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ABSTRACT o X 0O X
In this paper we present a new image interpolation algo- LTS
rithm based on the adaptive update lifting scheme described X0o0 Xo1 X2
in [1]. This scheme allows us to build adaptive wavelets that A- @ o 'A": ® O+xp
take into account the characteristics of the underlying sig L x} : N e xgl
nal. Inspired by this technique, we propose an image resiz- * Xp* : X ® > 30
ing scheme which has the ability to adapt itself to disconti- L] X : X 10
nuities like edges and assures a perfect reconstructiomg goi . o---- [TEREE . . A+ X81
from low to high resolution and then back to low resolution. X3o X3y X35
Such a feature is highly desirable, for example, for fortt an NAe @ - ANDS ®

back conversion between the two existing High Definition
Television formats, in order to preserve the integrity af th _ L
original image in a chain of successive transformations ThFigure 1:Polyphase components of the original imadeand of
proposed algorithm adaptively updates one polyphase corff1€ interpolated image*.

ponent of the original image and then computes the rest of

the components of the output image by means of a gradient-

driven interpolation method. ducing blocking artifacts and excessive smoothing). In ad-
dition, we impose the condition that when going from the
1. INTRODUCTION 1280x 720 format to the 1928 1080 one, and then going

) back to 1280« 720, the original image is retrieved. This
Algorithms that preserve the sharpness of edges have glreagheans that during the interpolation process there is no loss
been studied in the past ([2]-[13]). In [2], [3], the intel@o  of information.
tion techniques are based_on a local analy_sis of the'spatial The interpolation algorithm designed to this end is based
structure to compute adaptive values for the interpolat®n o, the adaptive update lifting scheme described in [1]. This
efficients in order to enhance the quality around the edgegcheme allows us to build adaptive wavelets that take into ac
In [4], the authors use variational methods to formulate thgqnt the characteristics of the underlying signal likehiis t
interpolation as the constrained minimization of a funediio original work of Gerek and Cetin [14]. Inspired by this tech
In [5], they estimate the chal covariance from th.e low rasql nique, we propose an image resizing scheme which has the
tion image and. use this information to control_ mterpolatl_o ability to adapt itself to discontinuities like edges. Mover,
at high resolution. In [6], they generate a high resolution; assures perfect reconstruction when going from low tbihig

edge map to direct the interpolation. In [7], they take intoresglution and then back to low resolution.
account the discontinuities and the sharp luminance varia- o paper is organised as follows: in the next Section

t|?n§ Wg'le '”t?LPOIat“ng' In [E:]' trﬁ% use r:]i_tPDEt.-bas%ctchonwe present the content-adaptive interpolation and re\erse
strained smoothing to reconstruct througn Ierations 8t g - o atinn algorithms of our invertible approach. In Section 3

metric properties of the low resolution image. In [9], they i e hrovide some simulation results and comparisons and we
terpolate from the pixel level data-dependent triangafatif conclude in Section 4.

the lower resolution image. However, in most cases, the low
resolution image cannot be recovered from the interpolated
one, because during the interpolation process, the informa 2. ADAPTIVE APPROACH

tion contained in the original image is not entirely presekv Let> be the original image. We want to interpolafeby a

Our goal is to implement an algorithm capable of per-yatiqna) factor 32 x 3/2 to obtainxL. Let us decompose’
forming changes in resolution. It should be able to resample

an image by a fractional fact®/ Q. In particular, we want to Into its _four pquphase co_mp(ljne_nlﬁo, x81: Xjo: X1 Note
apply it for up and down conversion of the two existing Highthat using a similar notatiorx™ will have nine components
Definition Television (HDTV) image formats (1280720  Xoor Xo1+ Xo2» X10» X12: X300 Xz2 @S Shown in Fig. 1. Here, the
and 1920« 1080). From 1286 720 to 1920« 1080, we need black dots represent the grid of the output imagewhile

an interpolation of 32 in each direction. From 19201080 the rest of the markers represent the grid of the input image
to 1280x 720, we need a decimation of/2 in each di-

rection. We want to design a resampling process such that The method proposed in this paper will be described in
the output image is subjectively pleasant to the viewer-(prethe form of two content-adaptive algorithms: an intergolat
serve as much as possible the image quality without introalgorithm which transforms® in x! and a downsampling al-
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Figure 2:Neighborhood ok. e ' e

gorithm which makes the inverse operation.

2.1 Adaptiveinterpolation >‘E
The

interpolation algorithm adaptively updates one e
polyphase component of the original image and then *21
computes the rest of the components of the output image

(©

by means of a gradient-driven method. It works in five Xéo o
successive steps as described below.

1. We first computed, by updatingxy, in an adaptive _ .
way (see [1] for a detailed description). The basic idea is to Figure 3:Computation of (aX{y, (b) Xj,, (¢) x3; and (d)x3,.
choose the update filter depending on a local gradient. $n thi 1 1
way, only homogeneous regions are smoothed while discon- %00 PO X91 ..... ,X02
tinuities are preserved. : :

1
Let us consider a 8 3 neighborhood around sample- L A=z ;
x3o(m,n), and label its neighbours by, ..., ys, as it is shown X%, . R xi,
in Fig. 2. We obtaing, as : =z
8 1 o T ¢ 1
X =Xbo(mn) = agx+ 3 By, (1) 0 1 2
=1

Figure 4:Distance computation.

whereay and Bj 4 are some predefined weights such that

aq+35-1Bja = 1 andd, the decision parameter, depends 3. Next, we computed;. We assume that each sam-
on a local gradient vectov € R® with componentsy; = ple of x}, is computed by a combination of the four closest
x—Vij, j € {1,...,8}. We give some examples of how to available samples as illustrated in Fig. 3(a). That s,
computed and the weights in Section 3.

1 _ 1 0
With this update step, we have obtained one polyphase X11(M, N) = WaoXGo(M, N) -+ Wa1Xo (M, N)

component of the output imagé. We compute the rest of +Wa2x(1)1(m, n +Wa3x(1)0(m, n). (2)
the polyphase components by a gradient-driven intermolati
as it is described in the following steps. The weightsw,j have two components: one relatechfo

and the other to the spatial “distanag”(between the given

2. Fromx,, The gradient functiog is as follows: .
X00 g Ya sample andl,;(m,n)). In particular,

= (1-AGy)- (1-AGy) = (1= ) (1—Ayy).

where AGy, AGy are the normalized gradients x§, in the HereAy, denotes the horizontal distance alg the vertical
horizontal and vertical directions, respectively. Thiadjf  one. They have been normalized such that in the interpolated
ent function is interpolated using a bilinear method and-a reimage, the distance between two horizontal (resp. ve)tical
sizing rate of 2 into a new gradient functigg to get esti- aligned pixels isA, = 1/2 (resp. A, = 1/2). This is illus-
mated values of the gradient function for all the pixels & th trated in Fig. 4.
original image. The functiog} is decomposed into its four Each weightvaj is then obtained as the productrgfby
polyphase componentg oo, ga.10, 9a01, 9a1l-  the value of the gradiemf: at that position. Hence,

This step aims to detect possible sharp variations in the
neighborhood of the samples which will be used for inter- 1 3 9 3
polation. High values of} correspond to smooth regions, Wa0 = Zga,om Wa1 = éga.,m, Wa2 = Ega,lla Wa3 = éga,lo-
whereas small values gf indicate a possible edge. We will
use these values to perform the interpolation along edgks an By symmetry, we obtaind,,x3,,x3, as can be seen in
not across them. Fig. 3(b), 3(c) and 3(d).
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1. We begin by computing the gradient functiq;gs gé
as it was described in step 4 of the interpolation algorithm.
l ) 2. Byinversing (3), we get

X2

1
I X?)l(m7 n) = Wibl (X%)l(m7 n) - WbOXéO(mv n)
b o x}, —Wh2X3 1 (M—1,n) — Whaxjy (M, n)).

The weightsa,j are computed (as in the interpolation algo-
______________________________________ rithm) using the values af?, gi andrj. By symmetry, we
@) (b) getxd,.
3. We then compute a gradient functighidentical to

the one computed in step 2 of the interpolation algorithm.
4. By inversing (2), we obtain

1 : : 1
: . 0 1 1
X(.)Q ................. ' : : Xji(mn) = W (x11(M, N) — WaoXgo(M, )
. 1 :
: X :
vl l Vel .—E(—O 2. : _Walxgl(m’ n)— W33X80(ma n)) :

12 10 ; X X . .

oo X : 22 T 20 The weightsw,j are computed using the polyphase compo-
: o xd nents ofg: andr;.

.................. 5. We still need to obtaing,. Note that in equation

© () (1), the weights depend on the decision parametevhich
has been computed fromgy, x3;, X35, X3;. However, at this
point, we do not knovxgo but 'only’ its update formxg,. We
have shown in [1] that, under some special circumstances, it
is possible to recovet from x3, andx3;,x%,,x%;, and hence
invert (1):

Figure 5:Computation of (a)x3;, (b) X3, () X}, and (d)x3,.

4. Fromxd,, x};, xb,, x5, andx}, we compute a new
gradient functiorgg. It is computed in the same way g$ o 1 8
was obtained fromx,. Functiong? is then upsampled using X = Xgo(m, ) = aa (X - > Bj.aYj)- (4)
a bilinear interpolation and a resizing rate ¢g23 We obtain =1

aoseconld gradient funct'ogﬁ of the size ofx”. Functions  tpoge circumstances will be briefly defined in the next sec-
gy, andg; are decomposed into their four and nine polyphasgion, in the case of two adaptive schemes that will serve to
componentsy oo, 9910 9010 9011 ANA G gor UL 100 GBop,  illustrate the algorithm.

1T ol ol ol ol ol -
, , : , , , respectively.
%11+ .02 %b.12:%.22: .21 T2 FESP Y 3. SIMULATION RESULTS
5. Finally, we calculateg,. As before, we assume that _
each interpolated sample is computed by a combination dive restrict ourselves to the case whdrean only take two

the four closest available samples (see Fig. 5(a)): values. In particular, at the interpolation stadés obtained
by thresholding the seminorm of the local gradient

Xél(m n) = Wboxéo(m, n) -+ Wblxgl(m n)

dinterpolation: [p(V) > T]7

FWp2X3 1 (M— 1, N) + WeaXi (M, N). 3)
where[P] returns 1 if the predicateis true and O if it is false,

The weightswy; are obtained in the same way wag; pis a seminorm andl a given threshold. Analogously, at the

were obtained in step 3. Now, thg j =0,...,3 components decimation stage,
1311
ares,s,s,5. Thus,
parze ddecimation= [P(V) > T'],

1 1 1 . . .
Who = 59%7007 W1 = 298,01’ Whp = 59%7217 Wh3 = ég%,n- whereV € R® is a local gradient vector with components

vj =X —yj. From [1], we know necessary and sufficient

By Symmetry, we obtain the rest of the po|yphase Com.conditions which guarantee there eX.iStS a threshidlduch
ponentsxd,, xt, andx, as shown in Fig. 5(b), 5(c) and 5(d). thatditerpolation= ddecimationfor every pixel.
2.2 Adaptiveinversealgorithm 31 Examplel

The proposed algorithm is invertible, which means that théNe first present an example of applying the adaptive inter-

reconstructed image after downsampling should be iddntic%)lat'on algorithm withp being a laplacian seminorm. That
to the original image, after interpolation and downsangplin ™’ 4
The downsampling algorithm will therefore go through all p(V) = | Z vjl.
the steps of the interpolation algorithm in reverse order. =
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It is a particular case of a weighted gradient seminorm,
p(v) =[aV]

wherea € RN*,

The necessary and sufficient conditions for the thresh-
old criterion to hold in the weighted gradient case_is that @ (b)
B4 anda are colinear andao| < |a1|. The proof is given
in [1]. In the case of a laplacian seminorm, where=  Figure 7: Resized images a) with a non adaptive update, b) with
(1,1,1,1,0,0,0,0)T, the necessary and sufficient conditionsan adaptive update.
are reduced t@By; = By for j =1,...,4 and |1 — 4[| <
11— 4B

We chooseB = 1/8 andBy = 0. Hence, in smooth re- 32 Example2
gions @ = 0), updated sample valug§) will be obtained by  For our second example we choose the seminorm:
computing the average o%o with the average of its eight

; ; . Lo =L 4 8
neighbours. Whereas in regions where the gradient is higher _ 2, 1 12\\1/2
(d = 1), there will be no update, i.e, = x;. P(V) <]Zl|"’| + 2(125“”' )7 ®)

It is @ member of the family of quadratic seminorms defined
by

p(v) = (vV'MV)*/2, veRY, (6)
whereM is a symmetric positive semi-definite matrix. In
our caseM is a diagonal matrix with strictly positive en-
triesMjj = Aj forall j: M =diag1,1,1,1, 3,1, 2, 1). Inthis
case, perfect reconstruction is guaranteed [1] if we choose
Ba = Ha(1,1,1,1,1, 3.2 )T, We takeus = 0 (i.e., no up-
date when the gradient is high). If we assume the input signal
to be contaminated by additive uncorrelated Gaussian noise
we must take

YiA

CSAP ()2
in order to minimize the noise variance. That giveguys=

© C) 6/41. . _ .
Fig. 8 shows the image “house” interpolated using our

adaptive method, nearest neighbour, bilinear and bicdic [
techniques. The interpolated images have been zoomed in or-
der to see the details. The nearest neighbour image is by far
the worst of all with a lot of aliasing. The adaptive scheme
’ gives an image close to the one obtained using a bilinear

Ho

method, while the bicubic one still presents the best qual-
ity. However, it is important to notice that the non-adagtiv
(e) U] methods do not allow to retrieve the original image after
. o . _ downsampling, as it does using the proposed approach. Fig.
Elgugg 6:)"’3 g”g.'”%'l image. b).Dec')S'o? rrllap_ using a threSholde.Z showsptheginterpolated “ho%se” iFr)naSe obtaiggd with thg
= 30. c)-f) Resized images using c) a laplacian seminorm an : X ) :
thresholdT = 30, d) a nearest neighbour interpolation, €) a bilineargdagt'ye mﬁthOd usmgda que;]drgt_lc SﬁmanTnté70)_. d
interpolation, f) a bicubic interpolation. sing the propose met od in t € non a aptive update
case (| = 0 over the entire image), the images are very blurry,

We take as input the synthetic image shown at Fig 6gé\/hile if one choo_ses a Iovx_/er threshold, the edges tend to be
(a). The decision map using a threshdld= 30 is shown harper, the maximum being reached witgi= x5 (d = 1

at Fig. 6 (b). Here the black pixels corresponddte- 0 everywhere). In that last case, the images still look altit

. N blurry, and are of the same quality as images obtained by a
(smooth regions) whereas white pixels correspond to1. bilinear interpolation.

Fig. 6 (c) shows the interpolated image obtained using our
approach. For comparison, Fig. 6 (d)-(f) show the results 4. CONCLUSION

obtained with some linear techniques, namely, the nearest '

neighbour, bilinear and bicubic interpolations. The e¢ffexf  In this paper, we have presented a novel image interpolation
the non-linear interpolation of our method are visible om th algorithm. The proposed algorithm adaptively updates one
edges. They are smoother on the interpolated image obtainpdlyphase component of the original image and then com-
with T = 30 than on the one obtained with a higher thresholgutes the rest of the components of the output image by
such thad = 0 everywhere (i.e., no adaptive update), as cammeans of a gradient-driven interpolation. The major charac
be seenin Fig. 7. teristic of this method is that it is invertible. The expeeints
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Figure 9: Interpolated image using our approach with a quadratic
seminorm and a threshold= 70.
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