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ABSTRACT
In this paper we present a new image interpolation algo-
rithm based on the adaptive update lifting scheme described
in [1]. This scheme allows us to build adaptive wavelets that
take into account the characteristics of the underlying sig-
nal. Inspired by this technique, we propose an image resiz-
ing scheme which has the ability to adapt itself to disconti-
nuities like edges and assures a perfect reconstruction going
from low to high resolution and then back to low resolution.
Such a feature is highly desirable, for example, for forth and
back conversion between the two existing High Definition
Television formats, in order to preserve the integrity of the
original image in a chain of successive transformations. The
proposed algorithm adaptively updates one polyphase com-
ponent of the original image and then computes the rest of
the components of the output image by means of a gradient-
driven interpolation method.

1. INTRODUCTION

Algorithms that preserve the sharpness of edges have already
been studied in the past ([2]-[13]). In [2], [3], the interpola-
tion techniques are based on a local analysis of the spatial
structure to compute adaptive values for the interpolationco-
efficients in order to enhance the quality around the edges.
In [4], the authors use variational methods to formulate the
interpolation as the constrained minimization of a functional.
In [5], they estimate the local covariance from the low resolu-
tion image and use this information to control interpolation
at high resolution. In [6], they generate a high resolution
edge map to direct the interpolation. In [7], they take into
account the discontinuities and the sharp luminance varia-
tions while interpolating. In [8], they use a PDE-based con-
strained smoothing to reconstruct through iterations the geo-
metric properties of the low resolution image. In [9], they in-
terpolate from the pixel level data-dependent triangulation of
the lower resolution image. However, in most cases, the low
resolution image cannot be recovered from the interpolated
one, because during the interpolation process, the informa-
tion contained in the original image is not entirely preserved.

Our goal is to implement an algorithm capable of per-
forming changes in resolution. It should be able to resample
an image by a fractional factorP/Q. In particular, we want to
apply it for up and down conversion of the two existing High
Definition Television (HDTV) image formats (1280× 720
and 1920×1080). From 1280×720 to 1920×1080, we need
an interpolation of 3/2 in each direction. From 1920×1080
to 1280× 720, we need a decimation of 2/3 in each di-
rection. We want to design a resampling process such that
the output image is subjectively pleasant to the viewer (pre-
serve as much as possible the image quality without intro-
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Figure 1: Polyphase components of the original imagex0 and of
the interpolated imagex1.

ducing blocking artifacts and excessive smoothing). In ad-
dition, we impose the condition that when going from the
1280× 720 format to the 1920× 1080 one, and then going
back to 1280× 720, the original image is retrieved. This
means that during the interpolation process there is no loss
of information.

The interpolation algorithm designed to this end is based
on the adaptive update lifting scheme described in [1]. This
scheme allows us to build adaptive wavelets that take into ac-
count the characteristics of the underlying signal like in this
original work of Gerek and Çetin [14]. Inspired by this tech-
nique, we propose an image resizing scheme which has the
ability to adapt itself to discontinuities like edges. Moreover,
it assures perfect reconstruction when going from low to high
resolution and then back to low resolution.

The paper is organised as follows: in the next Section,
we present the content-adaptive interpolation and reverseop-
eration algorithms of our invertible approach. In Section 3,
we provide some simulation results and comparisons and we
conclude in Section 4.

2. ADAPTIVE APPROACH

Let x0 be the original image. We want to interpolatex0 by a
rational factor 3/2×3/2 to obtainx1. Let us decomposex0

into its four polyphase components:x0
00, x0

01, x0
10, x0

11. Note
that using a similar notation,x1 will have nine components
x1

00, x1
01, x1

02, x1
10, x1

12, x1
20, x1

22 as shown in Fig. 1. Here, the
black dots represent the grid of the output imagex1, while
the rest of the markers represent the grid of the input image
x0.

The method proposed in this paper will be described in
the form of two content-adaptive algorithms: an interpolation
algorithm which transformsx0 in x1 and a downsampling al-

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



y6 y2 y5

y3 x0
00(m,n) y1

y7
y4

y8

Figure 2:Neighborhood ofx.

gorithm which makes the inverse operation.

2.1 Adaptive interpolation

The interpolation algorithm adaptively updates one
polyphase component of the original image and then
computes the rest of the components of the output image
by means of a gradient-driven method. It works in five
successive steps as described below.

1. We first computex1
00 by updatingx0

00 in an adaptive
way (see [1] for a detailed description). The basic idea is to
choose the update filter depending on a local gradient. In this
way, only homogeneous regions are smoothed while discon-
tinuities are preserved.

Let us consider a 3×3 neighborhood around samplex =
x0

00(m,n), and label its neighbours byy1, ...,y8, as it is shown
in Fig. 2. We obtainx1

00 as

x′ = x1
00(m,n) = αdx+

8

∑
j=1

β j,dy j , (1)

whereαd and β j,d are some predefined weights such that
αd + ∑8

j=1 β j,d = 1 andd, the decision parameter, depends
on a local gradient vectorv ∈ R

8 with componentsv j =
x− y j , j ∈ {1, . . . ,8}. We give some examples of how to
computed and the weights in Section 3.

With this update step, we have obtained one polyphase
component of the output imagex1. We compute the rest of
the polyphase components by a gradient-driven interpolation
as it is described in the following steps.

2. Fromx1
00, The gradient functiong0

a is as follows:

g0
a = (1−∆Gx) · (1−∆Gy)

where∆Gx,∆Gy are the normalized gradients ofx1
00 in the

horizontal and vertical directions, respectively. This gradi-
ent function is interpolated using a bilinear method and a re-
sizing rate of 2 into a new gradient functiong1

a to get esti-
mated values of the gradient function for all the pixels of the
original image. The functiong1

a is decomposed into its four
polyphase componentsga,00, ga,10, ga,01, ga,11.

This step aims to detect possible sharp variations in the
neighborhood of the samples which will be used for inter-
polation. High values ofg1

a correspond to smooth regions,
whereas small values ofg1

a indicate a possible edge. We will
use these values to perform the interpolation along edges and
not across them.
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Figure 3:Computation of (a)x1
11, (b) x1

12, (c) x1
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3. Next, we computex1
11. We assume that each sam-

ple of x1
11 is computed by a combination of the four closest

available samples as illustrated in Fig. 3(a). That is,

x1
11(m,n) = wa0x1

00(m,n)+wa1x0
01(m,n)

+wa2x0
11(m,n)+wa3x0

10(m,n). (2)

The weightswa j have two components: one related tog1
a

and the other to the spatial “distance”r j (between the given
sample andx1

11(m,n)). In particular,

r j = (1−∆h j ) · (1−∆v j ).

Here∆h j denotes the horizontal distance and∆v j the vertical
one. They have been normalized such that in the interpolated
image, the distance between two horizontal (resp. vertical)
aligned pixels is∆h = 1/2 (resp. ∆v = 1/2). This is illus-
trated in Fig. 4.

Each weightwa j is then obtained as the product ofr j by
the value of the gradientg1

a at that position. Hence,

wa0 =
1
4

ga,00 , wa1 =
3
8

ga,01 , wa2 =
9
16

ga,11 , wa3 =
3
8

ga,10.

By symmetry, we obtainx1
12,x

1
21,x

1
22 as can be seen in

Fig. 3(b), 3(c) and 3(d).
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Figure 5:Computation of (a)x1
01, (b) x1

02, (c) x1
10 and (d)x1

20.

4. From x1
00, x1

11, x1
12, x1

21 andx1
22 we compute a new

gradient functiong0
b. It is computed in the same way asg0

a

was obtained fromx1
00. Functiong0

b is then upsampled using
a bilinear interpolation and a resizing rate of 3/2. We obtain
a second gradient functiong1

b of the size ofx1. Functions
g0

b andg1
b are decomposed into their four and nine polyphase

componentsg0
b,00, g0

b,10, g0
b,01, g0

b,11 and g1
b,00, g1

b,10, g1
b,01,

g1
b,11, g1

b,02, g1
b,12,g

1
b,22, g1

b,21, g1
b,20, respectively.

5. Finally, we calculatex1
01. As before, we assume that

each interpolated sample is computed by a combination of
the four closest available samples (see Fig. 5(a)):

x1
01(m,n) = wb0x1

00(m,n)+wb1x0
01(m,n)

+wb2x1
2,1(m−1,n)+wb3x1

11(m,n). (3)

The weightswb j are obtained in the same way aswa j
were obtained in step 3. Now, ther j , j = 0, . . . ,3 components
are 1

2, 3
4, 1

2, 1
2. Thus,

wb0 =
1
2

g1
b,00 , wb1 =

3
4

g0
b,01 , wb2 =

1
2

g1
b,21 , wb3 =

1
2

g1
b,11.

By symmetry, we obtain the rest of the polyphase com-
ponents,x1

02, x1
10 andx1

20 as shown in Fig. 5(b), 5(c) and 5(d).

2.2 Adaptive inverse algorithm

The proposed algorithm is invertible, which means that the
reconstructed image after downsampling should be identical
to the original image, after interpolation and downsampling.
The downsampling algorithm will therefore go through all
the steps of the interpolation algorithm in reverse order.

1. We begin by computing the gradient functionsg0
b, g1

b
as it was described in step 4 of the interpolation algorithm.

2. By inversing (3), we get

x0
01(m,n) =

1
wb1

(

x1
01(m,n)−wb0x1

00(m,n)

−wb2x1
2,1(m−1,n)−wb3x1

11(m,n)
)

.

The weightswb j are computed (as in the interpolation algo-
rithm) using the values ofg0

b, g1
b and r j . By symmetry, we

getx0
10.

3. We then compute a gradient functiong1
a identical to

the one computed in step 2 of the interpolation algorithm.
4. By inversing (2), we obtain

x0
11(m,n) =

1
wa2

(

x1
11(m,n)−wa0x1

00(m,n)

−wa1x0
01(m,n)−wa3x0

10(m,n)
)

.

The weightswa j are computed using the polyphase compo-
nents ofg1

a andr j .
5. We still need to obtainx0

00. Note that in equation
(1), the weights depend on the decision parameterd, which
has been computed fromx0

00,x
0
01,x

0
10,x

0
11. However, at this

point, we do not knowx0
00 but ’only’ its update formx1

00. We
have shown in [1] that, under some special circumstances, it
is possible to recoverd from x1

00 andx0
01,x

0
10,x

0
11, and hence

invert (1):

x = x0
00(m,n) =

1
αd

(

x′−
8

∑
j=1

β j,dy j
)

. (4)

Those circumstances will be briefly defined in the next sec-
tion, in the case of two adaptive schemes that will serve to
illustrate the algorithm.

3. SIMULATION RESULTS

We restrict ourselves to the case whered can only take two
values. In particular, at the interpolation stage,d is obtained
by thresholding the seminorm of the local gradientv:

dinterpolation= [p(v) > T],

where[P] returns 1 if the predicateP is true and 0 if it is false,
p is a seminorm andT a given threshold. Analogously, at the
decimation stage,

ddecimation= [p(v′) > T ′],

wherev′ ∈ R
8 is a local gradient vector with components

v′j = x′ − y j . From [1], we know necessary and sufficient
conditions which guarantee there exists a thresholdT ′ such
thatdinterpolation= ddecimationfor every pixel.

3.1 Example 1

We first present an example of applying the adaptive inter-
polation algorithm withp being a laplacian seminorm. That
is,

p(v) = |
4

∑
j=1

v j |.
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It is a particular case of a weighted gradient seminorm,

p(v) = |aTv|

wherea∈ R
N∗.

The necessary and sufficient conditions for the thresh-
old criterion to hold in the weighted gradient case is that
β d anda are colinear and|α0| ≤ |α1|. The proof is given
in [1]. In the case of a laplacian seminorm, wherea =
(1,1,1,1,0,0,0,0)T , the necessary and sufficient conditions
are reduced toβd, j = βd for j = 1, . . . ,4 and |1− 4β0| ≤
|1−4β1|.

We chooseβ0 = 1/8 andβ1 = 0. Hence, in smooth re-
gions (d = 0), updated sample valuesx1

00 will be obtained by
computing the average ofx1

00 with the average of its eight
neighbours. Whereas in regions where the gradient is higher
(d = 1), there will be no update, i.e.,x1

00 = x0
00.

(a) (b)

(c) (d)

(e) (f)

Figure 6: a) Original image. b) Decision map using a threshold
T = 30. c)-f) Resized images using c) a laplacian seminorm and a
thresholdT = 30, d) a nearest neighbour interpolation, e) a bilinear
interpolation, f) a bicubic interpolation.

We take as input the synthetic image shown at Fig. 6
(a). The decision map using a thresholdT = 30 is shown
at Fig. 6 (b). Here the black pixels correspond tod = 0
(smooth regions) whereas white pixels correspond tod = 1.
Fig. 6 (c) shows the interpolated image obtained using our
approach. For comparison, Fig. 6 (d)-(f) show the results
obtained with some linear techniques, namely, the nearest
neighbour, bilinear and bicubic interpolations. The effects of
the non-linear interpolation of our method are visible on the
edges. They are smoother on the interpolated image obtained
with T = 30 than on the one obtained with a higher threshold
such thatd = 0 everywhere (i.e., no adaptive update), as can
be seen in Fig. 7.

(a) (b)

Figure 7: Resized images a) with a non adaptive update, b) with
an adaptive update.

3.2 Example 2

For our second example we choose the seminorm:

p(v) =
(

4

∑
j=1

|v j |
2 +

1
2
(

8

∑
j=5

|v j |
2)

)1/2
. (5)

It is a member of the family of quadratic seminorms defined
by

p(v) = (vTMv)1/2, v∈ R
N, (6)

whereM is a symmetric positive semi-definite matrix. In
our case,M is a diagonal matrix with strictly positive en-
triesM j j = λ j for all j: M = diag(1,1,1,1, 1

2, 1
2, 1

2, 1
2). In this

case, perfect reconstruction is guaranteed [1] if we choose
βd = µd(1,1,1,1, 1

2, 1
2, 1

2, 1
2)T . We takeµ1 = 0 (i.e., no up-

date when the gradient is high). If we assume the input signal
to be contaminated by additive uncorrelated Gaussian noise,
we must take

µ0 =
∑ j λ j

∑ j λ 2
j +(∑ j λ j)2

in order to minimize the noise variance. That gives usµ0 =
6/41.

Fig. 8 shows the image “house” interpolated using our
adaptive method, nearest neighbour, bilinear and bicubic [15]
techniques. The interpolated images have been zoomed in or-
der to see the details. The nearest neighbour image is by far
the worst of all with a lot of aliasing. The adaptive scheme
gives an image close to the one obtained using a bilinear
method, while the bicubic one still presents the best qual-
ity. However, it is important to notice that the non-adaptive
methods do not allow to retrieve the original image after
downsampling, as it does using the proposed approach. Fig.
3.2 shows the interpolated “house” image obtained with the
adaptive method using a quadratic seminorm (T = 70).

Using the proposed method in the non adaptive update
case (d = 0 over the entire image), the images are very blurry,
while if one chooses a lower threshold, the edges tend to be
sharper, the maximum being reached whenx1

00 = x0
00 (d = 1

everywhere). In that last case, the images still look a little bit
blurry, and are of the same quality as images obtained by a
bilinear interpolation.

4. CONCLUSION

In this paper, we have presented a novel image interpolation
algorithm. The proposed algorithm adaptively updates one
polyphase component of the original image and then com-
putes the rest of the components of the output image by
means of a gradient-driven interpolation. The major charac-
teristic of this method is that it is invertible. The experiments
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(a) (b)

(c) (d)

(e) (f)

Figure 8: a) Original image. b) Decision map using a threshold
T = 70. c)-f) Resized images using c) a quadratic seminorm and a
thresholdT = 70, d) a nearest neighbour interpolation, e) a bilinear
interpolation, f) a bicubic interpolation.

show that the proposed method is comparable, in quality, to
bilinear interpolation.

REFERENCES

[1] H.J.A.M. Heijmans, B. Pesquet-Popescu and G. Piella,
“Building nonredundant adaptive wavelets by update
lifting,” Applied and Computational Harmonic Analy-
sis, no. 18, pp. 252–281, May 2005.

[2] V.R. Algazi, G.E. Ford and R. Potharlanka, “Direc-
tional interpolation of images based on visual proper-
ties and rank order filtering,”Proc. of the IEEE Int.
Conf. Acoustics, Speech, Sig. Process, pp. 3005-3008,
May 1991.

[3] S.W. Lee, J.K. Paik, “Image interpolation using adap-
tive fast B-spline filtering,” Proc. IEEE Int. Conf.
Acoustics, Speech, Sig. Process, pp. 177-179, 1993.

[4] R.R. Schultz and R.L. Stevenson, “A Bayesian Ap-
proach to Image Expansion for Improved Definition,”
IEEE Transactions on Image Processing, vol. 3, no. 3,
pp. 233–242, 1994.

[5] X. Li and M. T. Orchard, “New Edge-Directed Interpo-

Figure 9: Interpolated image using our approach with a quadratic
seminorm and a thresholdT = 70.

lation,” IEEE Transactions on Image Processing, vol.
10, No. 10, pp. 1521-1527, October 2001.

[6] J. Allebach and P.W. Wong, “Edge-directed interpola-
tion,” Proc. IEEE Int. Conf. Image Processing, vol. 3,
pp. 707–710, 1996.

[7] S. Battiato and G. Gallo and F. Stanco, “A Locally-
Adaptive Zooming Algorithm for Digital Images,”El-
sevier Image Vision and Computing Journal, vol. 20/11,
pp. 805–812, Sept. 2002.

[8] B.S. Morse and D. Schwartzwald, “Isophote-based in-
terpolation,”Proc. IEEE Int. Conf. Image Processing,
vol. 3, pp. 227–231, 1998.

[9] D. Su and P. Willis, “Image Interpolation by Pixel Level
Data-Dependent Triangulation,”Computer Graphics
Forum, vol. 23, pp. 189-201, June 2004.

[10] K. Jensen and D. Anastassiou, “Subpixel Edge Local-
ization and the Interpolation of Still Images,”IEEE
Transactions on Image Processing, vol. 4, no. 3, pp.
285–295, 1995.

[11] S.D. Bayrakeri and R.M. Mersereau, “A New Method
for directional Image Interpolation,”Proc. Int. Conf.
Acoustics, Speech, Sig. Process, vol. 4, pp. 2383–2386,
1995.

[12] S.G. Chang, Z. Cvetkovic and M. Vetterli, “Resolution
Enhancement of Images Using Wavelet Transform Ex-
trema Interpolation,”Proc. IEEE Int. Conf. Acoustics,
Speech, Sig. Process, pp. 2379–2382, May 1995.

[13] D.D. Muresan and T.W. Parks, “Adaptive, optimal-
recovery image interpolation,”Proc. IEEE Int. Conf.
Acoustics, Speech, Sig. Process, vol. 3, pp. 1949–1952,
May 2001.

[14] O.N. Gerek and A.E. Cetin, “Adaptive polyphase sub-
band decomposition structures for image compression,”
IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 9, pp. 1649–1660, Oct 2000.

[15] R. G. Keys, “Cubic Convolution Interpolation for Dig-
ital Image Processing,”IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. 29, no. 6, pp.
1153–1160, 1981.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP


