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ABSTRACT
Orthogonal frequency division multiplexing (OFDM) pro-
vides a viable solution to communicate over frequency se-
lective fading channels. However, in the presence of fre-
quency nulls in the channel response, the uncoded OFDM
faces serious symbol recovery problems. As an alternative to
previously reported error correction techniques in the form
of pre-coding for OFDM, we propose the use of post-coding
of OFDM symbols in order to achieve frequency diversity.
Our proposed novel post-coded OFDM (PC-OFDM) com-
prises of two steps: 1) upsampling of OFDM symbols and
2) subsequent multiplication of each symbol with unit mag-
nitude complex exponentials. It is important to mention that
PC-OFDM introduces redundancy in OFDM symbols while
precoded OFDM introduces redundancy in data symbols be-
fore performing the IFFT operation. The main advantages of
this scheme are reduction in system complexity by having
a simple encoder/decoder, smaller size IFFT/FFT (inverse
fast Fourier transform/fast Fourier transform) modules, and
lower clock rates in the receiver and transmitter leading to
lower energy consumption. The proposed system is found to
be equally good over Gaussian and fading channels where it
achieves the maximum diversity gain of the channel. Simu-
lation results show that PC-OFDM performs better than ex-
isting precoded OFDM and Pulse OFDM systems.

1. INTRODUCTION

Orthogonal frequency-division multiplexing (OFDM) offers
several advantages like resilience to multipath fading, in-
tersymbol interference, low complexity and others. It is
believed to be a promising technique for future broadband
wireless communications. It has been adopted in many
wireless standards, such as digital audio/video broadcasting
(DAB/DVB), the HIPERLAN/2 standard, the IEEE 802.11a
standard for wireless local area networks [1].

While OFDM systems convert a multipath fading chan-
nel into a series of equivalent flat fading channels, they lack
the inherent diversity available in multipath channels. When
there are frequency nulls in the channel response, the un-
coded OFDM performance decays gravely [2]. It is therefore
necessary to introduce an explicit diversity in the transmitted
symbols to improve system performance. Different coded
OFDM systems have been reported that employ some form
of channel coding or precoding [3, 2, 4]. Ding et. al in [4]
designed minimum bit error rate precoders for wireline chan-
nels. In [2], it was shown that complex field coding is bet-
ter than Galois field coding as it produces the codes that are
better suited for fading channels. While most of the present
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literature [2, 4] concentrates on precoding of OFDM sym-
bols to provide diversity, we explore the use of post-diversity
in this work. We are interested in low complexity systems
at the expense of bandwidth. An example of this scenario
is an ultra wideband (UWB) wireless personal area networks
where the bandwidth constraint is not much of an issue as
compared to transceiver complexity and/or power consump-
tion. Different from precoded systems that introduce redun-
dancy in data symbols, we introduce redundancy in OFDM
symbols after performing the IFFT operation to save compu-
tations and power. In the sequel, we will refer to this system
aspost-coded OFDMor PC-OFDM in short.

Our goal in this paper is to establish a general framework
for PC-OFDM systems to show low complexity implemen-
tation and analyze their performance. After discussing the
necessary details of uncoded OFDM system in Section 2 we
design the encoder in Section 3. To facilitate the analysis of
the system, we introduce a hypothetical equivalent precoding
matrix. We observe a close resemblance between PC-OFDM
encoder andsignal space encodersused to rotate the signal
constellation in fading channels [5]. Section 4 discusses a
low complexity alternative to implement the decoder by ex-
ploiting the polyphase decomposition of the channel. Before
analyzing PC-OFDM, we compare the complexity in Sec-
tion 5 and found that the unique design of PC-OFDM results
in a lower complexity coded OFDM system that consumes
less energy due to lower clock rate. We perform probabil-
ity of error analysis in Section 6 and observe that though
PC-OFDM is designed primarily for fading channels, it per-
forms as good as uncoded OFDM over Gaussian channels.
For uncorrelated Rayleigh fading channels, it achieves the
maximum available diversity gain of the channel that is fur-
ther confirmed through simulations in Section 7. Simulation
results show the superiority of PC-OFDM over previously
proposed precoded OFDM [2] and Pulse OFDM systems [6].

2. SYSTEM DETAILS AND PROBLEM
FORMULATION

Consider an uncoded OFDM system that is implemented
by using anN -point IFFT/FFT. The information symbols
are mapped to the signal space according to the modulation
scheme. The serial stream of modulated data symbolsb(n)
are grouped in blocks of sizeN such that theith block is
expressed asb(i) :=

[
b(iN), b(iN +1) · · ·b(iN +N −1)

]
.

Let FN be theN ×N FFT (fast Fourier transform) matrix
with (n,k)th entry as:[FN ]n,k = (1/

√
N)exp{−j2π(n−

1)(k−1)/N}. Ignoring the block indexi, the output of IFFT
(inverse fast Fourier transform) block is an OFDM symbol in
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the form ofN ×1 vector and is given by

x = FHN b. (1)

The insertion of the cyclic-prefix (CP) at the transmitter and
CP-removal at the receiver, renders the channel matrixH an
N ×N circulant matrixH̃. The received OFDM symbol can
therefore be expressed asr = H̃x+ η̃, whereη̃ represents the
N × 1 additive Gaussian noise vector. At the receiver, mul-
tiplication with the FFT matrixFN diagonalizes the channel
matrixH̃ such that it contains theN point discrete frequency
response of the channel given by [7]:

FNH̃FHN = HD = diag
[
FN h̃

]
, (2)

whereh̃ is N ×1 vector obtained from the concatenation of
Lh channel taps,{hl}Lh

l=1, andN −Lh zeros. Thus, the de-
modulated OFDM symbols can be simply written as:

u = HDb+η. (3)

The diagonalization of̃H converts an ISI channel into an ISI
free channel and eliminates the need for a complex receiver.
Although OFDM systems provide a means to have simple re-
ceivers, the system performance deteriorates severely in the
presence of channel frequency nulls. This deterioration can
be avoided by employing explicit diversity or redundancy
(coding) in the OFDM symbols, which is the subject of this
paper.

3. THE PROPOSED PC-OFDM SYSTEM

3.1 Encoder Design

Here we consider frequency diversity in OFDM symbols that
can be fairly easily achieved by upsampling the output of
IFFT. In an apparently similar approach, [8] introduced frac-
tionally sampled OFDM (FS-OFDM) where upsampling is
done at the receiver but not at transmitter as in our case.
Since upsampling the signal in time domain creates multiple
replicas of the signal in frequency domain, this operation is
equivalent to repeating the modulated source symbols prior
to IFFT. Since repetitive coding cannot harness the full cod-
ing advantage in general, we therefore multiply the upsam-
pler output with unit magnitude complex number sequence.
Again, equivalent to this operation in time domain will be a
linear combination of modulated source symbols. The block
diagram of PC-OFDM system is shown in Fig. 1. While PC-
OFDM performs these operations in digital domain, a similar
scheme for fast hopping UWB-OFDM is proposed in [9]
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Figure 1: PC-OFDM transmitter block diagram

3.2 Analytical Model of PC-OFDM

Using matrix notation, we can write the transmitted OFDM
symbol with post-coding as given byy = Ax = AFHNb

whereA is anNL×N constructed as

A=
{

[A]n,k = ejn for (n,k) = (iL−1, i) andi = 1, · · · ,N
0 otherwise.

(4)
It is easy to verify thatA is unitary matrix, i.e.,AHA = IN .
This property helps us to establish an important result later.

Example 1:Consider the design of PC-OFDM encoder
for N = 2 andL = 2. The encoding matrixA is given by:

A =




ej1 0
0 0
0 ej3

0 0


 ,

that jointly accounts for upsampling ofN = 2 OFDM sym-
bols by factor ofL = 2 and multiplication with sequence
{ejn}4n=1.

In precoded OFDM, the transmitted OFDM symbols can
be written as:

y = FHNLAb. (5)

While in case of PC-OFDM, we encode the OFDM symbols
after the IFFT as:

y = Ax = AFHNb. (6)

In both cases, we consider complex field codingi.e., A (or
A) ∈ CK×N with K ≥ N , instead of Galois field as it pro-
vides more degrees of freedom [2]. It is important to note
that any postcoding scheme can be made equivalent to a pre-
coding scheme by selecting

A = FNLAFHN . (7)

However, the converse is not true as PC-OFDM corresponds
to precoded OFDM with a constrained precoding structure.

Example 2:Using (7), the equivalent precoding matrix
for Example 1 is given by:

A =
1

2
√

2




ej1 +ej3 ej1−ej3

ej1−ej3 ej1 +ej3

ej1 +ej3 ej1−ej3

ej1−ej3 ej1 +ej3


 , (8)

This appears similar to redundant diversity codes that are
generally used to rotate the signal constellation to achieve
better performance in fading channels [5]. Thus in a sense,
the PC-OFDM system does perform signal constellation ro-
tation through the multiplication with unit amplitude phasors
and improves the system performance over fading channels.

4. LOW COMPLEXITY IMPLEMENTATION
MODEL OF PC-OFDM DECODER

While the analytical model reveals some important relation-
ship between postcoded and precoded OFDM systems, the
low complexity advantage of PC-OFDM will be clearer if
we apply the multirate signal processing concepts to the sys-
tem. To develop this model, assume that theith OFDM
symbol can be expressed as:x(i) := [x(i,0), · · · ,x(i,N −
1)], wherex(i,n) is a component of theith OFDM sym-
bol alongnth subcarrier. In a similar manner, ify(i) :=
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Figure 2: Equivalent model of PC-OFDM system with polyphase decomposition of channel

[y(i,0), · · · ,y(i,NL− 1)] is the output of PC-OFDM en-
coder then,

y(i,p) =
{

ejp x(i,p−1) for p = 1,L, · · · ,NL

0 otherwise.

For analytical simplicity, let us change the order of up-
sampling and multiplication in Fig. 1 such that the in-
put to the upsampler can be expressed asx̃(i) = Bx(i)
whereB is anN ×N diagonal matrix constructed as:B =
diag

[{ejp}] for p = 1,L, · · · ,NL. This simplification re-
sults in a cascade of upsampling and filtering (transmis-
sion through the channel) operation that can be equiva-
lently expressed as a polyphase decomposition of the chan-
nel. Writing thez-transform of the channel with coefficients
{h(l)}Lh−1

l=0 in the form

H(z) =
L−1∑
p=0

z−pHp(zL),

whereHp(zL) :=
∑Lh−1

l=0 h(lL+ p)z−lL represents the up-
sampled polyphase decomposition ofH(z). Thus, the equiv-
alent of cascade of upsampling and multiplication operation
in Fig. 1 can be expressed as anL branch multirate system
as shown in Fig 2 where each branch contains a polyphase
decompositionHp(z) =

∑Lh−1
l=0 h(lL + p)z−l of the chan-

nel followed by an upsampling operation of factorL. Note
that this decomposition also shows that PC-OFDM effec-
tively implements a frequency domain coding scheme with
very low complexity.

The polyphase decomposition of channel leads us to de-
sign a dual system with downsampling and delay operations
at the receiver such that theL branches can be separated
at the receiver as shown in Fig. 3. This is possible due to
the factorization property of the FFT matrix. For example, a
2N×2N FFT matrix (F2N ) can be factored as follows [10]:

F2N =
[
IN WN

IN −WN

]

︸ ︷︷ ︸
DN

[
FN ON

ON FN

][
even-odd

permutation

]
, (9)

where IN is the N × N identity matrix, WN =
diag[1 e−j2π/N · · · e−j2π(N−1)/N ] andON is the null ma-
trix of orderN ×N . From (9), it is clear that at the receiver
we need a downsampler to separate different phases and then
we can useN point FFT followed by multiplication with a
sparse matrix of the formDN .

For the sake of mathematical convenience, we can re-
write the channel input̃x(i) = BFHNb as x̃(i) = FHNBb,
whereB is an equivalent precoded matrix that can be ob-
tained asB = FNBFHN . The use of cyclic prefix will ren-

der the channel matrixHp in the pth branch as circulant
that in turn becomes a diagonal matrix,HpD, after pre- and
post-multiplication with DFT matrix. Thus the demodulated
OFDM symbol at thepth branch of the receiver is given by:

up = HpDb+η. (10)

If maximum likelihood (ML) detector is used at the re-
ceiver, then it combines the output from all the branches and
searches for the most likelihood symbol according to the fol-
lowing minimization:

b̂ = argmin
bi

L−1∑
p=0

||up−HpDBbi||. (11)

5. COMPLEXITY AND POWER COMPARISON
WITH PRECODED OFDM SYSTEMS

The proposed PC-OFDM system is capable of lowering the
implementation cost of coded OFDM system. For instance,
a PC-OFDM transmitter withN source symbols requires
an N -point IFFT module with computational complexity
of O(N logN) per N data symbols. In contrast, a redun-
dant precoded OFDM transmitter [2] withNL×N (where
L ∈ R andL ≥ 1) encoding has a computational complex-
ity of O(NL logNL). Similarly, the polyphase decomposi-
tion of channel in PC-OFDM will allow us to useN -point
FFTs in all theL branches that results in total complexity of
O(NL logN) at the receiver.

In addition to the savings in FFT modules, the unique
encoding scheme of PC-OFDM is a low cost operation and
requires onlyO(N) complex multiplications as compared
to O(N2L) complex multiplications/additions in precoded
OFDM. Table 1 compares the computation cost of FFT/IFFT
modules and encoding/decoding operations for precoded and
post-coded OFDM systems. The reduced complexity of PC-
OFDM system makes it suitable for wireless personal area
networks.

It is important to mention that the IFFT/FFT operations
in PC-OFDM are performed at information symbol data
rate, however, in precoded OFDM these operations are per-
formed after encoding and at higher sampling rate. Since

(i)x~b
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Figure 3: Simplified model of PC-OFDM
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power consumption of these DSP modules is proportional to
clock frequency, PC-OFDM saves power by computing the
IFFT/FFT operations at lower rate. The comparison of re-
quired clock rate for different modules in precoded OFDM
and PC-OFDM systems is shown in Table 2.

Pre-coded OFDM PC-OFDM
IFFT O(NL logNL) O(N logN )
FFT O(NL logNL) O(NL logN )

Encoding O(N2L) O(N )
Decoding O(N2L) O(NL logN )

Table 1: Comparison of computation cost of different opera-
tions in precoded and post-coded OFDM systems

IFFT Transmitter DAC FFT
Pre-coded OFDM Lfc Lfc Lfc

PC-OFDM fc Lfc fc

Table 2: Comparison of required clock rate for different
modules (fc = clock rate in Hz)

6. PROBABILITY OF ERROR ANALYSIS

It has been shown in the recent research that the criteria com-
monly used to design codes for additive white Gaussian noise
(AWGN) channels have to be adjusted when dealing with a
fading channel (see [11] and references therein). As we shall
see soon, the performance of a code over fading channels
depends on the minimum Hamming distance and not on the
Euclidean distance between codewords. In this paper, our
main goal is to design the codes for fading channels. Nev-
ertheless, it is important to see the system performance over
AWGN channels. Therefore, we consider the probability of
error for AWGN and Rayleigh fading channels separately.

6.1 AWGN Channels

It is well known that for AWGN channels the minimum
Euclidean distance of the codewords determines the proba-
bility of error [11]. Considering ML detection, the probabil-
ity of error (Pe) can be expressed as

Pe =
1
2

erfc

(
dmin

2
√

(No)

)
, (12)

where erfc is the Gaussian tail function defined as erfc(x) :=
1/(
√

2π)
∫∞

x
e−t2/2dt anddmin is the minimum Euclidean

distance. IfA is the set of codewords, then it is defined as:

dmin = min
x 6=x′

||x−x′||= min
b 6=b′

||A(b−b′)||. (13)

Simplifying the square of the norm in (13), we obtain
||A(b−b′)||2 = (b−b′)HAHA(b−b′). Thus,dmin which
is the minimum Euclidean distance between the coded sym-
bols can be different from the minimum Euclidean distance
between the uncoded symbols. However, if the coding ma-
trix forms a unitary transform pair, i.e.,AHA = IN , the min-
imum Euclidean remains unchanged [12]. In this situation,
the codes do not perform poorly in AWGN channels. The
PC-OFDM system encoder follows this important property
as stated in the following proposition:

Proposition 1. In a PC-OFDM system, the equivalent pre-
coding matrixA is indeed a unitary matrix.

Proof: From (7), we haveA = FNLAFHN . The result fol-
lows by evaluatingAHA and using the fact thatFHNFN =
IN for all N andAHA = IN .

6.2 For Uncorrelated Fading Channels

To assess the performance of PC-OFDM over uncorrelated
fading channels, we adopt the average pairwise error proba-
bility (PEP) technique that has been derived in similar con-
text in [2, 13]. By definition, the PEP is the the probability of
erroneously detectingb′ whenb was transmitted. In order
to find the PEP (see [2] for details), we need to define a ma-
trix Ae := (DeV)HDeV whereV is truncated FFT matrix
with [V](k,l) = e−j2πkl/NL andDe = A(b−b′). Now, for
Rayleigh fading channels with uncorrelated paths, the PEP is
given by:

Pr(b→ b′)≤
(

1
4No

)−Gd
(

Gd∏

l=1

αlλe,l

)−1

, (14)

whereNo/2 is the power spectral density of additive white
Gaussian noise,αl = E[|h(l)|2] is the channel correlation and
λe are the eigenvalues ofAe. It can be seen from (14) that
the PEP depends on the following two factors:

• Diversity gain (Gd): Roughly speaking, the di-
versity gain represents the slope of the PEP curve
especially at high SNR. It is related to the rank of
Ae [13].

• Coding gain (Gc): The coding gain controls
the shift in the PEP curve and depends on the
product of eigenvalues{λe,l}Lh

l=1 of Ae such that

Gc =
(∏Gd

l=1 λe,l

)1/Gd

It was shown in [2] that the rank ofAe is related to the
minimum Hamming distance of the codewords. IfA is the
set of codewords such thatAb,Ab′ ∈ A then the Hamming
distanceδ(Ab,Ab′) between these codewords is the number
of non-zero entries inA(b−b′). The minimum Hamming
distance of the codesetA is defined as :

δmin(A) = min{δ(Ab,Ab′)|Ab,Ab′ ∈ A}. (15)

As stated in [2], the diversity orderGd is upper bounded
by the number of pathsLh in the channel, i.e.,Gd =
min{δmin(A),Lh}. The proposed encoder follows the fol-
lowing proposition:

Proposition 2. The PC-OFDM system achieves the maxi-
mum available diversity gain.

Proof: AssumeA is NL×N . The particular structure of
A guarantees that all of its elements are non-zero.In addi-
tion, all the elements in a row ofA are different. Thus, each
block ofN data symbols is mapped to a unique point inNL
dimensional space such that any two points differ in all the
components. This results inδmin = NL which is generally
larger than the channel length and thusGd = Lh.

The second parameter that controls the shift in the PEP
curve is the coding gain. To see this dependence, we ob-
tain a series of PEP curves from (14) for two different values
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of Gd and three different values ofGc as shown in Fig. 4.
It is obvious from Fig. 4 that the increase in diversity gain
from Gd = 2 to Gd = 4 causes a drastic improvement in sys-
tem performance by reducing the PEP while the increase in
coding gain fromGc = 10 to Gc = 25 does not improve the
system performance significantly.
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Figure 4: Upper bound on the PEP

7. SIMULATION RESULTS

We perform simulations to compare the bit error rate (BER)
of different coded OFDM systems as shown in Fig. 5. The
information symbols are BPSK modulated to yieldB =
{+1,−1} and transformed to OFDM symbols withN = 4.
For all the coded OFDM systems considered in Fig. 5, we
useL = 2 that results in code rate of1/2. The simulations
are performed over Rayleigh fading channel with five taps
that are generated according to the Jakes model. To com-
pare with precoded OFDM systems, we employ the real (re-
ferred as precoded OFDM-a) and complex (referred as pre-
coded OFDM-b) precoders proposed in [2]. The BER results
of such precoders are obtained using ML detection and the
results are shown in Fig. 5. As seen from Fig. 5, the BER
performance depends on the choice of the precoder. We also
obtain the BER performance of pulsed-OFDM [6] and the
results are shown in Fig. 5. The slope of the curve shows
that pulsed-OFDM could not achieve the full diversity order
available in the system. The BER curve of PC-OFDM using
ML detector is also shown in Fig. 5 verifies the superiority of
PC-OFDM in terms of BER performance.

8. CONCLUSIONS

We proposed a novel coded OFDM system in the form of
PC-OFDM that enjoys the benefits of low complexity and
power consumption, and retains the benefits of other similar
precoded schemes. Due to the unitary nature of encoding ma-
trix, PC-OFDM performs equally good over Gaussian chan-
nels. For fading channels, it achieves the maximum available
diversity gain of the channel while operating at a significantly
low complexity.
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