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ABSTRACT
The paper is concerned with identification of coupling chan-
nel and multi-path channel for SFN relay station in the
OFDM transmission systems. Channel identification is im-
portant and necessary to design a stable coupling canceller.
Nevertheless, it is a difficult issue to identify an overall relay
transfer function in full-band since the transmitted OFDM
signals are band-limited. The purpose of this paper is to pro-
pose a new identification scheme of the relay transfer func-
tion from the transmitted signals of a key station to the re-
transmitted signal of a relay station, by efficiently making
use of property of the OFDM signals with CP. Moreover, an
upper bound on the transfer function estimation error is also
evaluated.

1. INTRODUCTION

The OFDM systems are recently considered to be a reliable
choice for high rate transmissions and are widely adopted in
digital audio and video broadcasting, and broadband wireless
local area networks. In digital broadcasting, the OFDM sig-
nal is usually transmitted through single frequency networks
(SFN), where the transmission efficiency is higher than that
in multi-frequency networks. Nevertheless, since the carrier
frequency for transmission is the same as that of the received
signals at a relay station, the radio wave from the transmit-
ter antenna couples into the receiver antenna. The coupling
wave deteriorates the quality of the signal transmission, even
causes the serious oscillation problem. Hence, signal pro-
cessing schemes for the coupling cancellation should be de-
veloped to reduce the coupling effects.

Several methods have been proposed to deal with the
coupling cancellation issue. In the time-domain algorithms,
the coupling channel C(z) is estimated, then the coupling
wave canceller W (z), which is often an FIR filter as illus-
trated in Figure 1, is designed to cancel the coupling wave
[1]. In the space-based approaches, the antenna arrays are
used for beamforming and direction-of-arrival estimations
[2]. Space-time joint algorithms have also been proposed
[3]. Zero-forcing receiver design has also been proposed
to compensate for coupling interferences [4]. In both the
time-domain and space-domain algorithms, the FIR mod-
els of the coupling channel C(z) and multi-path transmission
channel G(z) are necessary for stable canceller design. Chan-
nel identification for OFDM transmission has also been stud-
ied via subspace-based blind identification approach [5] and
cyclostationarity-based blind identification [6]. However, in
order not to interfere the adjacent transmission bands, the
transmitted signal in the OFDM systems is generally band
limited, and it leads to that it is very difficult to estimate the
frequency response of the channels in the whole frequency
range.
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Figure 1: Schematic diagram of SFN relay station. G(z):
multi-path of transmission channel; C(z): Model of coupling
effect; K(z): Model of amplifier; na(t): Noise in transmis-
sion channel; nb(t): Noise in relay station.

The purpose of this paper is to propose a novel identi-
fication method to obtain transfer functions of the coupling
and multi-path channels as well as an overall transfer func-
tion from a key station to relay station by efficiently using the
property of the OFDM signals with CP. Moreover, an upper
bound of the estimation error is also given, so the obtained
results contribute to stable design of the coupling canceller.

2. MODEL OF OFDM RELAY STATION

The desired transmitted base band signal d(t) from a key sta-
tion in one symbol period is given by

d(t) = ∑
M
2

n=−M
2 +1

dne jnω0t (1)

where ω0 is the frequency interval, M the size of Fourier
transform, and dn is the source symbol given as

dn =
{

information (�= 0) |n| ≤ N−1
2

0 |n|> N−1
2

(2)

where N is the number of carriers and N < M. One symbol
period is denoted by Tinf = 2π

/
ω0, and the power spectrum

of d(t) is limited within the frequency band |n| ≤ (N −1)
/

2.
In the OFDM systems, a guard interval, i.e., a cyclic pre-

fix (CP), whose length is commonly larger than the channel
memory at the transmitter, is inserted to the head of symbol,
enables OFDM to avoid multi-path interferences.

As illustrated in Figure 2, the CP is inserted before the
original symbol by copying the last part of the original signal
within time Tcp. Then the total period of transmitted symbol,
which is denoted as Tsig, becomes Tinf + Tcp.

Let the coupling channel C(z) in the relay station and the
multi-path channel G(z) from the key station be expressed
respectively by

C(z) = c0 + c1z−1 + · · ·+ cLcz−Lc

G(z) = g0 + g1z−1 + · · ·+ gLcz
−Lg

(3)
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Figure 2: Cyclic prefix (CP) of OFDM signal

where Lc and Lg are the length of the FIR models. In this pa-
per, z−1 is also used for notation of backward-shift operator.
Following the block diagram of coupling wave cancellation
in Figure 1, the transfer function from D(e jω) to S(e jω) in
frequency domain is expressed by

S(e jω) =
G(e jω)D(e jω )

1 +W(e jω)−C(e jω)K(e jω )

+
Na(e jω)+ Nb(e jω)

1 +W(e jω )−C(e jω)K(e jω)

= H(e jω)D(e jω )+ Γ(e jω)(Na(e jω)+ Nb(e jω)) (4)

where H(e jω) is the overall relay transfer function, and
Γ(e jω) is the sensitivity function, which are given by

H(z) =
G(z)

1 +W (z)−C(z)K(z)
(5)

Γ(z) =
1

1 +W(z)−C(z)K(z)
(6)

Then the object of the channel estimation and coupling can-
cellation is to design the filter W (z) such that Γ(z) is stable
and H(e jω) → 1 for |ω | ≤ (N − 1)ω0/2.

3. PROPERTY OF OFDM SIGNAL

3.1 Reconstruction of Symbols in Signal Band

Assume that the scattered OFDM pilot symbols are inserted
to the subcarriers at specified frequencies ωP,k. Then if syn-
chronization is attained, the power spectrum D(e jωP,k) of the
true transmitted signal can be known at ωP,k from the infor-
mation of pilot symbols. By applying the Fourier transform
to the re-transmitted signal s(t) in the symbol period Tinf,
S(e jω) is obtained. If the estimate Ĥ(e jω ) in the signal band
is given, then D(e jω) at other than ωP,k can be obtained as

S(e jω)
Ĥ(e jω)

, for |ω | ≤ N − 1
2

ω0
D̂(e jω) =

⎧⎪⎨
⎪⎩ (7)

0, for |ω | > N − 1
2

ω0

where Ĥ(e jω ) can be obtained by proposed approaches given
later. Thus the estimate of the signal d(t) from the key station
can be obtained from (1) via IFFT of D̂(e jω).

3.2 Property of OFDM Signal Outside Signal Band
In order to obtain more information outside the signal band,
we define a new signal d1(t) as

d1(t) = d(t + Tinf)−d(t) (8)

It is noticed in Figure 2 that d1(t) expresses the difference
between a current symbol part and former symbol part in the
interval −Tcp ≤ t < 0, while in the interval 0 ≤ t < Tcp, d1(t)
expresses the difference between the tail part of the symbol
and its copy in the guard interval, thus d1(t) always holds
zero within this interval.

Similarly, we define the signal s1(t) as

s1(t) = s(t + Tinf)− s(t) (9)

It is noticed that d1(t) and s1(t) in the interval −Tinf
/

M ≤ t ≤
Tcp are the impulse signal input and the resulting output of the
total relay transfer function respectively. The output tran-
sient behavior can give an impulse response model. How-
ever, since its initial condition in t <−Tinf

/
M is not zero, we

cannot directly obtain the impulse response from s1(t).

4. CHANNEL IDENTIFICATION

Let the canceller W (z) be an FIR filter with length L. To
realize stable coupling cancellation, models of H(z) and Γ(z)
should be identified first.

4.1 Estimation of H(e jω) in Signal Frequency Band
Assume that the receiver of the relay station is well synchro-
nized with the transmitter of key station, then the pilot sym-
bols at the frequency ωP,k, i.e., D(e jωP,k), are known to the
relay station. Furthermore, the frequency property S(e jω) of
the re-transmitted signal s(t) can also be obtained by Fourier
transform using the data within one symbol period Tinf. It
yields that the estimate Ĥ(e jωP,k) at pilot frequency ωP,k.

Ĥ(e jωP,k) =
S(e jωP,k )
D(e jωP,k)

(10)

can be calculated. Then using interpolation approaches such
as linear interpolation, the estimate Ĥ(e jω ) inside the signal
band can be obtained [1]. Furthermore by using Ĥ(e jω ), we
can reconstruct D̂(e jω) and d̂(t) inside the signal band. How-
ever, the estimate outside the signal band cannot be obtained
by using the ordinary interpolation method because D(e jω)
outside the band is zero. A novel approach is proposed in the
following sections.

4.2 Parametric Estimation of Sensitivity Function
The model of Γ(z) in full frequency band is necessary to lo-
cate all poles of Γ(z) in a unit circle to achieve the stable can-
cellation. However it is a very difficult to obtain an estimate
of Γ(z), so we show an effective method using the property
of the OFDM signals with CP.

In the guard interval 0 < t ≤ Tcp, it holds that d1(t) = 0.
Then, s1(t) can be described by an AR model as

1
Γ(z)

s1(t) = v(t), for 0 < t ≤ Tcp (11)

Thus, as shown in (11), the sensitivity function can be
estimated by LMS or RLS method without using the trans-
mitted symbols.
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Figure 3: Non-parametric identification problem

4.3 Non-parametric Estimation Method
Consider an estimation problem depicted in Figure 3. Let
d1(t) and s1(t) be defined by (8) and (9) respectively, and
let v(t) be noise. We consider how to obtain the impulse
response of H(z) from d1(t) and s1(t) in t ∈ [−Tcp, Tcp

]
.

From the property of the impulse response, any initial
condition of the impulse response should be zero. The prob-
lem is how to remove the influence by non-zero initial con-
dition from s1(t). Here we pre-filter d1(t) in two consecutive
signal periods by two filters Q1(z) and Q2(z) respectively to
generate the input signal as 0, · · · ,0,1,0, · · · ,0, and pad suffi-
ciently large zeros before the impulse. The obtained signal is
input to the system, thus we can obtain the impulse response
with deleted influence of non-zero initial condition.

4.3.1 Generation of estimated input

A specific estimated input can be generated using d1(t). We
treat with the signal d1(t) in two signal periods 2Tsig. Then
we take x1(t) = d1(t) and x2(t) = d1(t + Tsig). As shown in
Figure 4, by designing the filters Q1(z) and Q2(z), we can
give a desirable estimated input sequence q(t) as

q(t) = x1(t)Q1(z)+ x2(t)Q2(t) (12)

For instance, let the sequences x1(t) = 1,2,1,0, · · · ,0 and
x2(t) = 1,2,1,0, · · · ,0 in − 2

M Tcp ≤ t < Tcp, then we can spec-
ify second-order filters Q1(z) and Q2(t) as

Q1(z) = a +(0.25−2a)z−1 + az−2

Q2(z) = −a +(−0.25− 2a)z−1 + az−2

Thus we obtain an impulse signal as q(t) = 0,0,1,0, · · · ,0,
where a �= 0. Q1(z) and Q2(z) can be decided uniquely by,
for example, choosing a = 1.

Next, we consider the generation of the estimated input
sequence q(t) in the interval t < − L2

M Tinf. Let Xi(z) be an
L2-th order polynomial, and let the coefficients be a signal
sequence xi(t) in the interval − L2

M Tinf ≤ t ≤ 0. If X1(z) and
X2(z) are coprime polynomials, the next polynomial equation

Q(z) = X1(z)Q1(z)+ X2(z)Q2(z) (13)

has the solutions Q1(z) and Q2(z) for arbitrary 2L2-th order
polynomial Q(z) �= 0. The coefficients of Q(z) are the se-
quence of q(t) in the interval − L2

M Tinf ≤ t ≤ L2
M Tinf. Thus,

even if any initial condition for t < − L2
M Tinf takes non-zero

values, we can obtain the impulse response γ(t) of H(z) by
setting q(t) = 0, · · · ,0,1,0, · · · and giving Q1(z) and Q2(z), as
shown in Figure 4. Thus, we can obtain the overall transfer
function outside the signal frequency band.

4.3.2 Non-parametric model estimation

Let x1(t) = d1(t) and x2(t) = d1(t + Tsig). By filtering the
signals x1(t) and x2(t) for the interval − L2

M Tinf ≤ t ≤ L2
M Tinf

� ��� �

� �� � �
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Figure 4: Generation of identification input
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Figure 5: Non-parametric estimation model

via the filters Q1(z) and Q2(z) with L2 order, we obtain the
impulse signal q(t) in (12) which is given by

0 · · · 0︸ ︷︷ ︸
L1

1 0 · · · 0︸ ︷︷ ︸
L2+ Tcp

Tinf
M−L1

(14)

As already stated, we can obtain the filters Q1(z) and
Q2(z). If L1 is chosen sufficiently large such that the initial
condition of the impulse response H(z) becomes zero, we
can obtain the impulse response of H(z) from the response
γ(t) by inputting q(t) to H(z).

However, in actual communication systems, we cannot
input q(t) to H(z). Therefore, we exchange Q1(z) and Q2(z)
with H(z) in Figure 4 and transform the structure to Figure 5.
Then we can consider a similar problem in which y1(t) and
y2(t) are filtered by Q1(z) and Q2(z) respectively. Thus, we
can obtain the output sequence as

Q1(z)y1(t)+ Q2(z)y2(t) for − L2

M
Tinf ≤ t ≤ Tcp (15)

Then, by deleting L1 zeros of the initial condition, we
can obtain the observed sequence of the impulse response
corrupted by noise. Thus let the sequence be denoted by ˆ̄h(k),
k = 0,1, · · ·, where y1(t) = s1(t), y2(t) = s1(t + Tsig).

On the other hand, the solution of Q1(z) and Q2(z) is
obtained so that q(t) can satisfy that

2L2+1︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

L1

ĝ−1,0, ĝ−1,1, · · ·
(16)

Thus, we obtain the non-parametric estimate of the sen-
sitivity function Γ(z), and denote it by ˆ̄γ(k), where ĝ−1,l is
an impulse response of 1/Ĝ(z). Transient response of Γ(z)
attenuate sufficiently, a true response becomes zero and ˆ̄γ(k)
involves almost noise components.

4.4 Estimation of Channel G(z) and C(z) in Full Fre-
quency Band
By using the total transfer function (4) and the estimated
sensitivity function, we calculate s2(t) by filtering s1(t) as
s2(t) = s1(t)

/
Γ̂(z). Then we have

s2(t) = G(z)d1(t), for −Tcp ≤ t ≤ Tcp (17)
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Thus, using the signal data s2(t) and d1(t), we can obtain the
estimate of the multi-path channel Ĝ(z). Moreover, from the
definition of the sensitivity function Γ(z), it follows that the
cascade connection of the coupling channel C(z) and ampli-
fier K(z) in Figure 1 can be estimated by

̂C(e jω )K(e jω) = 1 +W (e jω)− 1
Γ̂(e jω)

(18)

5. ESTIMATE OF SENSITIVITY FUNCTION

In order to design a stable adaptive coupling canceller by
using estimated transfer functions of the relay station, it is
important to evaluate the uncertainty bound on the channel
estimates.

5.1 Evaluation of Uncertainty Due to Noise

Let ˆ̄Γ(e jω ) be a frequency response of ˆ̄γ(k). By introducing
the m-point rectangular window ψm,k, k = 0, · · · ,m− 1, the
approximately estimated model ˆ̄Γrectw(z) of ˆ̄Γ(z) is given by

ˆ̄Γrectw(z) = ∑m−1
k=0 ψm,k ˆ̄γ(k)z−k. (19)

Let the frequency responses of ˆ̄Γ(z) and ˆ̄Γrectw(z) be de-
noted by

ˆ̄Γ(e jω) = Γ(e jω)+V(e jω) (20)
ˆ̄Γrectw(e jω) = Γm,M(e jω )+Vm,M(e jω) (21)

where Γ(e jω) and V (e jω ) are the frequency response of
the sensitivity function Γ(z) and noise. Let Γm,M(e jω) and
Vm,M(e jω) be denoted as

Γm,M(e jω) = Ψ(e jω)�∗ Γ(e jω ) (22)

Vm,M(e jω) = Ψ(e jω )�∗ V (e jω) (23)

where Ψ(e jω ) is a frequency response of the window func-
tion, and �∗ is a convolution operator in the frequency do-
main. It holds for sufficiently large m, that Γm,M(e jω ) ≈
Γ(e jω), then we have∥∥∥ ˆ̄Γrectw(e jω)− ˆ̄Γ(e jω )

∥∥∥≈∥∥Vm,M(e jω)−V (e jω )
∥∥

≥
∣∣∣∣∥∥Vm,M(e jω )

∥∥−∥∥V (e jω)
∥∥∣∣∣∣ (24)

where
∥∥X(e jω)

∥∥= max
0≤ω<2π

{∣∣X(e jω)
∣∣}. By using the defini-

tion of
∥∥V (e jω)

∥∥ = ε ,
∥∥Vm,M(e jω)

∥∥ can be evaluated [7] as

Qw√
2

ε ≤ sup
|V (e jω )|<ε

∥∥Vm,M(e jω )
∥∥ ≤ Qwε (25)

where Qw ifs defined by

Qw =
1
M

M−1

∑
l=0

∣∣∣∣∑m−1
k=0 ψm,ke− j 2πl

M k
∣∣∣∣ (26)

Here Qw

/√
2−1. Then it follows from (24) and (25),

sup
|V (e jω )|<ε

∥∥∥ ˆ̄Γrectw(e jω)− ˆ̄Γ(e jω)
∥∥∥≥(

Qm√
2
−1

)
ε (27)

holds where sup‖·‖ implies a supreme on all possible noise
realizations, but it is impossible to strictly evaluate it. Hence,
by using obtained samples, we evaluate ε as

ε̂ ≈ 1
1√
2
Qw −1

∥∥∥ ˆ̄Γrectw(e jω )− ˆ̄Γ(e jω)
∥∥∥ (28)

Thus, the estimation error
∥∥ΔΓnoise(e jω )

∥∥ due to noise is
given by∥∥ΔΓnoise(e jω)

∥∥ =
∥∥∥Γ(e jω)− ˆ̄Γrectw(e jω)

∥∥∥
=

∥∥∥Γ(e jω )− ˆ̄Γ(e jω )+ ˆ̄Γ(e jω)− ˆ̄Γrectw(e jω )
∥∥∥

≤
∥∥∥Γ(e jω )− ˆ̄Γ(e jω )

∥∥∥+
∥∥∥ ˆ̄Γ(e jω)− ˆ̄Γrectw(e jω )

∥∥∥
≤ (Qw + 1)ε

≈ Qw + 1
1√
2
Qw −1

∥∥∥ ˆ̄Γ(e jω )− ˆ̄Γrectw(e jω)
∥∥∥ (29)

5.2 Evaluation of Uncertainty Due to Signal Band Lim-
itation and Model Reduction
Estimation error due to the signal band limitation and model
reduction

∣∣ΔΓband+low(e jω)
∣∣ is approximately evaluated by

∣∣ΔΓband+lowod(e jω )
∣∣ ≤ ∣∣∣Γ̂(e jω)− ˆ̄Γrectw(e jω )

∣∣∣ (30)

Thus the error bound of the estimate Γ̂(e jω ) is given by∣∣ΔΓ(e jω)
∣∣ =

∣∣Γ(e jω )− Γ̂(e jω)
∣∣

≤∥∥ΔΓnoise(e jω)
∥∥+

∣∣ΔΓband+low(e jω )
∣∣

≤ Qw + 1
1√
2
Qw −1

∥∥∥ ˆ̄Γ(e jω)− ˆ̄Γrectw(e jω)
∥∥∥

+
∣∣∣Γ̂(e jω)− ˆ̄Γrectw(e jω )

∣∣∣ (31)

5.3 Proposed Identification Algorithm
The proposed algorithm for estimating the overall relay
transfer function, sensitivity function and its uncertainty
bound is summarized below:
Step 1: Calculate S(e jω) from one symbol period of s(t).
Step 2: Estimate transfer functions.

2.a: Estimate the overall relay transfer function H(e jωP,k)
at pilot symbol frequencies using (10).

2.b: Estimate the overall relay transfer function H(e jω) in
the signal band using the linear interpolation.

2.c: Estimate the sensitivity function Γ(e jω) by using the
parametric or nonparametric identification method.

2.d: Estimation of G(e jω ) in (17) and C(e jω) in (18).
Step 3: Evaluation of uncertainty bound

3.a: By generating the estimated input by (16), calculate
the impulse response ˆ̄γ(k) of sensitivity function using
(15).

3.b: Obtain a reduced-order model of the sensitivity func-
tion by using a windowing procedure by (19).

3.c: Evaluate the uncertainty bound on Γ̂(e jω ) by (31).

6. SIMULATION RESULTS

Let the transmitted symbols dn be 64QAM signals. The num-
ber of carriers is N = 1405, and the pilot symbols are inserted
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Figure 6: Relay frequency property. Solid line: True value of
|H(e jω)|; Dotted line: |Ĥ(e jω)| under SNR= 35dB; Dashed
line: |Ĥ(e jω)| under SNR= 20dB
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Figure 7: Frequency property of sensitivity function |Γ(e jω)|
under SNR= 35dB. Solid line: True value. Thick dotted line:
|Γ̂(e jω)|; Thin dotted line: |Γ̂(e jω )|+ |ΔΓ(e jω )|

at 118 frequencies. The frequency interval is ω0 = 2π f0,
f0 = 4 kHz, and the size of FFT/IFFT is given by M = 2048.
The length of the guard interval is Tcp = Tinf/4. Let K(z) be
a positive constant, and the simulations are performed under
two noise levels: SNR= 20dB and 35dB.

Let the number of taps in the canceller W (z) be 100. It
is assumed that the relay station antenna receives five cou-
pling waves with DU ratios (and tapped delay) 7.7dB(4),
3.25dB(6), 61dB(7), 10.9dB(9) and 65dB(12). It is also as-
sumed that the unknown coupling and multi-path channel

C(z) = 0.6817e j0.3243πz−3 + 0.85e j π
6 z−5

+0.0457e− j 11π
12 z−6 + 0.5795e− j0.5091πz−8

+0.0388e j π
4 z−11

G(z) = 1 +0.64e j π
3 z−9

Figure 6 gives the estimate of the overall relay transfer
function H(e jω), while Figure 7 and 8 show the estimate of
the sensitivity function |Γ(e jω)| and its uncertainty bound.
All the figures demonstrate that the proposed method can
give the very nice estimate of the transfer function outside
the signal band as well as in the band, and the upper bound
of uncertainty can also be appropriately given.
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Figure 8: Frequency property of sensitivity function |Γ(e jω )|
under SNR= 20dB. Solid line: True value. Thick dotted line:
|Γ̂(e jω )|; Thin dotted line: |Γ̂(e jω)|+ |ΔΓ(e jω)|

7. CONCLUSION

The issue for estimating the overall relay transfer function
and sensitivity function of the SFN OFDM relay station has
been discussed, and the new approach has been proposed to
estimate the transfer functions outside the signal band by us-
ing the property of the guard interval of OFDM signals. The
upper bound of uncertainty of the estimate is also given, and
it will be very useful to realize stable coupling cancellation
at relay stations. Stability of adaptive algorithm for coupling
cancellers can be attained by using the estimate of the sensi-
tivity function and its estimation error bound, which will be
reported in future.
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