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1 Introduction 
A radar echo is characterized by a Doppler shift depending on 
the target radial motion. Usually only ambiguous radial speed 
is extracted from Moving Target Detector with an accuracy 
depending on the bank filters width; then the ambiguity may 
be eliminated employing several algorithms. The radial 
acceleration may be estimated by the polynomial phase 
evolution of the collected target echoes. Several work has 
been done about the computation of the Cramer Rao Lower 
Bound (CRLB) of estimation [1]; the aim of this paper is to 
illustrate an algorithm, based on Maximum Likelihood 
Estimator (MLE), to estimate also radial acceleration. The 
accuracy of the estimation has been analyzed theoretically by 
means of the CRLB (Cramer Rao Lower Bound) and by 
means of Monte Carlo simulation. This  kinematic parameter 
of the target may be exploited, for instance, to discriminate an 
ABT (Air Breathing Target) vs. a BT (Ballistic Target). 

2 Model of the data 
Consider a radar system operating with M bursts, each 
characterized by N pulses, Pulse Repetition Time (PRT) Tj, 
wavelength λj, with j=1,…,M. The signal received from the i-
th transmitted pulse of the j-th burst has the following 
expression: 
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ijij neAz ij += ϕ              (1) 

with i=1,…,N and j=1,…,M. The complex amplitude is 
represented by Aij, nij is the noise sample, ϕij is the phase of 
the received signal, whose value depends on an initial phase 
and the target movement. Indicate range as ρ, the relationship 
between the range and the phase is: 
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where ϕ0j is the initial phase which is maintained during each 
burst; it changes every burst. The range derivative with 
respect to the time, indicated by ρ& , gives the radial speed; ρ&&  
is the second derivative of the range with respect to the time, 
i.e.: the radial acceleration. The thermal noise samples are 
Gaussian, independent, with zero mean and variance  
which is considered constant during all the bursts. Assume a 
Swerling 1 target model, the amplitude is considered constant 

during each burst, so 
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initial phase of each burst, ϕ0j, is accounted by the complex 
value of the amplitude Aj. The probability density function 
(p.d.f.) of the received signal , conditioned to Aijz j, ρ&  and 

ρ&& , is: 
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The received signals and the noise samples can be collected 
respectively into the matrices  and [ ]MzzZ L1=

[ ]MnnN L1= . Let A be the vector containing the 
amplitudes at each burst and  be the 
contribution of phase exponential, then the p.d.f. of the vector 
z

[ ]MssS L1=

j, conditioned to Aj, ρ&  and ρ&& , is: 
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where the matrix  is the noise covariance matrix 
(  is the N-dim identity matrix). Being the received signals 
z

NIM 2σ=

NI
j statistically independent, the p.d.f. of matrix Z can be 

expressed as the product of the p.d.f. of eq. (4), for j=1,…,M: 
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3 Characterization of radial acceleration 
The Doppler shift due to a relative radial movement of the 
target is λρ&2=df ; it is unambiguous if 2PRFfd < . By 
replacing  the following limitation is obtained: 

df

4
PRF⋅

<
λρ&            (6) 

The Doppler shift due to a relative radial acceleration of the 
target is λρTfd &&2= . The corresponding limitation is: 

4

2PRF⋅
<
λρ&&            (7) 

Eq.s (6) and (7) are the ambiguity limitations respectively for 
the value of ρ&  and ρ&& . The ambiguity problem limits the 
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estimation capabilities of the system: most of the targets of 
interest have ambiguous speed, so only radial acceleration is 
correctly estimated. For example, consider a radar working at 
frequency f=9.1 GHz, with T=50 µs, then the ambiguity 
limitations are sm /164<ρ&  and 2/206062 sm<ρ&& . It is 
evident from the numerical example that there are several 
targets which are characterized by ambiguous speed, while 
there isn’t any kind of target with ambiguous acceleration. 
The estimators described in the following sections estimate 
the ambiguous value of ρ&  referred to the interval given by 
eq. (6) and the true non ambiguous value of ρ&& . 

4 MLE algorithm in case of one burst 
Consider the case M=1; the ρ&&  estimation, joint to the 
unknown parameters ( ρ&  and real and complex parts of 
amplitude,  and ), is obtained by the maximization of 
the likelihood function, i.e. the logarithm of p.d.f. of eq. (4): 
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In the minimization of ),,( AQ ρρ &&&  the problem of ambiguity 
of the radial speed must be accounted. The estimation, which 
is based on the Newton Raphson recursive minimization 
algorithm, can be separated into four steps as represented in 
Figure 1: 
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2. Estimation of ambiguous speed  in the 
hypothesis 
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3. Initialization of the Newton Raphson recursion with 
the following values: 
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where  is a more accurate estimation of the 
amplitude. 

inÂ

4. Application of Newton Raphson recursive algorithm 
to find the minimum of eq. (8). 

The Newton Raphson algorithm usually achieves the real 
value of the acceleration with a reasonable number of 
iterations when the SNR is enough large.  
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Figure 1: block diagram of the algorithm employed for radial 
acceleration estimation. 

5 CRLB in case of one burst 
The computation of Cramer Rao Lower Bound (CRLB) is 
performed by means of the inversion of the Fisher 
Information Matrix (FIM). Let z be the collected data set 
conditioned to the parameters  to be 
estimated, whose p.d.f. is the Gaussian of eq. (12) where both 
mean value  and covariance matrix  might depend 
on the estimated parameters: 
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The i,j element of the FIM Jij is [1]: 
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where Tr indicates the trace of the argument. The FIM has 
been computed in case of (i) known ρ& , A, and ; (ii) 
unknown 

2σ
ρ& , known A and ; (iii) unknown 2σ ρ& , A, and . 

It will be shown analytically that the noise power estimation 
is totally irrelevant to the target parameters estimation. 

2σ

5.1 Known radial speed, amplitude and noise power 
In this case [ ]ρ&&=ξ ; mean value and covariance matrix of 
data respectively are  and , which 
doesn’t depend on the parameter to be estimated. The FIM 
reduces to only one term [see Appendix]: 
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The CRLB is obtained by the inverse of eq. (14). Notice that 
the ratio 22 σA  coincides with the SNR. If the number of 
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pulses N in the time on target  is enough large, eq. (14) 
can be simplified with the following asymptotic expression 
[see Appendix]: 
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5.2 Known amplitude and noise power 
In this case . The FIM is [see Appendix]: [ ]Tρρ &&& ,=ξ
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By the inversion of the FIM and the extraction of the main 
diagonal elements the CRLB is obtained ( [ ] 1,1

12 −= Jρσ &
 and 

[ ] 2,2
12 −= Jρσ &&

). If N is enough large, CRLB can be simplified 
with the following asymptotic expressions [see Appendix]: 
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By the comparison of eq.s (15) and (18), it is evident that the 
estimation of radial speed deteriorates radial acceleration 
estimation of a factor 4 in term of standard deviation.  

5.3 Unknown amplitude and noise power 

In this case . The FIM is [see 
Appendix]: 
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where λπα T= . Notice that the elements J11, J12, J21, J22 of 
the matrix are equivalent to the elements of FIM of eq. (16). 
The estimation of the noise parameter doesn’t change the 
CRLB of the estimation of the target parameters, because the 
covariance matrix C doesn’t depend on the target parameters 
and the mean value µ doesn’t depend on the noise parameter. 
The estimation of ρ&  and ρ&&  is degraded just only by the joint 
estimation of the amplitude, because the level of uncertainty 
has increased. The degradation of the CRLB due to amplitude 

estimation can be quantified by partitioning the matrix of eq. 
(19) as follows: 
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where D is equal to the FIM of eq. (16). The portion of the 
inverse of the FIM corresponding to D is : 
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D         (22) 

The term  quantifies the 
degradation of the CRLB introduced by the amplitude 
estimation. When N is enough large the expression of the 
CRLB can be simplified with the following asymptotic 
expressions [see Appendix]: 
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Notice that the expressions in brackets correspond exactly to 
the eq.s (17) and (18); thus the introduction of the amplitude 
estimation has deteriorated the accuracy (standard deviation) 
of ρ&  and ρ&&  estimation respectively of a factor 2 and 1.5.  

6 MLE algorithm for M burst 
The likelihood function is the logarithm of p.d.f. of eq. (5): 
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The estimation accuracy that can be achieved, in case of M 
burst, is improved just of a factor M ; notwithstanding the 
total number of processed pulses is Ntot=M⋅N, every N pulses 
the observation of the phase is reset because of the changing 
of the values of transmitted frequency and PRT. The 
estimation of ρ&&  throughout M bursts jointly processed is 
equivalent to the case of M parallel estimators (see the block 
diagram of Figure 1) which processes N pulses. 
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7 Results 
In Figure 2, 3 and 4 the CRLB has been computed for one 
burst, N=80, N=160, N=240 and T=50 µs, f=9.1 GHz. For the 
case N=240, also a Monte Carlo simulation of ML algorithm 
has been performed as described in section 4 by means of 
500 independent trials (see asterisks). Figure 2(a) shows the 
square root of CRLB of ρ&&  estimation vs. SNR in case of 
known ρ& , A and ; for SNR=0 dB and N=240, the 
distribution of estimation errors has been reported in Figure 
2(b). It is evident that the distribution is unbiased, and its 
standard deviation (4.6 m/s

2σ

2) is very close to the theoretical 
CRLB. Figure 3(a) and 3(b) show respectively the square root 
of CRLB of ρ&  estimation respectively in case of known and 
unknown A. Figure 4(a) and 4(b) show respectively the 
square root of CRLB of ρ&&  estimation respectively in case of 
known and unknown A. Notice that in Figures 2, 3 and 4 the 
asymptotic curves of CRLB have not been reported because 
they are coincident with the true curves because of the high 
number of integrated pulses. In Table 1 a summary of the 
results is reported: the first two columns are pertinent to 
theoretical accuracies; while the third and the fourth columns 
are pertinent to simulated data (200 independent trials, M=3, 
N=80, T1=50 µs, T2=52.5 µs, T3=55 µ s, f1=9.1 GHz, f2=9.2 
GHz, f3=9.3 GHz) in case of known and unknown A and ρ& . 
Simulated accuracy is very close to the CRLB obtained for 
one burst (i.e.: N=80) multiplied by a factor 3 . 
 

8 Conclusions 
The paper analyzes a method to estimate radial acceleration 
jointly to other target parameters (i.e.: ρ&  and A). The 
estimator performance has been analyzed in case of one burst 
and M burst, in both analytical and simulated ways. To have 
an exploitable estimate of ρ&&  an accuracy of at least 10 m/s2 
is needed. To achieve this level of accuracy very high SNR is 
needed. 
 
To improve the estimation, some a-priori knowledge about ρ&  
and A may be exploited. Every burst an estimate of radial 
speed from the Moving Target Detector (MTD),  and of 
amplitude from extractor, , are available, respectively 

with the accuracies 

MTDρ̂&

extÂ

extσ  and MTDσ . The could be inserted 
into the functional of eq.s (8) (26), which would be 
minimized only with respect to ρ&& . Unfortunately the 
uncertainty on ρ&  may determine an uncertainty on the phase 
which is larger than the phase contribution due to the radial 
acceleration which is very low: In this case the estimation of 
ρ&& radial acceleration is meaningless. Also the introduction of 
the estimation of amplitude from extractor is, as before, quite 
destructive   for   the  estimation  of ρ&& .   Notice that from the 
 

Table 1: simulated accuracy obtained for M=3 and N=80, compared to 
CRLB vs. SNR per single pulse 

ρ&&CRLB  (N=240) Simulated  ρσ &&

(M=3, N=80) 

SNR 
[dB] 

known A ρ&  Unknown A ρ&  known A ρ&  unknown A ρ&  

 -10 11.69 70.56 ∼106  
    0 3.7 22.31 ∼33 ∼205 
  10 1.17 7.06 ∼11 ∼65 
  20 0.37 2.23 ∼3.4 ∼20 
  30 0.12 0.71 ∼1 ∼6.5 

 

 

N=240 

(a) (b) 

Figure 2: (a) CRLB of radial acceleration estimation, in case of known 
amplitude and radial speed, for N=80, N=160 and N=240; (b) 
distribution of estimation errors of radial acceleration over 500 
independent Monte Carlo trials, for SNR=0 dB and N=240. 
 

 

(b) (a) 

Figure 3: CRLB of estimated radial speed in case of known and 
unknown amplitude, for N=80, N=160 and N=240. 
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Figure 4: CRLB of estimated radial acceleration (with unknown radial 
speed) in case of known and unknown amplitude, for N=80, N=160 and 
N=240. 
 
extractor only an information on the level of the signal is 
available; i.e.: A ; so the real and complex parts of 
amplitude, which are necessary for the estimator, are in 
practice unknown. A simple MLE of radial acceleration is not 
“able” to exploit directly the information from MTD and 
extractor; an analytical way to exploit this information 
consists of constrained MLE. The constraints to apply to the 
estimator are a mathematical way to quantify some a-priori 
information. The estimator becomes: 

( ) ( )( ){ }

( )
( )⎪

⎪

⎩

⎪
⎪

⎨

⎧

ℵ∝

ℵ∝

=

MTDtrue

extractortrue

p

σρρ
σ

ρρρρ
ρρ

,
,

,,/lnmaxargˆ,ˆ,ˆ
,,

&&

&&&&&&
&&&

AA

AZA Z
A

         (27) 

The constrained MLE estimates four parameters, but 
considers the A and ρ&  as Gaussian variable with mean value 
coincident with their true value and the variance is given by 
the extractor and MTD. This estimator accounts and describes 
into an analytical way the fact that the information from 
extractor and MTD is not perfectly correct. This approach 
will be surely characterized by a performance which is better 
than the one obtained in case of unknown A and ρ& , while it 
will be surely worse than the case of known A and ρ& . The 
performance of this estimator may be the object of a 
following paper 

9 References  
[1] S. M. Kay, Fundamentals of Statistical Signal Processing, 
Volume I: Estimation Theory, Prentice Hall PTR, 1993. 
 

[2] E.L.Crosson, J.B. Romine, D. Willner, S.J. Kusiak,  
Boost-Phase Acceleration Estimation, IEEE 2000 Radar 
Conference, pp. 210-214, 7-12 May 2000. 
 
[3]S. Pelag, B. Porat, The Cramer-Rao Lower Bound for 
Signal with Constant Amplitude and Polynomial Phase, IEEE 
Trans. on Signal Processing, vol. 39, no. 3, pp. 749-752, 
March 1991. 

(b) (a) 

10 Appendix 
The derivatives of eq. (13) are: 
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Combining the previous derivatives the FIM elements are 
obtained. 
 
The sums into eq.s (14), (16) and (19), when N is enough 
large, can be simplified as follows: 
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By replacing the sums with the previous simplifications the 
asymptotic expressions of CRLB are obtained. 
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