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ABSTRACT

We address the problem of tracking a maneuvering target that
moves along a region monitored by a sensor network, whose
nodes, including both the sensors and the data fusion cen-
ter (DFC), are located at unknown positions. Therefore, the
node locations and the target track must be estimated jointly
without the aid of beacons. We assume that, when the net-
work is started, each sensor is able to detect the presence of
other nodes within its range and transmit the resulting binary
data to the DFC. After this startup phase, the sensor nodes
just measure some physical magnitude related to the target
position and/or velocity and transmit it to the DFC. At the
DFC, a particle filtering (PF) algorithm is used to integrate
all the collected data and produce on-line estimates of both
the (static) sensor locations and the (dynamic) target trajec-
tory. The validity of the method is illustrated by computer
simulations of a network of power-aware sensors.

1. INTRODUCTION

Sensor networks will soon become ubiquitous because of
their suitability for a broad range of emerging applications,
such as environmental monitoring, surveillance and security,
vehicle navigation, tracking, logistics, etc... For virtually any
of these applications, the accurate localization of the sen-
sors is a key task. Indeed, automatic node positioning has
been recognized as an enabling technology, since the data
measured by a sensor is hardly useful unless it is precisely
known where it has been collected [1]. Most sensor local-
ization algorithms rely on the availability of beacons, i.e.,
network nodes with known position that can be taken as ref-
erence [1]. Although beacon-free network designs are feasi-
ble [2], they usually involve complicated energy-consuming
local communications among nodes.

In this paper, we address the problem of using a beacon-
free network of sensors with unknown locations to track a
maneuvering target. The sensors are assumed to measure
some distance-dependent physical magnitude and have two
modes of operation. When the network is started, each sen-
sor is able to detect the presence of other nodes within a
certain range and transmit the resulting binary data to the
DFC. The energy cost of this operation is minimal, because
it is only carried out at startup and just a few bits have to be
transmitted. Using this information a “picture” of the rela-
tive positions of the nodes can be created at the DFC. After
the startup, the sensors go into a normal operation mode that
consists of measuring some physical magnitude related to the
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target position and/or velocity and periodically transmit it to
the DFC. At the DFC, we propose to use a particle filtering
(PF) algorithm to recursively integrate all the collected data
and produce on-line estimates of both the (static) sensor loca-
tions and the (dynamic) target trajectory. The validity of the
method is illustrated by computer simulations of a network
of power-aware sensors.

The remaining of the paper is organized as follows. In
Section 2, we provide a mathematical model of the class
of systems under consideration. The proposed algorithm is
described in Section 3. In Section 4 we present illustrative
computer simulation results for a network of power-aware
sensors. Finally, Section 5 is devoted to the conclusions.

2. SYSTEM MODEL

We assume that the target moves along a 2-dimensional re-
gion according to the linear model [3]�

t ��� � t � 1 �	� ut 
 t � 1 
 2 
 3 
����
� (1)

where � t ��� rt 
 vt ������� 2 is the target state, which includes
its position and its velocity at time t, rt ��� and vt ��� , re-

spectively; ��� �
1 Ts
0 1 � is a transition matrix that de-

pends on the observation period, Ts; � ��� T 2
s � 2 
 Ts ��� and

ut � CN � ut � 0 
 σ 2
u  is a complex Gaussian noise term with

zero mean and variance σ 2
u . The initial target state, � 0, has a

known prior probability density function (pdf), p � � 0  .
The Ns sensors in the network are located at random

(but fixed) unknown positions s1:Ns : �"! s1 
 s2 
����
�

 sNs # , with
known prior pdf, p � s1:Ns  . During the network startup, each
sensor detects any other nodes which are located within a
certain range, γ $ 0. In particular, the n-th sensor builds up a
Ns % 1 vector of decisions, & n �'� bn ( 1 

�����)
 bn ( Ns ��� , where (de-
terministically) bn ( n � 1 while bn ( k �*! 1 
 0 # , n +� k, is a binary
random variable with probability mass function (pmf) given
by

p � bn ( k � 1 � s1:Ns  � pd � ds
n ( k 
 α  
 (2)

where ds
n ( k �,� sn - sk � is the distance between the n-th and k-

th sensors, pd �/. 
 .  is the function that yields the probability
of detection and 0 0 α 1 1 is the false-alarm rate. These de-
cisions are transmitted to the DFC and we collect them all to-
gether in the Ns % Ns matrix 2 �,� & 1 

���
�

 & Ns � for notational
convenience.

During the normal operation of the network, the n-th sen-
sor periodically measures some distance-dependent physical
magnitude related to the target. The measurement obtained
by the n-th sensor at discrete-time t 3 1 is denoted as yn ( t �
fs � dn ( t 
 εt  , where dn ( t ��� rt - sn � is the distance between the
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target and the sensor, εt is a random perturbation with known
pdf and fs ��. 
 .  is the measurement function. Thus, an Nt % 1
vector of observations, � t : � � yκ � 1 � ( t 

�����

 yκ � Nt � ( t � � , where
κ � i  ��! 1 

���
��
 Ns # , � i, is transmitted to the DFC. We assume
that the likelihood p ��� t � � t 
 s1:Ns  can be evaluated. Note that
not every sensor necessarily transmits at every time. Indeed,
it is often convenient (in order to reduce energy consump-
tion) that only a subset of sensors become active and transmit
their measurement, hence Nt 0 Ns in general.

By convention, the DFC is assumed to be located at the
origin of the monitored region. We also assume that the DFC
has the capability to extract some distance-related magnitude
from the communication signals transmitted by the sensors.
For simplicity, we consider the same type of measurement
carried out at the sensors, hence the DFC also has available,
at time t 3 0, the Nt % 1 data vector � t � � zκ � 1 � ( t 
����
�

 zκ � Nt � ( t ��� ,
where zn ( t � fs � � sn � 
 εt  , dc

n ( t � � sn � and εt is a random per-
turbation with known pdf, so that p ��� t � s1:Ns  can be com-
puted. Note that � 0 is defined (unlike � 0), and has dimen-
sion N0 � Ns, because during the network startup all sensors
transmit signals to the DFC.

Our goal is to jointly estimate the target track � 0:t : �! � 0 
����
�

 � t # , and the sensor locations, s1:Ns , from the de-
cisions in 2 and the sequence of data vectors � 1:t : �! � 1 
����
�

 � t # and � 0:t : �,! � 0 

�����)
 � t # without the aid of bea-
cons. Note that, because of the use of distance-aware mea-
surements and the lack of any absolute reference position,
the estimates are subject to an inherent rotation ambiguity.

3. ALGORITHM

Eq. (1) and the observations ! 2 
 � t � 1 
 � t � 0 # describe a dy-
namic system in state-space form. It has the peculiarity that
the state consists of a time-varying component, � t , and a
static component, s1:Ns . For this reason, it is not possible
to apply a standard particle filter to perform the desired es-
timation task. In this paper, we propose to use an auxiliary
particle filter (APF) algorithm for state estimation in dynamic
systems with unknown fixed parameters, based on the tech-
nique orignally proposed in [4].

Another specific feature of the system presented in Sec-
tion 2 is that, at time t � 0, there is a subset of observations,! 2 
 � 0 # , that provides information on the sensor locations
(but not on the target). In order to adequately describe the
processing of these observations, it is convenient to consider
two steps in the proposed APF algorithm.

3.1 Initialization

A particle filter is a recursive method that approximates a
sequence of desired pdf’s by means of sets of weighted sam-
ples, usually termed particles [5]. The pdf of interest at time
t is, in our case, p � � t 
 s1:Ns � 2 
 � 0:t 
 � 1:t  , and the associated

set of particles is Ωt � � � � i �
t 
 s � i �1:Ns ( t 
 w � i �t 	 M

i 
 1
, where M is

the number of particles and w � i �t are normalized importance
weights. When Ωt is properly built, we can approximate the
desired pdf as

p � � t 
 s1:Ns � 2 
 � 0:t 
 � 1:t  �� pM � � t 
 s1:Ns � 2 
 � 0:t 
 � 1:t  
� M

∑
i 
 1

δi � � t  δi � s1:Ns  w � i �t 
 (3)

where δi � � t  � δ � � t - � � i �t  and δi � s1:Ns  � δ � s1:Ns - s � i �1:Ns ( t  
are Dirac delta functions.

At time t � 0, the desired pdf reduces to

p � � 0 
 s1:Ns � 2 
 � 0  � p � � 0  p � s1:Ns � 2 
 � 0  
∝ p � � 0  p � s1:Ns  p �
� 0 � s1:Ns  ∏m �
 k p � bn ( k � s1:Ns  
 (4)

and we need to build the first particle set, Ω0, from scratch.
The simplest way to construct Ω0 is by importance sampling
(IS) [6], using the (known) priors p � � 0  and p � s1:Ns  as im-
portance functions, i.e., we

draw samples: � � � i �
0 � p � � 0  

s � i �1:Ns ( 0 � p � s1:Ns  (5)

compute weights: w̃ � i �0 � p ��� 0 � s � i �1:Ns ( 0  ∏
m �
 k

p � bn ( k � s � i �1:Ns ( 0  
(6)

and normalize: w � i �0 � w̃ � i �0

∑M
k 
 1 w̃ � k �0

� (7)

Notice that these initial weights are independent of the target

samples, � � i �0 .

3.2 Tracking

The aim is to track the sequence of states � 0:t , and improve
the estimation of s1:Nt given the measurements � 1:t and � 1:t .
Using the PF methodology, this is achieved by recursively
building Ωt from Ωt � 1 when the new observations, ! � t 
 � t # ,
are available.

In this paper, we propose to carry out the recursive update
of Ωt by means of an APF procedure based on the method of
[4] and summarized in Table 1. The algorithm is derived
from the relationship

p � � t 
 s1:Ns � � 1:t 
 � 1:t 
 2  ∝ p ��� t 
 � t � � t 
 s1:Ns  %% p � � t � s1:Ns 
 � 1:t � 1  p � s1:Ns � � 1:t � 1 
 � 1:t � 1 
 2  (8)

and the approximations

pM � � t � s1:Ns 
 � 1:t � 1  � ∑M
i 
 1 p � � t � � � i �t � 1  δi � s1:Ns  w � i �t � 1 (9)

pM � s1:Ns � � 1:t � 1 
 � 1:t � 1  � ∑M
i 
 1 w � i �t � 1Ki � s1:Ns  
 (10)

where Ki �/.  is a symmetric kernel. For the latter, we have
chosen

Ki � s1:Ns  � CN � s1:Ns � � � i �t � 1 
 h2 �
t � 1  (11)

where

� � i �t � 1 �"� s � i �1 ( t � 1 
����
�

 s � i �Ns ( t � 1 ��� (12)�
t � 1 � diag ! σ 2

1 ( t � 1 

�����)
 σ2
Ns ( t � 1 # (13)

and h � � 0 
 1  is a bandwidth factor. The kernel modes are

calculated as s � i �k ( t � 1 � as � i �k ( t � 1 � � 1 - a  sk ( t � 1, for a ��� 1 - h2

and sk ( t � 1 � ∑M
k 
 1 w � i �t � 1s � i �k ( t � 1. The variances, in turn, are

found as σ 2
k ( t � 1 � ∑M

l 
 1 w � l �t � 1 ��� s � l �k ( t � 1 - sk ( t � 1 ���
2
. This choice of
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Given Ωt � 1 � � � � t � 1 
 s1:Ns ( t � 1  � i � 
 w � i �t � 1 	 M

i 
 1
:

(1) Compute ˜� � i �t ��� � � i �t � 1, i � 1 

� � � 
 M.
(2) Draw indices � � i � � qt ���  , i � 1 
�� � � 
 M, where

qt ���  ∝ w � � � 2t � 1 p ��� t � ˜� � �
�t 
 s � �
�1:Ns ( t � 1  p ��� t � s � �
�1:Ns ( t � 1  .
(3) Draw s � i �1:Ns ( t � qt � s1:Ns � � � i �  , where

qt � s1:Ns � � � i �  � CN � s1:Ns � � � ��� i � �t � 1 
 h2 �
t � 1  ,

for i � 1 

� � � 
 M.

(4) Draw target states � � i �t � p � � t � � � ��� i � �t � 1  , i � 1 
�� � �M,

and build the trajectory � � i �0:t � ! � � ��� i � �0:t � 1 
 � � i �t # .
(5) Update the weights, for i � 1 
�� � � 
 M,

w � i �t ∝
p � � t � � � i �t ( s � i �1:Ns 	 t � p ��
 t � s � i �1:Ns 	 t �

p � � t � �̃ � � � i � �t ( s � � � i � �1:Ns 	 t � p � 
 t � s � � � i � �1:Ns 	 t � .
(6) MAP estimation, io � argmini 
�� 1 ( � � � (M � ! w � i �t # ,� � MAP

t 
 sMAP
1:Ns ( t � � � � 0:t 
 s1:Ns ( t  � io � .

Table 1: APF algorithm for joint estimation of the target tra-
jectory, � 0:t , and the fixed node locations, s1:Ns , from the
measurements collected at the DFC.

� � i �t � 1 and � t � 1 ensures that the mean and the marginal vari-
ance of every fixed parameter given by the kernel approxi-
mation (10) is equal to the corresponding mean and marginal
variance given by the weights [4].

One difficulty with the approximations (9) and (10) is
that they involve mixtures of a typically large number (M)
of pdf’s. We avoid this limitation by incorporating a dis-
crete auxiliary random variable � �	! 1 
�� � � 
 M # that indicates
the terms in (9) and (10) to be selected [7]. In particular, we
define

p � � t 
 s1:Ns 
 � � � 1:t 
 � 0:t 
 2  ∝ p ��� t 
 � t � � t 
 s1:Ns  %% p � � t � � � �
�t � 1  w � � � 2t � 1 K� � s1:Ns 
 ro
n  � (14)

Using (14) we can easily draw particles and compute weights
by applying the principle of IS. In particular, we define the
importance pdf

qt � � t 
 s1:Ns 
 �  ∝ qt ���  qt � s1:Ns � �  p � � t � � � �
�t � 1  (15)

that we use for drawing new particles and then update the
weights as

w � i �t ∝
p
� � � t 
 s1:Ns ( t 
 �  � i � � � 1:t 
 � 0:t �

qt

� � � t 
 s1:Ns ( t 
 �  � i � � 
 i � 1 

�����)
 M � (16)

The auxiliary variables, � � i � , are discarded before proceeding
to time t � 1. See Table 1 for the details.

We finally note that, given Ωt , it is straightforward to
produce estimates of the target trajectory and the node lo-
cations (in particular, it is enough to select the particle with
the largest weight, as shown in Table 1). Thus, at any given
time t, the DFC can produce an approximate MAP estimate
of � 0:t and s1:Ns .

4. COMPUTER SIMULATIONS

In order to provide illustrative numerical results, we have
particularized the model of Section 2 to a network of power-
aware sensors. Thus, the measurement functions fs becomes

fs � d 
 ε  � 10log10 � 1
d2 � η � � εt 
 (dB) (17)

where εt is zero-mean Gaussian and η � 10 � 6 accounts for
the power of the background noise ( - 60 dB). The n-th sen-
sor transmits its measurement, yn ( t , only if it corresponds to a
distance dn ( t 1 25 m (i.e., yn ( t $ Pu � - 27 � 95 dB) and other-
wise remains silent (for battery saving). Since εt is Gaussian,
the associated likelihoods can be easily derived, namely

p ��� t � ˜� t 
 s̃1:Ns  � Nt

∏
i 
 1

N � yκ � i � ( t � fs � � r̃t - s̃κ � i � � 
 0  
 12 �
(18)

p �
� t � s̃1:Ns  � Nt

∏
i 
 1

N � zκ � i � ( t � fs � � s̃κ � i � � 
 0  
 1
10

� � (19)

The likelihoods computed from the binary data in 2 are also
derived from power measurements. In particular, for n +� k,

pd � ds
n ( k 
 α  � α � � 1 - α  �� 1 - Φ � Pu - fs � � sn - sk � 
 0  �

1 � 10 ��� 

(20)

where Φ �/.  is the standard Gaussian cumulative distribution
function, Pu � - 27 � 95 dB and α � 10 � 4.

The monitored region is a square of side L � 100 m and
there are Ns � 16 sensors in the network, a priori distributed
as sn � CN � sn � µn 
 σ2

s  , where σ 2
s � 49 and the means µn, n �

1 
�� � � 
 Ns, are points in a regular square grid. The state prior is
p � � 0  � CN � � 0 � � 0 
 0 � � 
 diag ! 100 
 1

10 #�� and the system noise
variance is σ 2

u � 1
4 .

Figure 1 shows the results of a typical simulation run with
observation period Ts � 0 � 25 s, 45 s of total simulated time
and M � 2000 particles in the APF. Plot (a) depicts the target
trajectory on the complex plane and the track obtained by
the APF. Plots (b) and (c) show the estimates of the target
velocity on the real and imaginary axis, respectively, and plot
(d) shows the estimated positions of the 16 sensors (together
with the true sensor locations).

In order to assess the average performance of the pro-
posed method, we have also carried out 50 independent com-
puter simulations (each one with a different, and statistically
independent, sensor deployment and target trajectory) and
computed the mean absolute error (MAE) in the estimation
of the target position, its velocity and the sensor locations.
The results are presented in Table 2 and illustrate the effec-
tiveness of the APF tracking algorithm. Beware that the re-
sulting estimates may still be rotated with respect to the true
trajectory and node locations, although this problem is miti-
gated when a non-uniform prior pdf p � s1:Ns  is available (as
it is the case in this example).

5. CONCLUSIONS

We have proposed a sequential Monte Carlo algorithm that
enables the joint estimation of the node locations and a ma-
neuvering target track in a region monitored by a sensor net-
work. The algorithm does not require the aid of beacons.
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rt vt sn
2.8383 m 0.6100 m/s 5.5083 m

Table 2: Mean absolute error (MAE) in the estimation of
the target position, rt , given in m; the target velocity, vt , in
m/s; and the position of a sensor, sn, n ��! 1 
�� � � 
 Ns # , in m.
Simulation parameters: M � 2000, Ts � 0 � 5 s, Ns � 16.

Instead, it exploits the capability of the sensors to detect the
presence of other network nodes within their range during
the network startup phase. This information is used to pro-
vide a suitable initial guess of the sensor locations. When the
a priori pdf of the sensors is informative (e.g., non-uniform),
it is sufficient to draw M samples from it and weight them
according to their likelihood. In more complex scenarios,
however, the number of samples required for initialization
may be prohibitive and it may be more efficient to use some
global optimization method to find sensor positions with high
likelihood, as suggested in [8]. After initialization, the pro-
posed auxiliary particle filter recursively provides MAP es-
timates of the target position and velocity, and improves the
estimates of the sensor locations as new observations are col-
lected. The validity of the method has been illustrated by
computer simulations of a network of power-aware sensors.
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Figure 1: Simulation parameters: Ts � 0 � 25 s, Ns � 16 sen-
sors, M � 2000 particles, 45 s simulation time. (a) Estimate
of the target trajectory. (b) Estimate of the target velocity
on the real axis. (c) Estimate of the target velocity on the
imaginary axis. (d) Estimates of the sensor locations.
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