
A MUTUAL INFORMATION APPROACH TO CONTOUR BASED OBJECT
TRACKING

E. Loutas N. Nikolaidis I. Pitas

Department of Informatics
University of Thessaloniki

Box 451, Thessaloniki 54124
GREECE

E-mail:�eloutas,nikolaid,pitas�@zeus.csd.auth.gr

ABSTRACT

An object tracking scheme based on mutual information is
proposed in this paper. First, coarse tracking is performed
by using mutual information maximization. Subsequently the
tracking output is refined by the use of a deformable con-
tour scheme based on image gradient and mutual informa-
tion which allows the tracking system to capture the variation
of the tracked object contour. The scheme was tested on hand
sequences created for testing gesture recognition algorithms
under difficult illumination conditions and found to perform
better than a scheme based on the Kullback-Leibler distance
and a scheme based on gradient information.

1. INTRODUCTION

Active contours have been extensively used in computer vi-
sion and in object tracking in particular. Various modifica-
tions of the initial active contour model were proposed. Some
of them introduce different cues to the active contour model,
others use the inside area defined by the active contour, and
not the active contour points themselves.

The contour model proposed in [1] relies on color gradi-
ent in order to avoid the accuracy problems of contour de-
formation related to the intensity gradient. In [2] a modified
contour algorithm based on color (hue) and image intensity
is presented. The Lucas - Kanade algorithm is used for in-
terframe tracking and an adjustment scheme is introduced in
order to enable accurate tracking after many frames.

The active contour model proposed in [3] relies on color
and motion information. Both interframe and intraframe en-
ergy terms are used. In [4] a contour tracking scheme based
on edges is presented. According to this scheme matching
is performed by using a set of curves. The object shape is
considered to be known a priori.

In [5] video object segmentation and tracking is per-
formed using ”VSnakes”. A differential active contour en-
ergy is defined which reflects the difference between succes-
sive contour configurations, rather than the energy of the con-
tour. An active contour tracking system that uses motion in-
formation in order to remove background clutter is proposed
in [6]. First, an approximation of the the tracked object po-
sition is found. The final active contour position is obtained
by minimizing an energy function and takes into account the
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predicted object position and the edge map near the predicted
object contour.

Integration of edge tracking and point tracking cues in a
deformable model is presented in [7] Another approach to
tracking active contours that uses Kullback-Leibler distance
is proposed in [8]. The entire area defined by the curve is
used to perform energy function minimization.

The use of mutual information as a similarity measure
in contour-based object tracking is examined in this paper.
Mutual information has been previously used in image reg-
istration [9] and as a cue selection criterion in multiple cues
tracking systems [10]. Moreover, spatiotemporal mutual in-
formation has been used in [11] in order to determine the
focus of attention in videoconferencing. In [12] mutual in-
formation has been used in face tracking as one of the cues
used in a probabilistic tracking scheme. However, mutual
information has not been extensively used in contour based
object tracking.

The tracking algorithm proposed in the context of this
work is based on mutual information maximization. First, an
object localization step is performed, followed by a contour
tracking process that refines the tracking output. The contour
energy is based on mutual information and image gradient
information. The use of mutual information inhibits contour
attraction to unwanted areas. A similar system based on the
Kullback-Leibler distance was implemented for comparison
purposes. A refinement scheme based on gradient informa-
tion only, was also implemented for the same reason. Exper-
imental results on real image sequences show the enhanced
performance of the proposed scheme.

2. TRACKING SYSTEM DESCRIPTION

In the context of the present work the initialization is manual
and can be done interactively. More precisely, initialization
is performed by defining the object outline contour through
a set of points. The tracking region translation and rotation
is found by using mutual information maximization. The re-
gion contour is not allowed to deform during this first track-
ing stage. This results in a coarse estimate of the tracked
region in the next frame. In the second, refinement step, the
region contour is allowed to deform. This stage combines im-
age gradient information and mutual information and gives
the final region estimate as a set of points that define its
boundary.

The proposed tracking system is summarized as follows:

� Initialization through feature point set selection.
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� Global region translation and rotation calculation using
mutual information maximization (coarse tracking).

� Contour refinement based on gradient and mutual infor-
mation.

3. COARSE MUTUAL INFORMATION OBJECT
TRACKING

In order to perform coarse object tracking, a scheme based
on mutual information is used. The tracking region motion
parameter vector
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where x and y are the translation parameters on the horizontal
and vertical direction respectively and ϑ is an angle describ-
ing the tracking region rotation, is estimated based on the
maximization of a mutual information based likelihood.

Let Ur�Uc be two random variables expressing pixel
grayscale values of the tracked region in the reference Jr and
current Jc frame and ur

i �u
c
j� 1� i� j�Nmax their possible out-

comes where Nmax is the maximum number of the available
grayscale levels. Let also p�ur�� p�uc� and p�ur�uc� be their
marginal and joint probability density functions. The mutual
information of the tracked region in the reference and current
frame is defined as [13]:
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The probability density functions p�ur�,p�uc� and p�ur�uc�
are determined by obtaining the histograms of the grayscale
values of the reference and target regions.

The maximum mutual information for a particular prior
p�ur� is [14]:
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and reaches its maximum value when

p�ur
k� �

1
Nmax

� 0� k � Nmax� (4)

We define the probability of resemblance between the refer-
ence and the target region based on the mutual information
as:

pMIcoarse �
Icoarse�Ur

�Uc�

Imaxcoarse�Ur�Uc�
� (5)

Since I�Ur
�Uc�coarse � 0 [15],

0� pMIcoarse � 1� (6)

A large value of pMIcoarse indicates a strong match between
the reference and the current regions, while a small value in-
dicates a weaker match. In order to find the tracking region
motion parameter vector, the position in the current frame
that maximizes pMIcoarse between the current and the refer-
ence frame is found by exhaustively checking candidate po-
sitions within a certain search range. In our case, the trans-
lation search range was set to 15 pixels and the angle search
range was set to 4.6 degrees.

4. CONTOUR REFINEMENT SCHEME

In order to account for tracking region deformations, a con-
tour refinement scheme is applied after the coarse tracking
step. The contour deformation is governed by internal en-
ergy terms and external terms. Two external forces are ap-
plied. The first is based on image gradient, while the second
term is based on mutual information.

The classic deformable contour energy equation is ex-
pressed as follows:

ε �
�
�αEcont �βEcur� γEimage�ds (7)

The terms Econt �Ecur represent the contour internal en-
ergy. The first term is the continuity term, which prevents
the formulation of clusters of contour points. The second
term is called the smoothness term. The aim of this term
is to avoid contour oscillations. The third energy term E image
corresponds to an external force attracting the contour points.
Usually the contour points are attracted to image edges.

In the discrete case, the contour is represented by a chain
of N image points �1 � � ��N . The continuity term is expressed
as:

Econt � �d���i��i�1��
2 (8)

where d is the average distance between pairs �� i��i�1� of
adjacent points.

The second term is expressed as:

Ecur � ��i�1�2�i��i�1�
2
� (9)

The third term is expressed as:

Eimage ���∇I�� (10)

The gradient values of all contour points �1 � � ��N are
used for the gradient term calculation. In order to obtain the
gradient values for the candidate contour points, the image
gradient map is calculated.

In the context of this work the contour equation is re-
formulated with the addition of a new energy term based on
mutual information:

ε �
�
�αEcont �βEcur� γEimage�ζMI�ds (11)

where

MI ��pMIcontour� (12)

This new energy term is evaluated as follows: A 15�15
window�r

i is considered around each of the N image points
�

r
i that define the contour in the reference frame. In the same

manner, a 15�15 window�c
i is considered around each of

the N image points �c
i that define the contour in the current

frame. Let�r denote the area in the reference frame formed
by the union of all windows �r

i , and �c the area in the
current frame formed by the union of all � c

i . The mutual
information Icontour�U

r�Uc� between �r, �c is evaluated
as in (2) but in this case the probability density functions
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p�ur�� p�uc� and p�ur�uc� are evaluated over �r and �c.
The maximum value Imaxcontour�U

r�Uc� of Icontour�U
r�Uc� is

evaluated using an expression similar to (3). Thus, pMIcontour
is finally evaluated as

pMIcontour �
Icontour�U

r
�Uc�

Imaxcontour�Ur�Uc�
� (13)

The formulation of contour equation (11) differs from
that of equation (7). The classic contour equation is calcu-
lated over the contour that outlines the tracked image region
in the current frame only. The addition of the mutual infor-
mation term into the equation introduces information about
the contour of the image region in the reference frame. The
negative sign in equation (12) is necessary in order to attract
the contour to the direction where the mutual information
between the windows around the contour points in the cur-
rent and the reference frame is maximized. This is neces-
sary in order to ensure maximum similarity between the con-
tours. Therefore the proposed contour equation formulation
(eq. (11)) causes contour attraction to high image gradient
and high mutual information.

The choice of the coefficients γ and ζ control the behav-
ior of the tracking scheme. A very large γ coefficient can
cause unwanted contour attraction to edges, while a large ζ
coefficient can cause the contour to be not adequately respon-
sive to changes in the shape of the tracked region.

5. EXPERIMENTAL RESULTS

The proposed tracking scheme was tested on real image se-
quences used for gesture recognition. The Aalborg video se-
quence [16] database was used for this purpose. It consists of
16 video sequences recorded in PAL resolution �768�576��
The gesture vocabulary consists of 13 gestures. 9 gestures
are static and 4 are dynamic. The captured scene includes a
messy table environment with normal stuff for paper work.
The light setup is arranged so that the table is split up in two
parts with the same intensity but different color. In Figure
1 hand tracking results obtained using the proposed method
are presented. As can be seen, the human hand is tracked
correctly. A simple stick model [17] describing the palm
has been used in conjunction with the basic algorithm in this
case.

In order to test the effect of the introduction of the mutual
information term in the contour refinement step, a similar
tracking scheme based on the Kullback-Leibler distance was
implemented. Kullback-Leibler distance is defined as:

D�U�V� �
Nmax

∑
k�1

p�uk� log2

p�uk�

p�vk�
� (14)

The Kullback-Leibler distance is asymmetric, that is:

D�U�V � �� D�V�U� (15)

whereas mutual information is symmetric. In the alternative
scheme, the coarse tracking step is based on mutual informa-
tion maximization, i.e., it is identical to the one described in
Section 3, whereas the contour refinement scheme is based
on the following equation:

ε �
�
�αEcont �βEcur� γEimage�ζD�U�V��ds� (16)

Moreover, a tracking scheme where coarse tracking is
performed as in Section 3 whereas the refinement is based
only on gradient information, i.e., it utilizes (7), was also
implemented. Some results are presented in Figures 2 and
3. As can be seen, the Kullback-Leibler distance and the
gradient based contour refinement schemes did not perform
as well as the mutual information based refinement scheme.
The superiority of the proposed method was also verified on
other sequences depicting a moving hand and moving fingers
that were captured by the authors in a laboratory environment
(Figures 4,5,6).

6. CONCLUSIONS

An object tracking scheme using mutual information has
been presented in this paper. Coarse tracking is performed
by using a mutual information based similarity measure. The
tracking process is enhanced by using a contour refinement
that also involves mutual information cues. Contour refine-
ment schemes relying on Kullback-Leibler distance and gra-
dient information were also tested as an alternative but did
not perform as well. The proposed tracking scheme was
successfully tested on real image sequences used for gesture
recognition purposes.
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Figure 1: Hand tracking sequence – Mutual information
based tracking refinement scheme

Figure 2: Hand tracking sequence – Kullback-Leibler dis-
tance based tracking refinement scheme.

Figure 3: Hand tracking sequence – gradient based tracking
refinement scheme.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



Figure 4: Finger tracking sequence obtained in the lab – Mu-
tual information based tracking refinement scheme

Figure 5: Finger tracking sequence obtained in the lab –
Kullback-Leibler based tracking refinement scheme

Figure 6: Finger tracking sequence obtained in the lab – Gra-
dient based tracking refinement scheme
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