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ABSTRACT

As is known, satellite positioning is based on measuring the
delay experienced by a Spread Spectrum (SS) signal that
propagates from the satellite to the receiver. In such a sce-
nario, the more accurate the delay estimation is, the more
precise user position computation will be. This paper derives
a criterion to improve position accuracy, based on minimiz-
ing the variance of time-delay estimation at the receiver. In
particular, it focuses on designing sequences with specified
constraints on the aperiodic auto-correlation sequence. The
techniques used to meet such constraints are based on differ-
ence sets obtained from power residue classification.

1. INTRODUCTION

Satellite positioning is based on estimating in the receiver
the propagation times of a set of Spread Spectrum (SS) sig-
nals broadcast by multiple satellites at known locations. By
performing at least four such measurements, the receiver can
uniquely obtain its own spatial coordinates and time refer-
ence [1].

In such a scenario, position accuracy thus depends on
delay estimation accuracy. In other words, the variance of
the delay error must be kept as low as possible, so that re-
ceiver operation can be cast into a conventional parameter
estimation problem, to be tackled with the tools of estima-
tion theory [2], and, particularly, signal synchronization [3].
Acquisition and tracking issues for ranging codes are well
documented in the literature [4], but the fundamental limits
of these functions and the techniques to get close to such lim-
its are relatively less investigated.

This paper deals with pseudorandom sequences which
modulate the navigation data. In particular, this contribution
is concerned with the design of new sets of spreading codes,
which minimize the Craḿer-Rao Bound (CRB) on the vari-
ance of delay estimation. Our approach follows cyclotomic
theory and power residue classification.

After this introduction, Section 2 investigates for the
CRB, identifying the goals to be attained in improving time-
delay estimation, whereas Section 3 describes the design of
optimum spreading sequences. Results are shown in 3.3,
while some conclusions are eventually drawn in Section 4.

This work was supported by the Network of Excellence in Wireless
Communications NEWCOM of the European Commission FP6, contract
no. 507325.

2. STATEMENT OF THE PROBLEM

The basic format of a bandpass SS signal for positioning is

xBP(t) =
√

2Cℜ

{
+∞

∑
k=−∞

ckg(t−kTc)ej(2π f0t+θ)

}
, (1)

whereC is the average power of the signal,ℜ{·} denotes
the real part of a complex-valued argument,f0 is the carrier
frequency,θ is the carrier phase,Tc is the chip time, andg(t)
is a real-valued shaping pulse with energyTc. The sequence
c = {ck = ±1}N−1

k=0 , also referred to asranging code, is a
pseudorandom binary sequence. For the sake of simplicity,
data modulation in (1) has been neglected.

Assuming ideal coherent demodulation, baseband-
equivalent of the received signal1 can be modeled as

z(t) = x(t− τ)+n(t) =
√

2C
+∞

∑
k=−∞

ckg(t− τ −kTc)+n(t),

(2)
where τ is the time delay experienced by the SS signal
when propagating from the satellite to the receiver (as seen
in the time reference frame of the receiver), andn(t) rep-
resents complex-valued additive white Gaussian noise with
two-sided power spectral density 2N0.

As is known, the ranging codec has spectral properties
similar to a random binary sequence, but is actually deter-
ministic [5]. As stated in the introduction, the problem of
accurate positioning can be cast into aparameter estimation
problem. Therefore, optimization deals with the fundamental
accuracy bounds on parameter estimation. The Cramér-Rao
Bound (CRB) [2], which is a lower bound on the error vari-
ance of any unbiased estimate, can provide a useful bench-
mark for positioning accuracy.

The CRB is formulated in terms of the likelihood func-
tion of the scalar parameter to be estimated. Letr(t) be a
segment onN consecutive chip intervalsTc of the noisy re-
ceived signal (2), i.e.

r(t) =
√

2C
N−1

∑
k=0

ckg(t−kTc− τ)+n(t). (3)

Sincec is known to the receiver, the only unknown pa-
rameter is the delayτ. We can process the observed signal
r(t) with someunbiased estimator, to derive an estimatêτ of
the signal delayτ. Let

ε ,
τ̂ − τ

Tc

1Unless otherwise stated, only baseband equivalents of bandpass signals
will be considered.
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be the normalized timing error. The varianceσ2
ε of anyun-

biased estimator ofε (the so-calledjitter variance) is lower
bounded by [2], [3]

σ
2
ε = Er{ε

2} ≥CRB(ε) ,

[
Er

{[
Tc

∂

∂τ
ln p(r|τ)

]2
}]−1

,

(4)
where r is a vector representation ofr(t) on a complete
orthonormal basis [2],p(r|τ) is the conditional probability
density function (pdf) ofr for a givenτ (the likelihood func-
tion of τ), andEr{·} denotes statistical expectation with re-
spect top(r).

Equation (4) gives a criterion to optimize the perfor-
mance in terms of position accuracy by optimizing delay es-
timation accuracy. It can be shown [3] that the estimation
variance of the simple Delay Locked Loop (DLL) attains the
CRB. So it makes sense trying to find the particular ranging
codesc’s that minimize the CRB (4) for delay estimation.

3. MINIMIZATION OF CRB(ε) UPON THE CODE

3.1 Optimization criterion

In this section, the relation between ranging codes and
CRB(ε) is investigated. The dependence ofCRB(ε) on the
ranging codec is not apparent in (4). Nonetheless,r(t) and
thusr depend on{ck} as in (3), and soCRB(ε) is a function
of the particular values of{ck}.

After some manipulations,CRB(ε) can be rewritten as

CRB(ε) =
N0

Tc

∫
Tobs

∣∣∣ ∂x(t−τ)
∂τ

∣∣∣2dt
, (5)

whereTobs is the observation interval. Therefore, to increase
accuracy, the optimum ranging codecopt should be such that

copt = argmax
c

{ ∫
Tobs

∣∣∣ ∂x(t−τ)
∂τ

∣∣∣2dt

}
. (6)

Let Tobs = NTc, with N � 1. Neglecting the constant term√
2C in (3) and taking into account the boundary effect in

(6),

∫
Tobs

∣∣∣∣∂x(t− τ)
∂τ

∣∣∣∣2dt

u
N−1

∑̀
=0

N−1

∑
k=0

c`ck

+∞∫
−∞

ġ(t−`Tc−τ)ġ(t−kTc−τ)dt, (7)

with ġ(t) , ∂g(t)/∂ t. Let m[`] , ∂ 2

∂ t2
[g(t)⊗g(−t)] |t=`Tc. In

view of Parseval’s theorem, (7) can be rewritten as

∫
Tobs

∣∣∣∣∂x(t− τ)
∂τ

∣∣∣∣2dt =−Tc

N−1

∑̀
=0

N−1

∑
k=0

c`ckm[k− `].

As can be verified, for each finite-energy pulseg(t) there ex-
ists `′ such that|m[`]/m[0]| � 1 for |`| > `′, with m[0] < 0

andm[−`] = m[`]. Thus,copt can be well approximated by

copt u argmin
c

{
`′

∑̀
=1

sgn{m[`]}R(a)
c (`)

}
, (8)

whereR(a)
c (`) is theaperiodicauto-correlation ofc

R(a)
c (`) ,

1
N

N−1−`

∑
n=0

cncn+`,

and

sgn{x},

{
+1, x≥ 0,

−1, x < 0.

Our aim is to find a setC of optimum codes to be pos-
sibly assigned to different satellites. So far, no considera-
tions were made about off-peak auto-correlation and cross-
correlation properties, which play a central role in systems
engineering [6]. Let

R(p)
c(s)(`) ,

1
N

N−1

∑
n=0

c(s)
n c(s)

n+` (modN) (9)

and

R(p)
c(s)c(t)(`) ,

1
N

N−1

∑
n=0

c(s)
n c(t)

n+` (modN)

be theperiodic auto-correlation sequence ofc(s) and peri-
odiccross-correlation sequence betweenc(s) andc(t), respec-
tively. Ideally, our sequences should belong to a setC , where
the following two properties hold:

• for each sequencec(s) ∈ C ,
∣∣∣R(p)

c(s)(`)
∣∣∣�1 for ` 6= 0;

• for each pairc(s),c(t)∈C ,
∣∣∣R(p)

c(s)c(t)(`)
∣∣∣�1∀`.

In particular, these two conditions can be expressed as
∣∣R(p)

c(s)(`)
∣∣≤ λa, ∀` 6= 0,∀c(s) ∈ C , (10a)∣∣R(p)

c(s)c(t)(`)
∣∣≤ λc, ∀`,∀c(s),c(t) ∈ C . (10b)

Let us now go back to the main issue. It can be shown [8]
that

R(p)
c (`) = R(a)

c (`)+R(a)
c (`−N).

For small values of̀, as in (8),R(a)
c (`−N) cannot be large,

as the number of correlated symbols is small. In particular,

|R(a)
c (`−N)| ≤ `/N. Thus,

R(p)
c (`)− `

N
≤ R(a)

c (`)≤ R(p)
c (`)+

`

N
,

and we can use such (lower or upper) bounds forR(a)
c (`) to

minimize (8) according to sgn{m[`]}.
Under the constraint given by (10a),copt may be chosen

such that

R(p)
copt(`) =−sgn{m[`]} ·λa, 1≤ `≤ `′.

Unfortunately, this method generates a very low num-
ber of sequences. To increase the cardinality ofC , subop-
timal sequences can be designed, where an allowed interval
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is chosen for eachR(p)
c (`), 1≤ ` ≤ `′. If sgn{m[`]} = −1,

R(p)
c (`) is allowed to stay in the interval[θ(`),λa], where

0≤ θ(`)≤ λa. At the same time, if sgn{m[`]}= +1, R(p)
c (`)

is allowed to stay in the interval[−λa,−θ(`)].
The approach discussed in the following first considers

constraints on auto-correlation and then tests the designed
sequences for acceptable cross-correlation properties.

3.2 Design Algorithm Description

Once the optimization criterion is settled, we have to find the
solution to the minimization problem (8). The method pro-
posed for designing sequences with auto-correlation prop-
erties as in (8) requires a little number theory background,
which is the theoretical study of residue classes [7]. In par-
ticular, this algorithm applies only to codes whose lengthsN
are prime numbers.

The periodic auto-correlation sequence (9) can be rear-
ranged as [8]

R(p)
c (`) =

1
N

[
p++(`)+ p−−(`)− p+−(`)− p−+(`)

]
,

wherep±±(`) is the number of agreements between symbols
±1 of sequencec and symbols±1 of the replica codecycli-
cally shiftedby ` steps.

Let any integere, such thatN ≡ 1 (mode), be defined
as thenumber of residue classesand let f , (N−1)/e. By
viewing p±±(`) in terms of residue classes, any arbitrary pe-
riodic auto-correlation sequence can be written as

R(p)
c (`) =

1
N

[
N−4 f q+4

q−1

∑
i=0

q−1

∑
j=0

(di −x`,d j −x`)
]
, (11)

whereq is the number of the residue classes that are actually
selected in the design of the code2, x` is the identifier of the
residue class of̀, di is the identifier of thei−th chosen class,
belonging to a set

D ,
{(

d0, · · · ,dq−1
)

: 0≤ d0 < · · ·< dq−1 ≤ e−1
}

,

and(di −x`,d j −x`) are thecyclotomic numbers[9].
Calculating the cyclotomic numbers can be performed

analytically only for specificN [9], [10], because the com-
plexity of the system grows linearly withe. Thus, in this
paper such numbers are obtained via computer search.

In view of (11), (10a) can be expressed as

∣∣∣R(p)
c (`)

∣∣∣= ∣∣∣∣∣ 1
N

[
1−e f+4

q−1

∑
i=0

q−1

∑
j=0

(di−x`,d j−x`)
]∣∣∣∣∣≤λa,

0≤ x` ≤ e−1, (12)

where typical values forλa are derived in Section 3.3.
From (12) we get immediately

q−1

∑
i=0

q−1

∑
j=0

(di −x`,d j −x`)≥ ηL(x`),

q−1

∑
i=0

q−1

∑
j=0

(di −x`,d j −x`)≤ ηU (x`),

2To balance the number of symbols+1 and−1, q is set toe/2 if e is
even, and to(e−1)/2 if e is odd [7].

with 0≤ x` ≤ e−1, where

ηL(x`) ,

⌈
e f−1−2ψ f −Nλa

4

⌉
ηU (x`) ,

⌊
e f−1−2ψ f +Nλa

4

⌋ (13)

denote the lower and upper bounds for eachx`, respectively,
d·e andb·c denote ceiling and floor functions, respectively,
andψ ≡ e(mod 2).

For each̀ , 1≤ ` ≤ `′, a correspondingθ(`) has to be
established. To make sure that the constraint set byθ(`) is
actually met, we can apply the following algorithm:
• ∀ x`, 0≤ x` ≤ e− 1, initialize ηL(x`) andηU (x`) as in

(13).
• for each̀ , 1≤ `≤ `′:

if sgn{m[`]}=−1 and
⌈

e f−1−2ψ f+Nθ(`)
4

⌉
> ηL(x`), then

ηL(x`) =
⌈

e f−1−2ψ f +Nθ(`)
4

⌉
;

if sgn{m[`]}= +1 and
⌊

e f−1−2ψ f−Nθ(`)
4

⌋
< ηU (x`), then

ηU (x`) =
⌊

e f−1−2ψ f −Nθ(`)
4

⌋
.

• amidst thee!/[q! ·(e−q)!] possible setsD ’s of class iden-
tifiers, choose all the ones such that

ηL(x`)≤
q−1

∑
i=0

q−1

∑
j=0

(di −x`,d j −x`)≤ ηU (x`),

0≤ x` ≤ e−1.

• find the spreading code associated to eachD , following

ck =
{

+1, if xk ∈D ,

−1, if xk 6∈D or k = 0.

The algorithm can be applied a number of times up to
N−1

2 for each possible different value ofe, in order to enlarge
the set of sequencesCa.

The last requirement to be verified is the constraint on
the cross-correlation (10b) to come to a final set ofMinimum
Jitter Sequences(MJSs)C ⊆ Ca.

The periodic cross-correlationR(p)
c(s)c(t)(`) can be seen in

terms of number of agreements between±1 of c(s) and±1
of cyclically shiftedc(t). For sequences with differente’s, it

is easy to verify that
∣∣∣R(p)

c(s)c(t)(`)
∣∣∣≤λa≤λc for every`. The

same result can be observed for sequences with the samee,

but only with` 6= 0. The cross-correlationR(p)
c(s)c(t)(0) for se-

quences with the sameemay be on the contrary quite larger.
This is because two sequencesc(s) andc(t) with the samee
bear a number of agreements proportional to the number of
class identifiers that belong to bothD (s) andD (t) plus those
that (jointly) do not. By means of the relations betweenN, f ,
eandq, a sequencec(s) finally belongs toC iff the relation⌈

1
4

(
e−2ψ − Nλc

f

)⌉
≤ χ ≤

⌊
1
4

(
e−2ψ +

Nλc

f

)⌋
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Figure 1: Shape ofm(t) with SRRC pulses.

is accomplished∀c(t) ∈C , c(t) 6= c(s), whereχ is the number
of class identifiers belonging to bothD (s) andD (t).

3.3 Numerical results

This section contains some numerical results, obtained fol-
lowing the method derived in Sections 3.1 and 3.2.

Figures 1 and 2 show the shape ofm(t) when using SRRC
pulses with different roll-off factorsα, and filtered NRZ or
BOC pulses3 [11] – [12], respectively. As can be seen, typ-
ical values arè ′ = 3 and`′ = 1, respectively. It can easily
be understood that the improvement that can be attained with
MJSs is larger for larger values of`′, i.e. for strongly band-
limited pulses. In the following, we will use a SRRC pulse
with α = 0.25 and̀ ′ = 3.

To provide a fair comparison with Gold codes for GPS
(C/A), the chosen length isN = 1021, representing the clos-
est prime number to 1023.

Values ofλa andλc are chosen by means of probabilities
of missed detectionPMD and false alarmPFA during the ac-
quisition stage in a typical scenario for GPS receivers. The
observation length is supposed to beL ·N chip times. In a
first approximation, we model the interfering codes as Gaus-
sian interference4 independent of thermal noise, so that the
variance of the total noise termW after correlation is

σ
2
W =

σ2

L ·N
+

I
N

,

whereI is the number of interferers andσ2 = N0/(2Ec), with
Ec = C ·Tc. Hence,PMD can be computed as

PMD = Pr{1+W ≤ λ}u Q

(
1−λ

σW

)
,

3Even though “theoretical” GPS, SBAS and Galileo signals are speci-
fied with rectangular (hence, infinite-bandwidth) pulses, some form of band-
limitation is introduced by the satellite transponder. In Fig. 2, ideal pulses
are thus filtered with Butterworth low-pass filters.

4This approximation is used only for choosing design parameters. Per-
formance with real interference will be derived by simulation later on.

Figure 2: Shape ofm(t) with filtered NRZ and BOC pulses.

Figure 3: Auto-correlation mask.

whereQ(x) , 1√
2π

∫ +∞
x e−t2/2dt, andPFA is given by

PFA = Pr{R(p)
c (`)+W > λ |` 6= 0}u Q

(
λ −R(p)

c (`)
σW

)

≤Q

(
λ −λa

σW

)
.

By choosingPMD = 10−3 and PFA = 10−8, represent-
ing state-of-the-art values at such signal-to-noise ratio for
commercial GPS receivers, and assumingL = 20, C/N0 =
40 dBHz,Tc = 1µs, I = 7, we get

λa ≤ 1−σW ·
[
Q−1(PMD)+Q−1(PFA)

]
u 0.16.

We also setλa = λc = 0.16, θ(1) = 0.13, θ(2) = 0.12,
andθ(3) = 0.1, and we represent our constraints on the auto-
correlation sequence as a “mask” depicted in Fig. 3 (which
considers the particular values of sgn{m[l ]} for 1≤ `≤ 3, as

in Fig. 1). Fig. 3 also reports the computed valuesR(p)
c (`)

for a sequence resulting from our algorithm.
We now compute the performance of MJSs with respect

to Gold codes as far as acquisition is concerned. Compar-
ison is performed using a set whose cardinality (|C | = 42)
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Figure 4: Performance in the acquisition stage.

is comparable with the number of Gold codes for GPS. Fig.
4 shows the pair(PMD,PFA) for a few values of the num-
ber of interfering codesI and forC/N0 ratios. As can be
seen, performance of proposed sequences is worse than the
one achieved with Gold codes. This result could be foreseen
owing to the properties of Gold codes, which show the min-
imum cross-correlation. However, as the number of visible
satellites is typically 8÷ 10, PFA’s are still good in typical
operating conditions for GPS receivers.

On the other hand, improvement in delay estimation vari-
ance during the tracking stage is directly connected to posi-
tion accuracy, as stated in Section 2, and is our fundamental
goal. Fig. 5 reports the gain

G , 10log10

(
CRBc(ε)
CRBcg

i
(ε)

)
,

wherec ∈ C , cg
i is the Gold code of the GPS satellite with

the i−th PRN ID, and CRB is computed as in (5). For each
Gold code (from 1 to 37) we show the gainG with respect
to the best-performing (diamond) and the worst-performing
(circle) MJS. As can be seen, in many cases each MJS shows
gains over 0.8 dB with respect to the Gold codes in terms of
jitter variance. To evalute improvements in position accuracy
using such shaping pulse, the standard deviationσρ of each
pseudorange can be reduced from 36.4 m to 32.7 m.

4. CONCLUSIONS

An algorithm to design Minimum Jitter Sequences (MJSs) to
be used as binary ranging codes for satellite positioning sys-
tems has been presented. In particular, after discussing re-
lationships between time-delay estimation variance and chip
pattern of ranging codes, numerical techniques have been de-
veloped for minimizing such variance.

Results achieved show a trade-off between performance
in the acquisition phase and during tracking. In practical
situations, the MJSs provide good albeit not optimum per-
formance in terms of probability of false alarm and missed
detection. At the same time, they allow the variance of each
pseudorange measurement to be reduced, thus improving po-
sition accuracy.

Figure 5: Gain of MJSs in terms of jitter variance.
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