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ABSTRACT

A new real-time two-stage blind source separation (BSS) method
for convolutive mixtures of speech is proposed, in which a single-
input multiple-output (SIMO)-model-based independent compo-
nent analysis (ICA) and a new SIMO-model-based binary masking
are combined. SIMO-model-based ICA can separate the mixed sig-
nals, not into monaural source signals but into SIMO-model-based
signals from independent sources in their original form at the micro-
phones. Thus, the separated signals of SIMO-model-based ICA can
maintain the spatial qualities of each sound source. Owing to this
attractive property, novel SIMO-model-based binary masking can
be applied to efficiently remove the residual interference compo-
nents after SIMO-model-based ICA. In addition, the performance
deterioration due to the latency problem in ICA can be mitigated
by introducing real-time binary masking. We develop a pocket-size
real-time DSP module implementing the new BSS method, and re-
port the experimental evaluation of the proposed method’s supe-
riority to the conventional BSS methods, regarding moving-sound
separation.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed sig-
nals observed in each input channel. Basically BSS is classified into
unsupervisedfiltering technique, and much attention has been paid
to BSS in many fields of signal processing.

In recent researches of BSS based on independent component
analysis (ICA), various methods have been presented for acoustic-
sound separation [1, 2, 3]. This paper also addresses the BSS prob-
lem under highly reverberant conditions which often arise in many
practical audio applications. The separation performance of the
conventional ICA is far from being sufficient in the reverberant case
because too long separation filters is required but the unsupervised
learning of the filter is not so easy. Therefore, one possible im-
provement is to partly combine ICA with another signal enhance-
ment technique, but in the conventional ICA, each of the separated
outputs is amonauralsignal, and this leads to the drawback that
many kinds of superiormultichanneltechniques cannot be applied.

In order to attack the tough problem, we propose a novel two-
stage BSS algorithm which is applicable to an array of directional
microphones. This approach resolves the BSS problem into two
stages: (a) a Single-Input Multiple-Output (SIMO)-model-based
ICA proposed by the authors [4] and (b)new SIMO-model-based
binary maskingfor the SIMO signals obtained from the preced-
ing SIMO-model-based ICA. SIMO-model-based ICA can separate
the mixed signals, not into monaural source signals but into SIMO-
model-based signals from independent sources as they are at the mi-
crophones. Thus, the separated signals of SIMO-model-based ICA
can maintain rich spatial qualities of each sound source. After the
SIMO-model-based ICA, the residual components of the interfer-
ence, which are often staying in the output of SIMO-model-based
ICA as well as the conventional ICA, can be efficiently removed by
the following SIMO-model-based binary masking.

It should be enhanced that the two-stage method has another
important property, i.e., applicability to the real-time processing.
In general ICA-based BSS methods require huge calculations, but
SIMO-model-based binary masking needs very few computational
complexities. Therefore, because of the introduction of binary
masking into ICA, the proposed combination can function as the
real-time system. In this paper, we mainly address the real-time im-
plementation issue on the proposed BSS with our developed pocket-
size DSP module, and evaluate the “real-time” separation perfor-
mance for real recording of moving sound mixtures under a rever-
berant condition.

2. MIXING PROCESS AND CONVENTIONAL BSS

2.1 Mixing Process

In this study, the number of microphones isK and the number of
multiple sound sources isL, where we deal with the case ofK = L.

Multiple mixed signals are observed at the microphone array,
and these signals are converted into discrete-time series via an A/D
converter. By applying the discrete-time Fourier transform, we can
express the observed signals, in which multiple source signals are
linearly mixed with additive noise, as follows in the frequency do-
main:

XXX( f ) = AAA( f )SSS( f ), (1)

whereXXX( f ) = [X1( f ), · · · ,XK( f )]T is the observed signal vector,
andSSS( f ) = [S1( f ), · · · ,SL( f )]T is the source signal vector. Also,
AAA( f ) = [Akl( f )]kl is the mixing matrix, where[X]i j denotes the
matrix which includes the elementX in the i-th row and thej-th
column. The mixing matrixAAA( f ) is complex-valued because we
introduce a model to deal with the relative time delays among the
microphones and room reverberations.

2.2 Conventional ICA-Based BSS

In the frequency-domain ICA (FDICA), first, the short-time anal-
ysis of observed signals is conducted by frame-by-frame discrete
Fourier transform (DFT). By plotting the spectral values in a fre-
quency bin for each microphone input frame by frame, we consider
them as a time series. Hereafter, we designate the time series as
XXX( f , t) =[X1( f , t), · · · ,XK( f , t)]T.

Next, we perform signal separation using the complex-valued
unmixing matrix,WWW( f ) = [Wlk( f )]lk, so that theL time-series out-
putYYY( f , t)=[Y1( f , t), · · · , YL( f , t)]T becomes mutually independent;
this procedure can be given asYYY( f , t) = WWW( f )XXX( f , t). We perform
this procedure with respect to all frequency bins. The optimalWWW( f )
is obtained by, e.g., the following iterative updating equation [1]:

WWW[i+1]( f ) = η
[
III −

⟨
ΦΦΦ(YYY( f , t))YYYH( f , t)

⟩
t

]
WWW[i]( f )

+WWW[i]( f ), (2)

whereIII is the identity matrix,⟨·⟩t denotes the time-averaging oper-
ator,[i] is used to express the value of thei th step in the iterations,
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Figure 1: Input and output relations in (a) proposed two-stage BSS
and (b) simple combination of conventional ICA and binary mask-
ing. This corresponds to the case ofK = L = 2.

η is the step-size parameter, andΦΦΦ(·) is the appropriate nonlinear
vector function. After the iterations, the source permutation and the
scaling indeterminacy problem can be solved by, e.g., [1, 3].

2.3 Conventional Binary-Mask-Based BSS
Binary mask processing [5, 6] is one of the alternative approach
which is aimed to solve the BSS problem, but is not based on ICA.
We estimate a binary mask by comparing the amplitudes of the ob-
served signals, and pick up the target sound component which ar-
rives at thebetter microphonecloser to the target speech. This pro-
cedure is performed in time-frequency regions, and is to pass the
specific regions where target speech is dominant and mask the other
regions. Under the assumption that thel -th sound source is close to
the l -th microphone andL = 2, thel -th separated signal is given by

Ŷl ( f , t) = ml ( f , t)Xl ( f , t), (3)

whereml ( f , t) is the binary mask operation which is defined as
ml ( f , t) = 1 if |Xl ( f , t)| > |Xk( f , t)| (k ̸= l ); otherwiseml ( f , t) = 0.

This method requires very few computational complexities, and
this property is well applicable to real-time processing. The method,
however, needs a sparseness assumption in the sources’ spectral
components, i.e., there are no overlaps in time-frequency compo-
nents of the sources. Indeed the assumption does not hold in an
usual audio application, e.g., a mixture of speech and a common
broadband stationary noise.

3. PROPOSED TWO-STAGE BSS ALGORITHM

3.1 Motivation and Strategy

In the previous research, SIMO-model-based ICA (SIMO-ICA) was
proposed by some of the authors [4], who showed that the SIMO-
model-based separated signals are stillone set of array signals.
There exist new applications in which SIMO-model-based separa-
tion is combined with other types of multichannel signal process-
ing. In this paper, hereinafter we address a specific BSS consisting
of directional microphones in which each microphone’s directiv-
ity is steered to a distinct sound source, i.e, thel -th microphone
steers to thel -th sound source. Thus the outputs of SIMO-ICA is
the estimated (separated) SIMO-model-based signals, and they keep
the relation that thel -th source component is the most dominant
in the l -th microphone. This finding has motivated us to combine
SIMO-ICA and binary masking. Moreover we propose to extend
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Figure 2: Examples of spectra in simple combination of ICA and
binary masking. (a) ICA’s output 1;B1( f )S1( f , t) + E1( f , t), (b)
ICA’s output 2; B2( f )S2( f , t) + E2( f , t), and (c) result of binary
masking between (a) and (b);Ŷ1( f , t).
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Figure 3: Examples of spectra in proposed two-stage method. (a)
SIMO-ICA’s output 1;A11( f )S1( f , t)+ E11( f , t), (b) SIMO-ICA’s
output 2;A21( f )S1( f , t)+E21( f , t), and (c) result of binary mask-
ing between (a) and (b);̂Y1( f , t).

the simple binary masking to a new binary masking strategy, so-
calledSIMO-model-based binary masking(SIMO-BM). That is, the
masking function is determined by all the information regarding the
SIMO components of all sources obtained from SIMO-ICA. The
configuration of the proposed method is shown in Fig. 1(a). SIMO-
BM, which subsequently follows SIMO-ICA, can remove the resid-
ual component of the interference effectively without adding enor-
mous computational complexities. This combination idea is also
applicable to the realization of the proposed method’s real-time im-
plementation.

It is worth mentioning that the novelty of this strategy mainly
lies in the two-stage idea of the unique combination of SIMO-
ICA and the SIMO-model-based binary mask. To illustrate the
novelty of the proposed method, we hereinafter compare the pro-
posed combination with a simple two-stage combination of conven-
tional monaural-output ICA and conventional binary masking (see
Fig. 1(b)) [7].

In general, conventional ICAs can only supply the source sig-
nalsYl ( f , t) = Bl ( f )Sl ( f , t)+El ( f , t) (l = 1, · · · ,L), whereBl ( f ) is
an unknown arbitrary filter andEl ( f , t) is a residual separation error
which is mainly caused by an insufficient convergence in ICA. The
residual errorEl ( f , t) should be removed by binary masking in the
subsequent postprocessing stage. However, the combination is very
problematic and cannot function well because of the existence of
spectral overlaps in the time-frequency domain. For instance, if all
sources have nonzero spectral components (i.e., when the sparse-
ness assumption does not hold) in the specific frequency subband
and are comparable (see Fig. 2(a),(b)), i.e.,

|B1( f )S1( f , t)+E1( f , t)| ≃ |B2( f )S2( f , t)+E2( f , t)|, (4)
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Figure 4: Input and output relations in proposed two-stage BSS
which consists of FD-SIMO-ICA and SIMO-BM, whereK = L = 2
and exclusively selected permutation matrices are given byPPP1 = III
andPPP2 = [1]i j − III . in (8)

the decision in binary masking forY1( f , t) andY2( f , t) is vague
and the output results in a ravaged (highly distorted) signal (see
Fig. 2(c)). Thus, the simple combination of conventional ICA and
binary masking is not suited for achieving BSS with high accuracy.

On the other hand, our proposed combination contains the spe-
cial SIMO-ICA in the first stage, where the SIMO-ICA can sup-
ply the specific SIMO signals with respect to each of sources,
Akl( f )Sl ( f , t), up to the possible residual errorEkl( f , t) (see Fig. 3).
Needless to say, the obtained SIMO components are very ben-
eficial to the decision-making process of the masking function.
For example, if the residual errorEkl( f , t) is smaller than the
main SIMO componentAkl( f )Sl ( f , t), the binary masking between
A11( f )S1( f , t)+E11( f , t) (Fig. 3(a)) andA21( f )S1( f , t)+E21( f , t)
(Fig. 3(b)) is more acoustically reasonable than the conventional
combination because the spatial properties, in which the separated
SIMO component at the specific microphone closer to the target
sound still maintains a large gain, are kept; i.e.,

|A11( f )S1( f , t)+E11( f , t)| > |A21( f )S1( f , t)+E21( f , t)|. (5)

In this case we can correctly pick up the target signal candidate
A11( f )S1( f , t) + E11( f , t) (see Fig. 3(c)). When the target com-
ponentsAk1( f )S1( f , t) are absent in the target-speech silent dura-
tion, if the errors have a possible amplitude relation ofE11( f , t) <
E21( f , t), then our binary masking forces the period to be zero and
can remove the residual errors. Note that unlike the simple com-
bination method [7], our proposed binary masking is not affected
by the amplitude balance among sources. Overall, after obtaining
the SIMO components, we can introduce the SIMO-BM for the ef-
ficient reduction of the remaining error in ICA, even when the com-
plete sparseness assumption does not hold.

In summary, the novelty of the proposed two-stage idea is at-
tributed to the introduction of the SIMO-model-based framework
into both separation and postprocessing, and this offers a realiza-
tion of the robust BSS. The detailed algorithm is described in the
next subsection.

3.2 Algorithm: SIMO-ICA in 1st Stage

Time-domain SIMO-ICA [4] has recently been proposed by some
of the authors as a means of obtaining SIMO-model-based signals
directly in ICA updating. In this study, we extend time-domain
SIMO-ICA to frequency-domain SIMO-ICA (FD-SIMO-ICA). FD-
SIMO-ICA is conducted for extracting the SIMO-model-based sig-
nals corresponding to each of the sources. FD-SIMO-ICA consists
of (L−1) FDICA parts and afidelity controller, and each ICA runs
in parallel under the fidelity control of the entire separation system
(see Fig. 4). The separated signals of thel -th ICA (l = 1, · · ·L−1)
in FD-SIMO-ICA are defined by

YYY(ICAl)(f , t) = [Y (ICAl)
k (f , t)]k1 = WWW(ICAl)(f )XXX(f , t), (6)

whereWWW(ICAl)( f ) = [W(ICAl)
i j ( f )]i j is the separation filter matrix in

the l -th ICA.
Regarding the fidelity controller, we calculate the following sig-

nal vectorYYY(ICAL)( f , t), in which the all elements are to be mutually
independent,

YYY(ICAL)( f , t) = XXX( f , t)−
L−1

∑
l=1

YYY(ICAl)( f , t). (7)

Hereafter, we regardYYY(ICAL)( f , t) as an output of avirtual “L-th”
ICA. The reason we use the word “virtual” here is that theL-th ICA
does not have its own separation filters unlike the other ICAs, and
YYY(ICAL)( f , t) is subject toWWW(ICAl)( f ) (l =1, · · · ,L−1). By trans-

posing the second term (−∑L−1
l=1 YYY(ICAl)( f , t)) on the right-hand side

to the left-hand side, we can show that (7) suggests a constraint to
force the sum of all ICAs’ output vectors∑L

l=1YYY(ICAl)( f , t) to be the

sum of all SIMO components[∑L
l=1 Akl( f )Sl ( f , t)]k1 (= XXX( f , t)).

If the independent sound sources are separated by (6), and si-
multaneously the signals obtained by (7) are also mutually indepen-
dent, then the output signals converge on unique solutions, up to the
permutation and the residual error, as

YYY(ICAl)( f , t) = diag
[
AAA( f )PPPT

l

]
PPPl SSS( f , t)+EEEl ( f , t), (8)

where diag[XXX] is the operation for setting every off-diagonal ele-
ment of the matrixXXX to zero,EEEl ( f , t) represents the residual error
vector, andPPPl (l = 1, · · · ,L) are exclusively-selected permutation
matrices which satisfy∑L

l=1PPPl = [1]i j . For a proof of this, see [4]
with an appropriate modification into the frequency-domain repre-
sentation. Obviously, the solutions provide necessary and sufficient
SIMO components,Akl( f )Sl ( f , t), for eachl -th source. Thus, the
separated signals of SIMO-ICA can maintain the spatial qualities
of each sound source. For example, in the case ofL = K = 2, one
possibility is given by[

Y(ICA1)
1 ( f , t), Y(ICA1)

2 ( f , t)
]T

=
[
A11( f )S1( f , t)+E11( f , t), A22( f )S2( f , t)+E22( f , t)

]T
,

(9)[
Y(ICA2)

1 ( f , t), Y(ICA2)
2 ( f , t)

]T

=
[
A12( f )S2( f , t)+E12( f , t), A21( f )S1( f , t)+E21( f , t)

]T
,

(10)

wherePPP1 = III andPPP2 = [1]i j − III .
In order to obtain (9) and (10), the natural gradient of Kullback-

Leibler divergence of (7) with respect toWWW(ICAl)( f ) should be
added to the existing nonholonomic iterative learning rule [1] of the
separation filter in thel -th ICA (l = 1, · · · ,L−1). The new iterative
algorithm of thel -th ICA part(l = 1, · · · ,L−1) in FD-SIMO-ICA
is given as

WWW[ j+1]
(ICAl)( f ) = WWW[j ]

(ICAl)( f )−α

[{
off-diag

⟨
ΦΦΦ

(
YYY[ j]

(ICAl)( f , t)
)

YYY[ j]
(ICAl)( f , t)H

⟩
t

}
·WWW[j ]

(ICAl)( f )

−

{
off-diag

⟨
ΦΦΦ

(
XXX( f , t)−

L−1

∑
l ′=1

YYY[ j]
(ICAl ′)( f , t)

)
·
(

XXX( f , t)−
L−1

∑
l ′=1

YYY[ j]
(ICAl ′)( f , t)

)H⟩
t

}

·
(

III −
L−1

∑
l ′=1

WWW[ j]
(ICAl ′)( f )

)]
, (11)
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where α is the step-size parameter. Also, the initial values of
WWW(ICAl)( f ) for all l values should be different.

3.3 Algorithm: SIMO-BM in 2nd Stage

After FD-SIMO-ICA, SIMO-model-based binary masking is ap-
plied (see Fig. 4). Here, we consider the case of (9) and (10). The
resultant output signal corresponding to source 1 is determined in
the proposed SIMO-BM as follows:

Ŷ1( f , t) = m1( f , t)Y(ICA1)
1 ( f , t), (12)

where m1( f , t) is the SIMO-model-basedbinary mask operation
which is defined asm1( f , t) = 1 if

Y(ICA1)
1 ( f , t)

> max
[
c1|Y

(ICA2)
2 ( f , t)|, c2|Y

(ICA2)
1 ( f , t)|, c3|Y

(ICA1)
2 ( f , t)|

]
;

(13)

otherwisem1( f , t) = 0. Here, max[·] represents the function of pick-
ing up the maximum value among the arguments, andc1, · · · ,c3
are the weights for enhancing the contribution of each SIMO com-
ponent to the masking decision process. For example,[c1,c2,c3]
= [0,0,1] yields the simple combination of conventional ICA and
conventional binary mask [7]. Otherwise, if we set[c1,c2,c3] =
[1,0,0], we can utilize better (acoustically reasonable) SIMO infor-
mation regarding each source as described in Sect. 3.1. If we change
another pattern ofci , we can generate various SIMO-model-based
maskings with different separation and distortion properties.

The resultant output corresponding to source 2 is given by

Ŷ2( f , t) = m2( f , t)Y(ICA1)
2 ( f , t), (14)

wherem2( f , t) is defined asm2( f , t) = 1 if

Y(ICA1)
2 ( f , t)

> max
[
c1|Y

(ICA2)
1 ( f , t)|, c2|Y

(ICA2)
2 ( f , t)|, c3|Y

(ICA1)
1 ( f , t)|

]
;

(15)

otherwisem2( f , t) = 0.
The extension to the general case ofL = K > 2 can be easily

implemented. Hereafter we consider one example in that the per-
mutation matrices are given as

PPPl = [δin(k,l)]ki, (16)

whereδi j is Kronecker’s delta function, and

n(k, l) =
{

k+ l −1 (k+ l −1≤ L)
k+ l −1−L (k+ l −1 > L) . (17)

In this case, (8) yields

YYY(ICAl)( f , t) =
[
Akn(k,l)( f )Sn(k,l)( f , t)+Ekn(k,l)( f , t)

]
k1

. (18)

Thus the resultant output for source 1 in SIMO-BM is given by

Ŷ1( f , t) = m1( f , t)Y(ICA1)
1 ( f , t), (19)

wherem1( f , t) is defined asm1( f , t) = 1 if

Y(ICA1)
1 ( f , t) > max

[
c1|Y

(ICAL)
2 ( f , t)|, c2|Y

(ICAL−1)
3 ( f , t)|,

c3|Y
(ICAL−2)
4 ( f , t)|, · · · ,cL−1|Y

(ICA2)
L ( f , t)|,

· · · ,cLL−1|Y
(ICA1)
L ( f , t)|

]
; (20)

otherwisem1( f , t) = 0. The other sources can be obtained in the
same manner.
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Figure 5: (a) Overview of pocket-size real-time BSS module, where
proposed two-stage BSS algorithm works on TEXAS INSTRU-
MENTS TMS320C6713 DSP. (b) Signal flow in real-time imple-
mentation of proposed method.

Table 1: Specifications of pocket-size real-time BSS module

Processor TI TMS320VC6713
(clock frequency: 200 MHz)

Input/output interfaces 2 ch mic. in (expandable to 4 ch)
2 ch speaker/line out

Sampling frequency 8 kHz (expandable to 16 / 32 kHz)
Power supply AA cell battery× 2

Amount of memory Flash ROM: 100 KByte used
SDRAM: 1 MByte used

Weight 150 g (including battery)

3.4 Real-Time Implementation

We have already built a pocket-size real-time BSS module, where
the proposed two-stage BSS algorithm can work on a general-
purpose DSP as shown in Fig. 5(a) and Table 1. Figure 5(b) shows
a configuration of a real-time implementation for the proposed two-
stage BSS. Signal processing in this implementation is performed
in the following manner.
1. Inputted signals are converted to time-frequency series by using

a frame-by-frame fast Fourier transform (FFT).
2. SIMO-ICA is conducted using current 3-s-duration data for es-

timating the separation matrix, that is applied to the next (not
current) 3 s samples. This staggered relation is due to the fact
that the filter update in SIMO-ICA requires substantial compu-
tational complexities (the DSP performs at most 100 iterations)
and cannot provide the optimal separation filter for the current
3 s data.

3. SIMO-BM is applied to the separated signals obtained by the
previous SIMO-ICA. Unlike SIMO-ICA, binary masking can
be conducted just in the current segment.

4. The output signals from SIMO-BM are converted to the resul-
tant time-domain waveforms by using an inverse FFT.
Although the separation filter update in the SIMO-ICA part is

not real-time processing but includes a latency of 3 seconds, the en-
tire two-stage system still seems to run in real-time because SIMO-
BM can work in the current segment with no delay. Generally, the
latency in conventional ICAs is problematic and reduces the ap-
plicability of such methods to real-time systems. In the proposed
method, however, the performance deterioration due to the latency
problem in SIMO-ICA can be mitigated by introducing real-time
binary masking. Owing to the advantage, the problem of perfor-
mance decrease is prevented, especially in the case of rapid change
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Figure 6: Layout of reverberant room used in real-recording-based
experiment. Reverberation time is 200 ms.

of the mixing condition, e.g., the target sources are moving. This
fact will appear via experiments in the next section.

4. REAL-TIME SEPARATION EXPERIMENT FOR
MOVING SOUND SOURCE

In this section, a real-recording-based BSS experiment is performed
using actual devices in a real acoustic environment. We carried out
real-time sound separation using source signals recorded in the real
room illustrated in Fig. 6, where two loudspeakers and the real-time
BSS system (Fig. 5(a)) with a stereo microphone (SONY ECM-
DS70P) are set. Thus, this corresponds to the case ofK = L = 2.
The reverberation time in this room is 200 ms, and the levels of
background noise and each of the sound sources measured at the
array origin were 39 dB(A) and 65 dB(A), respectively. Two speech
signals, whose length is limited to 32 seconds, are assumed to arrive
from different directions,θ1 andθ2, where we fix source 1 inθ1 =
−40◦, and move source 2 as follows:
1. in 0–10 s duration, source 2 is set toθ2 = 50◦,
2. in 10–11 s duration, source 2 moves fromθ2 = 50◦ to 30◦,
3. in 11–21 s duration, source 2 is settled inθ2 = 30◦,
4. in 21–22 s duration, source 2 moves fromθ2 = 30◦ to 10◦,
5. in 22–32 s duration, source 2 is fixed inθ2 = 10◦.
Two kinds of sentences, spoken by two male and two female speak-
ers selected from the ASJ continuous speech corpus for research,
are used as the original speech samples. Using these sentences, we
obtain 12 combinations with respect to speakers and source direc-
tions. The sampling frequency is 8 kHz. The DFT size ofWWW( f )
is 1024. We used a null-beamformer-based initial value [3] which
is steered to(−60◦,60◦). The step-size parameter was optimized
for each method to obtain the best separation performance. We
use Noise reduction rate (NRR) [3], defined as the output signal-to-
noise ratio (SNR) in dB minus the input SNR in dB, as the objective
indication of separation performance.

We compare four methods as follows: (A) the conventional
binary-mask-based BSS, (B) the conventional ICA-based BSS,
where the scaling ambiguity can be properly solved by [1]. (C)
the simple combination of the conventional ICA and binary mask-
ing [7], and (D) the proposed two-stage BSS method. In the pro-
posed method, we set[c1,c2,c3] = [1,0,0.4], which gives the best
performance (high NRR but low distortion) under this background
noise condition.

Figure 7 shows the averaged segmental NRR for 12 speaker
combinations, which was calculated along the time axis at every
0.5 s period. The first 3 s duration is spent on the initial filter learn-
ing of ICA in the methods (B), (C) and (D), and thus the valid ICA-
based separation filter is absent here. Therefore, at 0–3 s, we simply
applied binary masking in the methods (C) and (D). The successive
duration (at 3–32 s) shows the separation results foropendata sam-
ple, which is to be evaluated in this experiment. From Fig. 7, we
can confirm that the proposed two-stage BSS (D) outperforms other
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Figure 7: Results of segmental NRR calculated along time axis at
every 0.5 s period, where real recording data and real-time BSS are
used. Each line is average for 12 speaker combinations.

methods at almost all the time during 3–32 s. It is worth noting
that the conventional ICA shows heavy deteriorations especially in
the 2nd source’s moving periods, i.e., around 10 s and 21 s, but the
proposed method can mitigate the degradations. These results can
conclude the proposed method to be beneficial to many real-time
BSS applications in the real world.

5. CONCLUSION

We proposed a new BSS framework in which SIMO-ICA and a new
SIMO-BM are efficiently combined. The SIMO-ICA is an algo-
rithm for separating the mixed signals, not into monaural source
signals but into SIMO-model-based signals of independent sources
without the loss of their spatial qualities. Thus, after the SIMO-
ICA, we can introduce the novel SIMO-model-based binary mask-
ing and succeed in removing the residual interference components.
In order to evaluate its effectiveness, on-line separation experiment
using DSP module was carried out for real recording data under
a 200-ms-reverberant condition. The experimental results revealed
that the SNR can be considerably improved by the proposed two-
stage BSS algorithm compared with the conventional methods.
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