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ABSTRACT

The aim of this paper is to propose a new Markov Random
Field (MRF) model for the backscattered ultrasonic echo in
order to retrieve information about backscatter characteris-
tics, such as the density, the scatterer amplitude, the scatterer
spacing and the direction of interaction. The model com-
bines the Nakagami distribution that describes the envelope
of backscattered echo with spatial interaction using MRF. We
first construct the Nakagami-MRF model and illustrate the
role of its parameters by some synthetic simulations. Then,
to enhance the ability of this MRF model to retrieve infor-
mation on the spatial backscatter distribution, we compare
the parameter values estimated on simulated radio-frequency
(RF) envelope image for different tissue scatterers charac-
teristics (density, amplitude, spacing, spatial orientation). It
follows that the first parameter is related to the density and
the amplitude, and, the interaction parameters are related to
the scatterer spacing and the orientation.

1. INTRODUCTION

Many researchers have used stochastic models to describe
the envelope of the backscattered echo of tissues, called the
radio-frequency (RF) envelope. The parameters of these dis-
tributions depend on some characteristics such as the den-
sity (number of scatterers1 within the resolution cell of the
transducer), and scatterer amplitude related to the size of
the scatterers. We can mention : Rayleigh distributions
(square root of an exponential distribution), K-distribution
[1] (square root of the product of a Gamma distribution with
an exponential distribution), and Nakagami (square root of a
Gamma distribution). The Rayleigh model is commonly em-
ployed [2], but under some conditions, such as the presence
of a large number of randomly located scatterers. Wagner
[3] classifies the other models according to their Signal to
Noise Ratio (SNR) compared with the SNR of Rayleigh dis-
tribution. The first class called pre-Rayleigh(SNR< 1.91)
describes heterogenous texture. The second, called Rayleigh
(SNR=1.91), appears as homogenous texture class. The third
corresponding to the periodic texture is the post-Rayleigh
class(SNR> 1.91).

The K-distribution was shown to model pre-Rayleigh
and Rayleigh texture [4, 5]. The two parameters of K-
distribution, provide information on the number of scatter-
ers, the variation in the scattering amplitude and the average

1scatterers are defined as small structures in tissue, reflecting and scat-
tering the incoming wave

scattering amplitude. But it is not general enough to describe
the statistics of the backscattered echo from range cell con-
taining a periodic alignment of scatterers giving rise to post-
Rayleigh. The much simpler model based on the Nakagami
distribution was proposed in [6, 7] to characterize the ultra-
sonic tissue. In addition to scattering amplitude and density,
This model can take into account the regularity of the scat-
terer spacing [8].

However, as the previous ones, this distribution can’t de-
scribe any anisotropic property of the texture. The Markov
Random Field is a powerful tool to model the probability
of spatial interactions in an image and has been extensively
applied to extract texture features for image characterization
and classification. We found in literature, many attempts to
model spatially these images using Markov Random Fields.
The most common is the Gaussian MRF [9, 10], but does
not fit to the envelope distribution of the backscattered echo.
In [11, 12] it has been shown that the K-MRF model based
on the K-distribution locally guarantees better fit to data but
it can’t respect post-Rayleigh statistics. So, we propose in
this paper a new Markov Random Field for textured ultra-
sound envelope image based on Nakagami distribution which
is a priori more relevant than the Gaussian MRF or K-MRF.
The construction of the model is based on some properties of
MRF and is introduced in the following section. To evaluate
and understand the parameters role in the model, we use an
ultrasound RF simulator that realistically models the phys-
ical process in RF signal generation, and uses the density,
spacing and the amplitudes for the scattering process.

The paper is organized as follows. First, we introduce the
Nakagami-MRF model and its parameters. Second, we sim-
ulate the model for different values of the interaction para-
meters and study the case of a very similar histogram. Next,
some experiments with a realistic Ultrasound (US) RF sim-
ulator [6, 13] are processed with the estimation of the MRF
parameters by Conditional Least Square (CLS) method. The
link with the backscatter characteristics is established. The
analysis, the discussion, and some concluding remarks close
up the paper.

2. STATISTICAL MODEL: NAKAGAMI
DISTRIBUTION

The density function of the envelope of the backscattered sig-
nal can be described in terms of the Nakagami distribution.
With parameters(m,Ω), its density function of the amplitude
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X of the RF envelope atx is given by:

fm,Ω(x) =
2mm

Γ(m)Ωmx2m−1exp(−m
Ω

x2) ∀x∈ IR+, (1)

hereΓ(.) is Gamma function. The parameterΩ > 0 is scal-
ing parameter. The shape parameterm is constrained to be
greater to 0.5 (m≥ 0.5) [14]. Note that form=0.5, the density
function is half Gaussian, while form=1, the density function
is Rayleigh. Form> 1 the density appears to be similar to
Rician [6]. For values of0.5 < m< 1, the density function
can be described as pre-Rayleigh.

The Nakagami parameters(m,Ω) can be obtained from
the moments of the envelope as follows:





Ω = E{X2}
m=

Ω2

E{(X2−Ω)2}
(2)

It is possible to see that the Nakagami distribution can be
identified as belonging to the class of density functions such
as Gamma distribution. If we define a new random variable
A of Gamma distribution with parameter(α,β ) andX =

√
A,

the probability density function ofX, fα,β (x) can be shown
to be:

fα,β (x) =
2β α

Γ(α)
x2α−1exp(−βx2) (3)

which is Nakagami distribution with parameter(m= α,Ω =
α
β ). For convenient, we use the density given by the equation
3 as the density function of the Nakagami distribution with
paramters(α,β ). The second moment of this distribution is
then given by:

E{X2}=
α
β

(4)

3. NAKAGAMI-MRF MODEL

Our goal is to model the RF envelope image by a spatial
model based on the Nakagami distribution. Therefore, we
model the envelope amplitude imageX by a Markov random
field which allows us to take into account the spatial infor-
mation between each pixelsof the pixel setSof the image.

3.1 Spatial Model: Nakagami-MRF Presentation and
Features

Readers are referred to [9, 15], for details of MRF models, a
recognized technic for modeling image textures. In the two
dimensional image latticeS, the pixel valuesx = {xs/s∈ S}
are a realization of random variablesX = {Xs/s∈S}. So, we
suppose that at each pixels of S, the envelope amplitudeXs
givenXVs = (xr)r∈Vs, the envelope amplitude of the pixels of
the neighbourhoodVs of s, centered ats, follows Nakagami
distribution with parameters depending onXVs

(Xs/Xr = xr , r ∈Vs) ∝ Nakagami(αs,β ) (5)

whereαs is defined as follows:

αs =
1
2

(
as+1+ ∑

r∈Vs

bsr lnxr

)
(6)

which (as,bsr,β ) are the parameters of the model withβ ∈
IR∗

+ and(as,bsr) ∈ IR2.

As often, we consider here a stationary field of order 2.
Therefore, first,bsr = 0 for all r outside of the 8 nearest
neighbor pixel ofs, defining the pixel set of neighbourhood
of s. Second, at each pixels∈ S, as = a and the interac-
tion parametersbsr = bi of pixel pair< s, r > when the pixel
r (resp. s) is located at the relative positioni ∈ {1,2,3,4}
from s (resp. r) as shown in table 1. In order to understand

3 2 4
1 s 1
4 2 3

Table 1: Relative position

the role of the parameters of this Markovian model, some
simulations have been done. Simulations in figure (1.a,.b,.c)
permit to understand the role of interaction parameters of the
field. Indeed, we note that when an interaction parameter
(bi) is positive, then the neighbord pixels according to the
direction have similar intensities (attraction). The images in
figure (1.a’,.b’,.c’) show the value ofαs calculated for eachs
according to equation (6). The table (2) shows the values of
(α,β ) obtained by fitting the histogram of the images of fig-
ure (1.a,.b,.c) by Nakagami distribution by using the moment
method. We can conclude that for different configurations of
interactionsbi we can preserve the parameters of the Nak-
agami(α,β ).

fig.1.a fig.1.b fig.1.c
α 1.42 1.43 1.40

α/β 150 152 149

Table 2: Nakagami Parameter estimation of the examples in
(Figure 1.a,.b,.c)

3.2 Construction of the model

At any pixel s ∈ S, let denote fs the density function of
Xs given the amplitude observations of its neighbourhood
(Vs), (Xr)r∈Vs = (xr)r∈Vs. The construction of our Markov-
ian model use the following property [15] :
Property If the Markovian random fieldX belongs to expo-
nential family:

ln fs(xs) = As((xr)r∈Vs)Bs(xs)+Cs(xs)+Ds((xr)r∈Vs), (7)

with Bs(1) = Cs(1) = 0.
Then, it existsas etbsr defined:

As((xr)r∈Vs) = as+ ∑
r∈Vs

bsrBr(xr). (8)

The global energy function is defined by:

U(x) = ∑
s∈S

(asBs(xs)+Cs(xs))+ ∑
r 6=s,<s,r>

bsrBs(xs)Br(xr).

(9)
As the Nakagami distribution belonging to exponential fam-
ily, we use this property in order to construct our Nakagami-
MRF. After identification of the Log offα,β distribution of
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(a) (a’)

(b) (b’)

(c) (c’)

Figure 1: Three example realizations of Nakagami-MRF
(a,b,c) using the energy function of the Nakagami model
(eq.11) and their imagesαs (a’,b’,c’). The visual percep-
tion is fundamentally different due to the different parame-
ter vectorsθ = (2, 0.5, 0.5,-0.5,-0.5,0.01)) (a),θ = (2,0,0,-
0.5,0.5,0.01)(b) andθ = (6.5,-0.5,-0.5,0,0,0.01) (c).

parameters(α,β ) ∈ IR∗
+

2 defined in equation (3) we have:





As((xr)r∈Vs) = 2α−1
Bs(xs) = lnxs

Cs(xs) =−βx2
s +β

Ds((xr)r∈Vs) = ln(2)+α lnβ −Γ(α)−β
(10)

while introducing the parametersas et bsr in the expression
of As((xr)r∈Vs), the value ofα at eachs,noted hereαs is then
given by equation (6). whileβ remains constant and inde-
pendent of the sites.

In this model, the energy function is defined as:

U(X = x) = ∑
s∈S

(as lnxs−βx2
s +β )+ ∑

r 6=s,<s,r>

bsr lnxs lnxr

(11)

3.3 MRF-Parameter Estimation

Due to its computation efficiency, the Conditional least
squares estimate (CLS) method has been commonly accepted
to estimate the parameters of MRF models. The estimate of

the parameter vectorθ = (as,bsr,β ) is obtained by minimis-
ing the sum on alls∈ Sof the quadratic difference between
the squared amplitudex2

s and its conditional average :

θ̂ = argmin
θ ∑

s∈S

(
x2

s−E{X2
s /Vs}

)2
(12)

It follows from the equation (4) that the second moment of
Nakagami-MRF is :

E{X2
s /Xr = xr , r ∈Vs}=

1
2β

(
as+1+ ∑

r∈Vs

bsr lnxr

)
(13)

Then, we obtain the following equation:

2βx2
s = as+1+ ∑

r∈Vs

bsr lnxr , ∀s∈ S (14)

The conditional least squares estimate ofθ can be started
forward.

To conclude, we set up the table (3) to compare the values
of the parameters used for simulation(a,bi ,β ) and the esti-
mated parameters:(â, b̂i , β̂ ). According to the table, the es-
timation method show acceptable resemblance between used
and estimated parameters.

a b1 b2 b3 b4 β
Fig.1.a θ 2 0.5 0.5 -0.5 -0.5 0.01

θ̂ 1.96 0.48 0.48 -0.54 -0.46 0.009
Fig.1.b θ 2 0 0 -0.5 0.5 0.01

θ̂ 1.97 -0.01 0.04 -0.53 0.46 0.009
Fig.1.c θ 6.5 -0.5 -0.5 0 0 0.01

θ̂ 6.23 -0.48 -0.50 -0.09 0.10 0.009

Table 3: Parameters of the examples in (Figure 1) and their
estimation using CLS.

4. EVALUATION ON SIMULATED RF ENVELOPE
IMAGE

4.1 Backscatter characteristics

The three backscatter characteristics are density, spacing, and
scatterer cross section (scatterer amplitude). Density is a
measure of the average number of scatterers in the resolution
cell of the US transducer. Spacing (or placement) refers to
the randomness or regularity of the distances between scat-
terers. The scattering amplitudes or scattering cross section
show the amplitude variations caused by many phenomenon
like attenuation, absorption, diffraction.

Some RF simulators take into account these characteris-
tics and consider them as being stochastic. Indeed, the sim-
ulator given in [6, 13] takes into account the randomness of
the amplitudes by the signal to noise rate,SNRa of the scat-
tering cross-section. In this case, the amplitudes are gamma-
distributed with shape parametera2

A and with unit scale pa-
rameter. The scatterer spacing was also characterized. In
[8], the gamma distribution has been shown to accurately
describe scatterer spacing. By denoting the mean spacing
between scatterers as̄d, the spacing distribution is also de-
scribed by the gamma distribution,γ(u,v), with shape para-
meteru and scale parameterv= d̄/u. For largeu, the spacing
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is regular. Foru = 1 the scatterers are randomly spaced (dif-
fuse). Whenu < 1, the scatterers are clustered together [8].
Figure (2) demonstrates this behavior for various values of
u when the mean inter-scatterer distanced̄ is maintained at
unity.

Figure 2: Spatial scatterer organization with variation ofu

4.2 RF envelope image Simulator

The ultrasound RF simulator introduced in [6, 13] is used to
generate echo envelopes. This simulator realistically models
the actual physical process in RF signal generation, and uses
the density (N), spacing (u), and amplitudes (SNRa) to de-
scribe the scattering process. The parameters for the simula-
tor are as follows:f0 (center frequency)=3.5 MHz,B (band-
width)= 0.8 MHz,v (velocity of sound) = 1446 m/s, sampling
window size = 3,7 cm. In the simulation, the RF backscat-
tered signal consisting of 100 A lines (1-D RF signals) was
sampled at 40 MHz. Therefore, we obtained 2048 samples
in each line. To ensure uncorrelated samples, every second
sample in every A line is used. The received RF backscat-
tered signal is demodulated atf0 using the setup shown in
figure (3), resulting in inphase and quadrature componentsX
andY, respectively. A 10th order 2 MHz Butterworth low-
pass filter is applied to both components, and the echo enve-
lope is computed as

√
X2 +Y2 [13].

Figure 3: Block diagram of the processing path from RF sig-
nal to the envelope of the signal.

4.3 Evaluation Methods

We use the RF simulator described above to generate
echo envelope with different configurations of the triplet

(N,SNRa,u). Our goal is to evaluate the ability of the
Nakagami-MRF parameters to characterize backscatter char-
acteristics, and then, to provide information on the number
of the scatterers as well as the scattering amplitude, scatterer
spacing and direction. We consider three examples. We sug-
gest through these examples, first, to characterize the spacing
of reflectors by the interaction parameterbi , second, to rep-
resent the density and the scatterer amplitudes by the first
parameteras, and finally to show the ability of the model to
detect the direction of the regularity.

First example: we generate different scatterer spacing
valuesu, but we maintain constant the density of reflectors
N = 15 and the valueSNRa = 0.4 of the scattering cross-
section. This particular case is done to show the influence
of scatterers repartition and regularity on our spatial model.
We generate three regions corresponding to three values of
u ∈ {0.1,1,10}. Figure (4) shows these regions. To show

(a) (b) (c)

Figure 4: Three types of textures for three various organi-
zations: region (a): less regular,u = 0.1, region (b):u = 1,
region (c): more regular,u = 10.

the ability of our spatial model, we use the model parame-
ters as textural features for evaluation of scatterers regular-
ity. Briefly, we apply the model in each region of the sim-
ulated RF envelope image and we estimate the parameters
by the CLS method mentioned above. The table (4) shows
the parameters estimated for the three regions: (a),(b) and
(c). For comparison, we notice that the values ofa+1

2β are

constants, but the values ofb1
2β increase from region (a) to

region (c). We note that horizontal interaction is mentioned
by b1, because the chosen RF simulator excludes all inter-
actions except the horizontal one. That’s why, the othersbi ,
i ∈ {2,3,4} are very weak. From region (a) to (c), the in-
teraction b1

2β increases due to the regularity of the spacing
between reflectors.

Regions a+1
2β

b1
2β

b2
2β

b3
2β

b4
2β β

u=0.1 2.01 0.3562 0.05 -0.00 -0.02 0.261
u=1 2.04 0.564 0.04 -0.01 -0.03 0.348
u=10 2.03 0.632 -0.02 0.01 0.03 0.376

Table 4: Parameters of the Nakagami-MRF estimated by
CLS on the 3 regions displayed in figure 4.

second example: In this exampleN = 20 and u =
1, while using 4 different scattering amplitudesSNRa ∈
{0.4,0.8,2,5}. Table (5) shows the estimation values ofa+1

2β
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and b1
2β for these configurations. We observe that the values

of a+1
2β decrease wellb1

2β rest unchanged. We conclude from
this behavior, that the first parameter of the modelas should
be related to the scattering amplitudes.

SNRa
a+1
2β

b1
2β β

0.4 1.96 0.610 0.413
0.8 1.59 0.652 0.667
2 1.42 0.636 0.882
5 1.41 0.633 0.910

Table 5: Parameters of the Nakagami-MRF estimated by
CLS for configurations ofSNRa = (0.4,0.8,2,5). The others
parameters of the RF simulator are constants(N = 20,u= 1).

Third example: Now SNRa = 0.8, u = 1, while us-
ing different density scatterersN ∈ {7,15,20,50}. Table (6)
shows the estimation values ofa+1

2β and b1
2β for these con-

figurations. We observe that the estimated parametera+1
2β

decrease and the estimated value ofb1
2β are unchanged. We

conclude from this behavior, that the first parameter of the
modela should be related to the density of scatterers.

N a+1
2β

b1
2β β

7 1.80 0.572 0.427
15 1.65 0.651 0.615
20 1.59 0.652 0.667
50 1.458 0.657 0.850

Table 6: Parameters of the Nakagami-MRF estimated by
CLS for N = (7,15,20,50). The others parameters of the
RF simulator are constants(SNRa = 0.8,u = 1).

4.4 Results

It is clear that the value of Nakagami distribution parameter
α gives information about the homogeneity of region but not
the direction of the interactions. The interaction parameters
of our model is able to take into account this effect. The
interaction parameterbi of Nakagami-MRF model permits
to distinguish between spacing regularity for scatterers. The
information given bya concerns the density of the scatterers
(N) and the scatterers amplitudes(SNRa).

5. CONCLUSION AND DISCUSSION

A spatial Markov random field model is used to characterize
ultrasound backscatter characteristics. Experimental results
on simulated RF envelope image show the behavior of every
parameter of the model. Then, the first parameteras of the
Nakagami-MRF model is related to the effective number of
the scatterersα and so, it characterize the density and the
amplitude of the scatterers. Here, We preserve the properties
of the statistical model: Nakagami-distribution. For the in-
teraction parameters of the MRF modelbsr, it indicates the
spacing scatterers. So, for a regular spacing, the interaction
is strong andbsr is important, and for irregular spacing, the
parameterbsr is weak.
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