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ABSTRACT
A neural network (NN) based detector is proposed for approximat-
ing the ALR detector in composite hypothesis-testing problems.
The case of detecting gaussian targets with gaussian ACF and un-
known one-lag correlation coefficient, ρs, in AWGN is considered.
After proving the dependence of the simple hypothesis-testing prob-
lem LR detector on the assumed value of ρs, and the extreme com-
plexity of the integral that involves the ALR detector, NNs are pro-
posed as tools to approximate the ALR detector. NNs not only are
capable of approximating this detector and its more robust perfor-
mance with respect to ρs, but the implemented approximation is
expected to have lower computational cost that other numerical ap-
proximations, a very important characteristic in real-time applica-
tions. MLPs of different sizes have been trained using a quasi-
Newton algorithm to minimize the cross-entropy error. Results
prove that MLPS with one hidden layer with 23 neurons can im-
plement very robust detectors for TSNR values lower than 10dB.

1. INTRODUCTION

In this paper, a neural network (NN) based approach is presented
for improving the robustness of optimum detectors based on the
Neyman-Pearson (NP) criterion. The NP detector maximizes the
probability of detection (PD), while maintaining the probability of
false alarm (PFA) lower than or equal to a given value [1]. In sim-
ple hypothesis tests, the probability density functions (pdfs) of the
inputs conditioned to both hypothesis, the likelihood functions, are
known. In these problems, a decision rule based on comparing the
likelihood ratio (LR), or any other equivalent discriminant function,
with a detection threshold fixed attending to PFA requirements, is an
implementation of the NP detector [1].

In a radar detection problem, while interference statistics can be
estimated from measurements in the operating environment, the es-
timation of target statistics is not possible. Because of that, a target
model has to be assumed. The robustness of this detector with re-
spect to the assumed target model can be evaluated as the observed
loss in PD when some statistical characteristics of the target vary
from those assumed when calculating the LR. In [2] the robustness
of the LR detector is studied for the problem of detecting gaussian
targets in gaussian interference, proving an important dependence
of the LR detector on the assumed target model.

In practical situations, target parameters such as the signal-to-
interference ratio or the doppler shift, are random variables, so the
likelihood function for the alternative hypothesis, H1, is a function
of these parameters, and the detection problem can be formulated
as a composite hypothesis test [1]. As the probability density func-
tions of these parameters are unknown, a very conservative solu-
tion is to assume that they are uniform in the variation interval. In
many situations, this approach leads to intractable integrals without
a closed-form solution. This is the case of the problem of detection
of targets with unknown doppler shift in colored gaussian noise,
studied in [3].

NNs are known to be able to approximate the optimum
Bayessian classifier [4, 5, 6], and they have been widely applied to

classification tasks. But there are less examples of their application
to detection problems attending to the NP criterion.

The possibility of approximate this detector using adaptive sys-
tems trained in a supervised manner for minimizing an error func-
tion, has been proven in [13]. Multi-Layer Perceptrons (MLPs),
[7, 8, 9, 10], and Radial Basis Function Networks (RBFNs),
[11, 12], have been applied to approximate the Neyman-Pearson
detector in simple hypothesis test. In this paper, NNs are proposed
as tools to approximate the Average Likelyhood Ratio (ALR) detec-
tor in composite hypothesis test as a solution to the low robustness
of the NP detector designed assuming a simple hypothesis problem
with a given target model.

2. PROBLEM FORMULATION

The basic components of a simple binary decision problem are
the source, the probabilistic transition mechanism, the observation
space and the decision rule. The source generates an hypothesis of
two possible ones (H0 and H1), while the probabilistic transition
mechanism generates a point, z, in the observation space, Z, ac-
cording to the likelihood functions, f (z|H0) and f (z|H1). In this
problem, the NP detector decision rule consists in comparing the
likelihood ratio (LR), or any equivalent discriminant function, to a
detection threshold fixed attending to PFA requirements [1].

Λ(z) =
f (z|H1)
f (z|H0)

H1

≷
H0

η0(PFA) (1)

In a composite hypothesis-test, the output of the source is a
point, θ , in a parameter space, χ , and the hypothesis are subspaces
of χ . The pdf governing the mapping from χ to Z is denoted by
f (z|θ) and is assumed to be known for all values of θ in χ . If
θ is a random variable with known pdfs under the two hypothesis,
f (θ |H0) and f (θ |H1), the LR is [1]:

Λ(z) =
f (z|H1)
f (z|H0)

=

∫
χ f (z|θ ,H1) f (θ |H1)dθ∫
χ f (z|θ ,H0) f (θ |H0)dθ

(2)

In a radar detection problem, as the interference parameters can
be estimated from measurements in the operating environment, the
parameters governing f (z|H0) assume specific known values. But
to obtain f (z|H1) the integral in the numerator of (2) must be cal-
culated. In many practical cases, this integral is intractable and has
not any closed solution.

Taking into consideration that NN can be trained to approx-
imate a discriminant function equivalent to the likelihood ratio,
[13], a novel approach based on a MLP is proposed. The problem
of detecting gaussian targets with gaussian autocorrelation func-
tion (ACF) and zero doppler shift in additive white gaussian noise
(AWGN) is considered.

The target echo is modelled as a zero mean, gaussian complex
vector, z, of dimension n, with gaussian ACF, and a covariance ma-
trix Ms:
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(Ms)h,k = ps ·ρ |h−k|2
s (3)

(with h,k = 1,2, ...,n) where ps and ρs are, respectively, the
target power and the one-lag correlation coefficient. ρs is defined
in (4), where σs is the standard deviation of the target spectrum and
PRF is the pulse repetition frequency, or sampling rate [2].

ρs = exp(−2π2(
σs

PRF
)2) (4)

The interference is modelled as zero mean AWGN, whose co-
variance matrix is given by (Mn)h,k = pnδhk, where pn is the noise
power and δhk is the Kronecker delta.

As a normalization criterion, pn is assumed equal to 2, and the
signal-to-noise ratio is calculated as:

SNR = 10log10(snr) = 10log10(
ps

pn
) = 10log10(

ps

2
) (5)

Two cases of study are analyzed:
• The one-lag correlation coefficient (ρs) governing the ACF of

the target is known.
• The one-lag correlation coefficient (ρs) governing the ACF of

the target is unknown.

2.1 ρs is known

When ps and ρs have known specific values, the detection problem
can be formulated as a simple hypothesis-test. From the expression
of the general multivariate normal pdf of zero mean and covariance
matrix M, in C

n (6), and considering that M = Mn under H0, and
M = Mn +Ms under H1, the log-likelihood ratio (LLR) can be
easily calculated and the NP decision rule can be expressed as in
(7).

f (z) =
1

πn ·det(M)
exp(−zTM−1z∗) (6)

Ln(Λ(z)) = zT [M−1
n −(Mn +Ms)−1]z∗+k

H1

≷
H0

Ln(η0(PFA)) (7)

zT denotes the transposed vector, while z∗ denotes the complex
conjugate vector.

As ps and ρs are known, k is an immaterial constant that can
be subtracted from both sides of the rule (7) to obtain an equivalent
one:

zT [M−1
n − (Mn +Ms)−1]z∗

H1

≷
H0

η1(PFA) (8)

The statistics of rules (7) and (8) depend on the SNR and ρs
values, because matrix Ms does, as stated before. These are the
design SNR and ρs. On the other hand, the observation vector is
generated in an environment with SNR and ρs values known as sim-
ulation values in this paper. Clearly, the detectors of expressions
(7) and (8) are only optimum for input vectors with simulation SNR
and ρs values equal to the design ones. If its ROC curve is calcu-
lated for simulation SNR and ρs values different from the design
ones, a loss in PD will be observed that will be a function of the de-
sired PFA. From now on, the design and simulation SNR values will
be denoted as DSNR and SSNR, respectively, while the design and
simulation values of ρs will be denoted as ρd

s and ρs
s , respectively.

In order to study the robustness of rules (7) and (8) with respect
to the DSNR, given a SSNR value, ROC curves have been plotted for
different DSNRs. As in Air Traffic Control radar, the usual number
of collected pulses in a scan is n = 8, this is the dimension of the
complex input vector z. In all cases, the simulation and the design
ρs values are the same, and because of that, both are denoted as
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Figure 1: ROC curves for SSNR = 0dB and different ρs and DSNR
values
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Figure 2: ROC curves for SSNR = 3dB and different ρs and DSNR
values

ρs. Results are presented in figures 1, 2 and 3, for SSNR = 0, 3
and 7dB and different DSNR and ρs values. Only PFA ≤ 10−4 are
considered, because higher PFA values have no interest in practical
applications.

Results show that the dependence of detector performance on
DSNR depends on ρs and SSNR. In general, it reduces as SSNR
increases. For ρs values near 1 and 0, it is very low. For the rest
of values, the variation in PD has been evaluated for the considered
SSNR values, and it is always lower than 2% for PFA = 10−4.

For SSNR values that produce low PD, the detection capabilities
are better for high values of ρs (figures 1 and 2). But when the
obtained PD is high, low ρs values produce better PD ones (figure
3). This was observed for the envelope detector and is explained in
[14].

PD values near 0.5 or lower have no interest in practical situa-
tions, and taking into consideration that for SSNR = 7dB, the ob-
tained PD values are suitable for all ρs ones, from now on, all the
studies will be done for SSNR = 7dB.

To evaluate the robustness with respect to ρs, given a simulation
value, ρs

s , ROC curves have been plotted for DSNR = SSNR = 7dB,
and different ρd

s values. Results are shown in figures 4 and 5.
Although in order to save space, only some results are pre-

sented, we can conclude that for ρs
s ≤ 0.5 the dependence on ρd

s is
not significative for ρd

s < ρs
s +0.2 (the observed reduction in PD is

lower than 1%), but the reduction in PD is very important for detec-
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Figure 3: ROC curves for SSNR = 7dB and different ρs and DSIR
values
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Figure 4: ROC curves for DSSN = SSNR = 7dB, ρs
s = 0.1 (top)
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s = 0.5 (bottom) and different ρd

s values: ρd
s = 0.1 (solid),
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Figure 5: ROC curves for DSSN = SSNR = 7dB, ρs
s = 0.9 (top)

and ρs
s = 0.999 (bottom) and different ρd

s values: ρd
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s = 0.9 (dotted) and ρd
s = 0.999 (dashdot).

tors with ρd
s near to 1 (figure 4). On the other hand the dependence

increases for ρs
s > 0.5, except for ρd

s values near to 1, for which the
reduction in PD is smaller (figure 5).

2.2 ρs is unknown

One solution to the problem of the dependence of the NP detector
on the assumed value of ρs, is to formulate a composite hypothesis-
testing problem where the likelihood function under H1 is a function
of this parameter. Furthermore, in practical situations, the actual
value of ρs is unknown and difficult to estimate. In our problem,
the covariance matrix of the target component of the input vector
will be a function of ρs, and will be denoted as Ms(ρs). The op-
timum decision rule in the NP sense compares the ALR, or any
equivalent discriminant function, to a detection threshold fixed at-
tending to PFA requirements. Assuming that ρs can be modelled as
a random variable with uniform pdf in [0,1], and attending to (2),
the numerator involves the calculus of the following integral:

∫ 1

0

1
πn ·det(Ms(ρs)+Mn)

exp(−zT (Ms(ρs)+Mn)−1z∗)dρs

(9)

Note that as Ms(ρs)+Mn is a function of ρs , its determinant
and the argument of the exponential in (9) are complex functions
of ρs. Because of that, the calculus of this integral is very com-
plex. In the following section, a NN based approach is proposed to
approximate an expression equivalent to the ALR.

3. NN BASED DETECTOR

In this section MLPs that use real arithmetic are trained for approx-
imating the ALR for detecting gaussian targets with gaussian ACF,
and unknown ρs. This approach is proposed as a solution to the
dependence of the simple hypothesis-testing problem NP detector
on ρs. For the NN to approximate the ALR test, the patterns un-
der H1 which are used for training are generated with ρs values that
vary uniformly in [0,1]. Also, the approximation implemented by
the NN is expected to have lower computational cost that other nu-
merical approximations, a very important characteristic in real-time
applications.

In all cases, the MLPs have a hidden layer and an output one.
While the number of hidden units is varied, the output layer always
has one neuron. As the n-dimension complex vectors are trans-
formed in 2n-dimension real ones, composed of the real parts (the
first n samples) and the imaginary parts (the remaining n samples),
MLPs with 2n = 16 inputs have been trained. A hard threshold
detector has been placed at the MLP output with a threshold fixed
attending to PFA requirements: if the NN output is greater than the
threshold, H1 is accepted, in other case, H0 is accepted.

3.1 Design of the experiments

In this context, the design parameters previously defined are known
as ‘training parameters’. If the DSNR was the SNR value used
for implementing the NP detector statistic, the Training Signal-to-
Noise ratio (TSNR) is the value selected for generating the training
set, while the SSNR is the value selected for generating the simula-
tion sets for evaluating the performance of the trained NNs.

For simple hypothesis-testing problems and SSNR values that
produce acceptable PD for PFA values of interest, the optimum de-
tector has been proved to be very robust with respect to the DSNR.
Nevertheless, the dependence of the NN-based detector perfor-
mance on the TSNR must be studied, because the statistical proper-
ties of the training set can determine the learning abilities of the NN
[7, 8, 10, 12]. To study the dependence on TSNR, different values
have been selected. For each TSNR, separated training and vali-
dation sets composed of 60,000 randomly distributed patterns from
H0 and H1 have been generated.

Taking into consideration the results presented in [10, 12], the
minimum number of hidden units that are necessary to enclose the
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Figure 6: ROC curves for SSNR = 7dB and ρs
s = 0.1: detec-

tors for the simple hypothesis-testing problem with ρd
s = 0.1 and

ρd
s = 0.999 (wider lines) and NNs with 20 hidden units trained with

TSNR = 5,7 and 10dB (thinner lines).

decision boundary is expected to be between 3 and 17 (for ρs = 1
and ρs = 0, respectively). NNs with different number of hidden
units have been trained. Results show that although the detection
performance of the trained NNs tends to increase as the number of
hidden units increases, for more than 23 hidden neurons, the perfor-
mance improvement is insignificant, while the associated computa-
tional cost continues growing. The ROC curves estimated for NNs
with 20 and 23 hidden neurons are presented.

NNs have been trained for minimizing the cross-entropy er-
ror, using a quasi-Newton error minimization algorithm. This al-
gorithm involves the estimation of the Hessian matrix, which can
be computationally prohibitive for large NNs. In [15] a strategy is
proposed for estimating the NN coefficients that reduces the com-
putational burden, retaining the fast convergence properties of the
quasi-Newton algorithm. A cross-validation technique has been
used to avoid over-fitting and all NNs have been initialized using
the Nguyen-Widrow method [16]. For each case, the training pro-
cess has been repeated ten times. Only the cases where the perfor-
mances of the ten trained networks were similar in average, have
been considered to extract conclusions.

PFA values have been estimated using Importance Sampling
techniques (relative error lower than 10% in the presented results)
[17, 18]. PD values have been estimated using conventional Monte-
carlo simulation.

3.2 Results

Results are presented in figures 6, 7, 8 and 9. Different size NNs
trained with TSNR = 5,7 and 9dB, and a ρs variable uniformly
in [0,1], are compared to the optimum detectors for the simple
hypothesis-test with ρd

s = 0.1 and 0.999, for SSNR = 7dB.
Figures 6 and 7 show the results obtained for ρs

s = 0.1 and
MLPs with 20 and 23 hidden units, respectively. As was expected,
the NN based detectors are worse than the detector for the sim-
ple hypothesis-testing problem with ρd

s = ρs
s = 0.1, but much bet-

ter than the detector for the simple hypothesis-testing problem with
ρd

s = 0.999. The dependence of the performance of the NN based
detectors on TSNR reduces when NN size increases, except for high
TSNR values. The performance improvement observed for the best
TSNRs as the number of hidden units increases is almost insignifi-
cant.

Figures 8 and 9 show the results obtained for ρs
s = 0.999

and MLPs with 20 and 23 hidden units, respectively. Again,
the NN based detectors are worse than the detector for the sim-
ple hypothesis-testing problem with ρd

s = ρs
s = 0.999, but better
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than the detector for the simple hypothesis-testing problem with
ρd

s = 0.1. The performance improvement with respect to the de-
tector for the simple hypothesis-testing problem with ρd

s �= ρd
s is

lower than that observed in figures 6 and 7, because the dependence
of the detector for the simple hypothesis-testing problem with re-
spect to ρd

s decreases as ρs
s increases (figure 5). The dependence of

the performance of the NN based detectors on TSNR is lower than
that observed for ρs

s = 0.1 and reduces when NN size increases for
all the considered TSNR values. The performance improvement ob-
served for the best TSNRs as the number of hidden units increases
is almost insignificant.

4. CONCLUSIONS

Taking into consideration previous results where NNs are proved
to be able to approximate the NP detector, in this paper, a NN
based detector has been proposed for approximating the ALR de-
tector in composite hypothesis-testing problems. In practical situ-
ations where only some statistical parameters of the hypothesis are
known, this approach is proposed as a solution to the dependence of
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the simple hypothesis-testing problem NP detector on the assumed
parameters values. If the unknown parameters are random variables
of known pdf, the optimum detector involves the calculus integrals
that, in many cases, are intractable and rarely have closed solutions.
In these cases, NNs are proposed as tools to approximate these inte-
grals. Also, the approximation implemented by the NN is expected
to have lower computational cost that other numerical approxima-
tions, a very important characteristic in real-time applications.

The case of detecting gaussian targets with gaussian ACF in
AWGN is considered. As a first step, a study has been carried out
to prove the dependence of the simple hypothesis-testing problem
LR detector on the design one-lag correlation coefficient ρd

s . After
that, the calculus of the ALR detector for ρs uniformly distributed
in [0,1] has been formulated, proving the extreme complexity of the
required integral. Finally, MLPs of different sizes have been trained
using a quasi-Newton algorithm to minimize the cross-entropy er-
ror. Although the ALR detector has not been calculated, the perfor-
mance of the trained NNs is more robust than the simple hypothesis-
testing LR detectors for ρd

s �= ρs
s , as was expected.

Results prove that MLPS with one hidden layer with 23 neurons
can implement very robust detectors for TSNR values lower than
10dB.
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