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I. I NTRODUCTION

The optimal control of multi-hop wireless networks is
a major research and design challenge due, in part, to
the interference between nodes, the time-varying nature
of the communication channels, the energy limitation of
mobile nodes, and the lack of centralized coordination.
This problem is further complicated by the randomness
of data traffic arrivals. Although a complete solution to
the problem is still elusive, a major advance is made
in the seminal work of [1], which obtains athroughput
optimal routing and link activation policy withouta
priori knowledge of arrival statistics. The policy operates
on the Maximum Differential Backlog (MDB) principle,
which essentially seeks to achieve load-balancing in the
network. The MDB policy has been extended to multi-
hop networks with general capacity constraints in [2].

There remains, however, a significant difficulty in
applying the MDB policy to practical wireless networks.
The mutual interference between wireless links implies
that the evaluation of the MDB policy involves a cen-
tralized optimization. On the other hand, effective con-
trol strategies for large-scale wireless networks require
distributed implementations with low control messaging
overhead. Motivated by this concern, we investigate the
distributed implementation of the MDB algorithm within
interference-limited CDMA wireless networks, where
transmission on any given link potentially interferes with
transmissions on all other active links.

We represent the network by a directed and connected
graphG = (N , E). For convenience, letO(i) , {j :
(i, j) ∈ E} and I(i) , {j : (j, i) ∈ E} denote the
sets of nodei’s next-hop and previous-hop neighbors,
respectively. Leth = (hij)(i,j)∈E represent the (con-
stant) channel gains on all links. Denote the transmission
power used on link(i, j) by Pij , and the service rate of
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link (i, j) by Rij ≤ Cij , whereCij is the (approximate1)
information-theoretic capacity of link(i, j) given by

log SINRij = log
KhijPij

hij(Pi − Pij) +
P

m6=i

hmjPm + Nj
,

whereK is the processing gain,Pm =
∑

k∈O(m) Pmk

is the total transmission power of nodem, and Nj

represents the noise power of receiverj.
Let K be the set of all data traffic types. When typek

traffic reaches any node in its destination setNk ⊂ N ,
it exits the network. The new arrivals of typek traffic at
nodei in the tth slot is a nonnegative random variable
Bk

i [t]. Nodei /∈ Nk provides a (separate) infinite buffer
ik for each typek of traffic. Denote the unfinished work
in ik at the beginning of thetth slot byUk

i [t].
The following Maximum Differential Backlog (MDB)

policy has been shown to bethroughput optimal[1], [2]
in the sense that it stabilizes all input processes with av-
erage arrival rate vectors which can be stabilized by any
feasible control policy. Letb∗ij [t] = max{0, U

k∗ij [t]

i [t] −
U

k∗ij [t]

j [t]}, wherek∗ij [t] = arg maxk∈K{Uk
i [t]− Uk

j [t]}.
The MDB policy then finds the rate vectorR∗(U [t])
which solves

max
R feasible

X

(i,j)∈E
b∗ij [t] ·Rij . (1)

The service rate provided by link(i, j) to queueik

is determined by:Rk
ij [t] = R∗ij [t] if k = k∗ij [t], and

Rk
ij [t] = 0 for all otherk.

II. D ISTRIBUTED MDB CONTROL

We consider solving the optimization problem in (1)
at a fixed time slot in a power-constrained CDMA
network, i.e., for each nodei, the total transmission
power

∑
j∈O(i) Pij ≤ P̂i. Let the transmission pow-

ers be controlled by the following node-basedpower

1We assume a high-SINR situation, which is typical in CDMA
systems, and normalize the channel symbol rate to be one.
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allocation variablesηij ≡ Pij/Pi and power control
variablesγi ≡ ln Pi/ln P̂i. With appropriate scaling, we
can always letP̂i > 1 for all i ∈ N so that the above
variables are constrained byηij ≥ 0, ∀(i, j) ∈ E , and∑

j∈O(i) ηij = 1, γi ≤ 1, ∀i ∈ N . We show that a power
configuration is optimal if and only if for alli ∈ N , there
exists a constantνi such thatδηij = νi, ∀j ∈ O(i),
δγi = 0, if γi < 1, and δγi ≥ 0, if γi = 1. Here,δηij

andδγi are thepower allocation indicatorand thepower
control indicator capturing the gradients inηij and γi,
respectively. We show that(δηij) can be computed by
node i based entirely on local measures. Although the
computation ofγi involves global information, it turns
out that a simple message exchange protocol requiring
each node to broadcast one local measure suffices to let
all nodes determine theirγi.

To achieve the optimal configuration, we design scaled
gradient projection algorithmsPA and PC which iter-
atively update the nodes’ power allocation and power
control variables in a distributed manner. At each itera-
tion k, the variables are updated in the direction ofδηi
or δγ, scaled by a positive definite matrixQk

i or V k.
When an update leads to a point outside the feasible set,
the point is projected back into the feasible set. More
specifically, at thekth iteration at nodei, the local power
allocation vectorηk

i = (ηk
ij) is updated by

ηk+1
i = PA(ηk

i ) =
h
ηk

i + (Qk
i )−1 · δηk

i

i+
Qk

i

.

The power control vectorγk = (γk
i ) is updated by

γk+1 = PC(γk) =
h
γk + (V k)−1 · δγk

i+
V k

.

Note thatPC is decomposable into node-based compu-
tations if and only ifV k is diagonal. We show that there
exist valid scaling matrices{Qk

i } andV k such that the
update sequences generated by the algorithmsPA and
PC converge to an optimal power configuration.

For convergence, we choose the scaling matrices to
approximate the relevant Hessians such that the objective
value is increased by every iteration until the optimum
is achieved. This allows the scaled gradient projection
algorithms to approximate constrained Newton algo-
rithms, which are known to have fast convergence rates.
Furthermore, we show that the scaling matrices are
easily computable at each node using limited control
messaging [3].

III. T HROUGHPUTOPTIMALITY OF DELAYED MDB

Since thePA and PC algorithms need a certain
number of iterations before reaching a neighborhood of
the optimum, the MDB policy must now be implemented
with delayed queue state information. This issue is stud-
ied in a queueing network with Poisson arrivals and ex-
ponential service rates by Tassiulas and Ephremides [4].

Here, we analyze the MDB algorithm with delayed
queue state information in general multi-hop networks
with i.i.d. random arrival processes and general rate
regions. We show that the throughput optimality of the
MDB policy is preserved for any finite delay in the queue
state information if the second moments of the random
arrivals are bounded.

We assume a general convex feasible service rate
region C. Due to the iterative nature of the distributed
MDB algorithms, the actual service rates are always in
transience, shifting from the previous optimum to the
next optimum. Without loss of generality, assume the
convergence time of the MDB algorithms in Section II
is the length of a time slot (normalized to 1), i.e., at the
beginning of slott + 1, the optimal service rate vector
for U [t] is achieved. With i.i.d. arrivals, the process
{(U [t], U [t− 1])}∞t=1 forms a Markov chain with state
W [t] ≡ (U [t], U [t− 1]).

We use the Lyapunov function from [4]:

V (W [t]) =
X

k∈K

X
i∈N

Uk
i [t]2 + (Uk

i [t]− Uk
i [t− 1])2

and the geometric approach from [3] to conveniently
relate the position of the average arrival rate vector
a ∈ int(C) to the expected Lyapunov drift. We show
that if the second moments of arrival rates are finite,
we can always find a compact subsetW0 = {w ∈
RM

+ ×RM
+ : V (w) ≤ Ω} of the state space such that the

Foster’s criterion for recurrent Markov chains is satisfied.
Therefore, the delayed MDB policy remains throughput
optimal.

We conclude that our algorithms in Section II find
the optimal power and rate control required by the
MDB policy in a distributed manner, and preserve the
throughput optimality of the MDB policy even though
the optimal control is implemented with delay relative to
the queue state information. Therefore, our work yields a
distributed throughput optimal control policy for CDMA
wireless networks with random traffic arrivals.
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