order Bessel function of
the first kind [8].

We assume a time-variant block-fading channel model
comprised of P paths. Hence the random path parameters
ap and νp are assumed to be constant over a block of M +N
symbols. However, the path parameters ap and νp change
independently from block to block therefore the short-time
Doppler spectrum changes as well.

We note that the over-idealized simulation models from
Jakes [16] or Zheng [17] are not suitable for the evaluation
of channel prediction algorithms. This is because a sym-
metric distribution of the scatterers with equidistant spac-
ing is assumed in [16, 17]. However real-world channels will
not show equidistantly spaced scatterers. Prediction algo-
rithms assuming a finite number of specular paths [18] show
optimistically biased performance due to this over-idealized
scatterer distribution.

5.2 Simulation Parameters

The symbol duration TS = 20.57 µs is chosen ac-
cording to the system parameters considered in [1].
The speed of the receiver varies in the range
0 ≤ v ≤ vmax = 100 km/h = 27.8 m/s. The carrier fre-
quency is fC = 2GHz. This results in a Doppler bandwidth
range 0 ≤ BD ≤ 180 Hz. Thus, the normalized Doppler
bandwidth ranges 0 ≤ νD ≤ νDmax = 3.8 · 10−3. The
channel is observed over M = 256 symbols. We are
interested in the prediction error at a prediction horizon
of m − M + 1 ∈ {32, 128} symbols. At speed vmax

the prediction horizon {32, 128} relates to a distance of
{λ/8, λ/2} where λ = c0/fC denotes the wavelength. For
all simulations the SNR is 10 dB. All simulation results
are averaged over 1000 independent channel realizations.
The probabilities p1 and p2 for the subspace selection are

chosen as p1 = p2 =
R α

−α
(1/

√
2π)e−x2/2d x with α = 8, i.e.

p1 = p2 ≈ 1 − 10−15.

5.3 Choice of the Number of Subspaces Q

We use the Cramer Rao lower bound (CRLB) for frequency
estimation of a single complex exponential in white Gaussian
noise [4, Sec. 15.10] to obtain a suitable choice on the number
of subspaces Q. In the case of multiple paths P the energy
per paths will be reduced by 1/P and we can utilize

θ =
1

νDmax

s
6Pσ2

(2π)2M(M2 − 1)
≤
p

var(ν̂)

νDmax
(17)

as lower bound on the relative frequency resolutionp
var(ν̂)/νDmax. In Fig. 2 we plot θ versus the number of

paths P for an SNR ∈ {0, 10, 20} dB. Fig. 2 documents that
the lower bound on the frequency resolution is in the or-
der of 0.01νDmax to 0.1νDmax for P = 20 propagation paths.
We choose to partition the range of the Doppler bandwidth
0 ≤ νD ≤ νDmax into Q = 10 intervals, see Fig. 1.

5.4 Complexity

The complexity of the proposed ME bandlimited predictor
with dynamic subspace selection is mainly determined by the
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Figure 2: Lower bound on the frequency resolution (17) ver-
sus number of paths P . The SNR ∈ {0, 10, 20} dB.

complexity of projecting the observation vector y on all Q
subspaces U q in (11). This operation requires 2(

PQ
q=1Dq)M

complex multiply accumulate instructions. The calculation
of the lower bound on the reconstruction error involves sim-
ple arithmetics or look-up tables of which the complexity
and can be neglected.

A predictor based on complex exponentials needs
Doppler shift estimates for all P paths. Most methods for
Doppler shift estimation rely on an eigenvalue decomposition
of the channel’s sample covariance matrix [19]. The complex-
ity of the eigenvalue decomposition grows with PM2. Hence
the overall complexity of complex-exponential-based predic-
tors is much higher than the one of the ME bandlimited
predictor with dynamic subspace selection.

5.5 Simulation Results

Monte Carlo simulations have been performed to contrast the
performance of the three following predictors: The Wiener
predictor [4, Sec. 12.7], the ME bandlimited predictor and a
predictor derived based on the specular path model (16) [11].
The later predictor knows the number of paths and their
Doppler shift. The MSE of all three predictors are reported
in Fig. 3 and Fig. 4 for two different prediction horizons
m−M + 1 ∈ {32, 128}.

The ME bandlimited predictor with dynamic subspace
selection (denoted ‘ME bandlimited’) performs better than
a Wiener predictor (denoted ‘Wiener predictor’) which is
designed using the long-term Clarke [8] Doppler power spec-
tral density. Comparing the ME bandlimited predictor to
a predictor based on complex exponentials (denoted ‘compl.
exponential’) we can see the following results: For a short
prediction horizons m −M + 1 = 32 (Fig. 3) the predictor
based on complex exponentials perfroms better for P = 2
and νDM > 0.8 only. For a longer prediction horizon
m − M + 1 = 128 (Fig. 4) the crossover point for P = 2
is at νDM = 0.4 and for P = 4 at νDM = 0.8.

6. CONCLUSION

We presented a minimum-energy (ME) bandlimited pre-
dictor with dynamic subspace selection. Each subspace is
matched to a certain Doppler bandwidth. The dimensions of
the predefined subspaces are in the range from one to five for
practical communication systems. The subspace applied for
ME bandlimited prediction is selected based on a probabilis-
tic bound on the reconstruction error. The ME bandlimited
predictor with dynamic subspace selection performs better
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Figure 4: Mean square prediction error MSE[m] at predic-
tion horizon m−M + 1 = 128.

than a predictor based on complex exponentials for channels
with more than ten propagation paths.
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Fleury, “Time-variant channel prediction using time-
concentrated and band-limited sequences,” in Proc.
IEEE International Conference on Communications
(ICC), Istanbul, Turkey, May 2006, to be presented.

[4] S. Kay, Fundamentals of Statistical Signal Processing:

Estimation Theory. Upper Saddle River (NJ), USA:
Prentice-Hall, 1993.

[5] F. A. Dietrich and W. Utschik, “Pilot-assisted chan-
nel estimation based on second-order statistics,” IEEE
Trans. Signal Processing, vol. 53, no. 3, pp. 1178–1193,
March 2005.

[6] T. Zemen, C. F. Mecklenbräuker, and B. H.
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