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ABSTRACT 

Synchrotron radiation 3D micro-CT providing quantitative 
images of bone samples opens new perspectives for assess-
ing bone metabolism. The purpose of this paper is to evalu-
ate the possibility of segmenting remodeling regions from 
such images acquired at a spatial resolution of 10 µm. Seg-
menting remodeling regions within the bone phase is not an 
easy task. Although remodeling regions can be visually dis-
tinguished, their contrast with respect to bone may be very 
weak and close to the standard deviation of noise. We pro-
pose a segmentation scheme based on a customized region 
growing associated to a denoising process. We consider de-
noising methods based on wavelets and anisotropic diffu-
sion. Our results show that a corrupted image can be well 
restored, essentially without compromising image resolution. 
Thus the segmentation of correct remodeling zones in the 
bone is more realistic on the denoised images. 

1. INTRODUCTION  

Osteoporosis is a bone fragility disease based on reduced 
bone mass and alterations of bone-micro-architecture. Bone 
micro-architecture is increasingly investigated by micro-
tomography (CT) techniques, which as compared to histol-
ogy, is a non destructive technique and may provide three-
dimensional information [1]. A number of micro-CT systems 
are now commercialized and provide images at spatial reso-
lution up to a few micrometers. After segmenting bone from 
background, three-dimensional quantitative parameters of 
bone micro-structure are typically calculated. However den-
sitometric information within bone phase is generally not 
available due to beam hardening and limited signal to noise 
ratio when using standard x-ray sources. Coupling micro-CT 
to synchrotron sources allow to overcome these limitations 
and provide quantitative images [2].  
In previous works, we showed that synchrotron micro-CT 
enables to recover the mineral concentration in bone tissue, 
also called the degree of mineralization of bone (DMB). The 
accuracy of the system was evaluated by using solutions 
mimicking hydroxyapatite, the main component of bone, at 
different known concentrations [3]. The method was applied 
to analyze the effect of a treatment of osteoporosis: while 
there were no significant differences in micro-architecture 
parameters, the DMB tended to increase after treatment [4]. 

The quantification of the DMB provides important informa-
tion about the metabolism of bone. Indeed bone is constantly 
remodeled, which means that it is sequentially resorbed and 
reconstructed. After reconstruction, its mineral concentration 
in localized regions increases progressively.  
Figure 1 illustrates a 2D slice in a cortical bone sample ac-
quired using synchrotron micro-CT system developed at 
ESRF (European Synchrotron Radiation Facility, Grenoble, 
France). The slice is a 660x360 image with a voxel size of 10 
µm. Remodeling regions, characterized by a darker gray 
level traducing a smaller mineral concentration, and thus 
more recent bone, may be observed around some pores [5].  
Till now, the quantification of DMB has been based on glo-
bal parameters, such as the mean and standard deviation 
calculated on the entire bone phase. The purpose of this pa-
per is to evaluate the possibility of identifying the different 
remodeling regions which would allow getting new charac-
teristics about bone metabolism. 

 

 

Figure 1 - Original cortical bone slice image 

The problem is the segmentation of remodeling regions. If 
the segmentation of bone from background is straightfor-
ward, segmenting remodeling regions within the bone phase 
is not an easy task. Although theses regions can be visually 
perceived, their contrast with respect to bone may be very 
weak and close to the standard deviation of noise. In addi-
tion, ring artifacts related to image formation may also cor-
rupt image quality. Removing or at least significantly reduc-
ing noise and artifacts will be important in view to perform 
quantitative analysis. However, note that since the structure 
of interest is small, the resolution of the image must be pre-
served. 
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In this paper, we propose a segmentation scheme based on a 
customized region growing associated to a denoising process. 
We consider denoising methods based on wavelets and com-
pare the results to anisotropic diffusion. The comparison is 
performed on a synthetic image. Finally the method is ap-
plied to a cortical bone image. Our results show that a cor-
rupted image can be well restored, essentially without com-
promising image resolution, and that this step is essential for 
segmentation. 

2. SEGMENTATION SCHEME 

2.1 Position of the problem 

Figure 2 shows the histogram of image in Figure 1. The his-
togram is clearly bimodal, the first peaks corresponding to 
background and pores, the second peak, to the entire bone 
phase. The later does not exhibiting a multimodal distribu-
tion, simple thresholding is clearly insufficient for our prob-
lem. 
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Figure 2 - Original cortical bone slice image 

In addition, the statistical analysis of the image shows that 
the standard deviation of noise is around 7 (gray level), and is 
of the same order of magnitude that the contrast between 
some remodeling regions and bone surroundings. Thus con-
tour based approaches are not efficient.  

2.2 Region growing process 

Among the different possible approaches to image segmenta-
tion, we propose to use a customized region growing taking 
into account biological prior information. According to bone 
physiology, remodeling regions are located around pores and 
are relatively elliptic although their shapes may vary. The 
method proceeds as follows. 
First, the bone phase is segmented from background by sim-
ple thresholding. The contours are detected by a simple gra-
dient method and the exterior contour is eliminated. The pore 
contours are then obtained and tracked to get closed and 1 
pixel-thick contours. Then a connected component analysis is 
performed in order to label each pore contour. This image is 
then used to initialize the region growing process.  
The region growing process is then performed by using a 
homogeneity criterion on the region. The number of con-
nected pore sets the number of regions in the image. For each 
region, labeled by l , a neighbor pixel x  is labeled in the 
region if : 
  )l()l(m)(f ασ<−x  (1) 

where )(f x  is the image gray level, )l(m  and )l(σ  are the 

current mean and standard deviation of the region, and α is a 
parameter. 
However the direct application of the algorithm to the image 
give poor results, denoising schemes prior to segmentation 
are considered. 

3. DENOISING PROCESS  

3.1 Wavelet Based Denoising 

Wavelet based denoising has been showed efficient in some 
applications [6]. Basically, the noisy image is transformed 
into the wavelet domain, then the wavelet coefficients are 
subjected to soft or hard thresholding, and in the last step the 
result is inverse-transformed. If W denote the wavelet trans-
form (and w  the set of the wavelet coefficients), then the 
whole denoising process with a threshold t , amounts to a 
non-linear operator ηT  : 

 Wt1WT ooηη −=    (2) 

where ( ) ( )( )+−= twwsgnwtη  for the soft thresholding, and 

( ) { }tw1wwt >=η  for the hard thresholding.  

The application of this method yields some oscillations 
which are especially pronounced in the vicinity of disconti-
nuities and rapid changes [7]. These are “pseudo-Gibbs” os-
cillations caused by the fact that we have used only a subset 
of the full set of basis elements. In contrast to the classical 
Gibbs-phenomena associated with Fourier analysis, the 
“pseudo-Gibbs-phenomena” are much better behaved, much 
better localized and much more moderate in oscillation; nev-
ertheless they could influence a correct segmentation of the 
cortical bone image. 

3.2 Translation-Invariant (TI) Denoising 

These artifacts exhibited by denoising with traditional (or-
thogonal, maximally-decimated) wavelet transforms are due 
to the lack of translation invariance of the wavelet basis. The 
main idea of the “second generation denoising” method, pro-
posed in [7], is the following: for a range of shifts, one shifts 
the data, denoises the shifted data and then unshifts the de-
noised data. Doing this for each of a range of shifts, and av-
eraging the several results so obtained, produces a recon-
struction subject to far weaker Gibbs phenomena.  
For a signal ( )nt0:tx <≤ , let hS  denote the circulant shift 

by Ν∈h , ( ) ( ) nmodhtxtxhS += . This operator is unitary, 

and hence invertible: ( ) 1
hShS −=− . In term of operators, 

the idea of shifting to avoid artifacts is the following: given 

an analysis technique T , calculate the shifted version T
~

, for 
a range H of shifts (all n  for instance) and average over the 
several results so obtained:  

 ( )( ) ( )( )( )xSTSAverSxT hhHhHhh −∈∈ =;
~

. (3) 

Cycle-spinning over the range of all circulant shifts can be 
accomplished in order )n(2logn  time; it is equivalent to 
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denoising using the undecimated or stationary wavelet trans-
form. 
In the following, our analysis technique T  is a non-linear 

operator ηT , where Wt1WT ooηη −=  and tη  is the hard 

thresholding with a threshold t . Hard thresholding and trans-
lation invariance combined give both good visual characteris-
tics and good quantitative characteristics [7]. As mentioned 
by Coifman and Donoho, when used with the right wavelets, 
thresholding the non-decimating transform is mathematically 
equivalent to cycle-spinning with all n  circulant shifts.  

3.3 Anisotropic Diffusion 

The anisotropic diffusion is a popular filtering process aim-
ing to eliminate the noise from an image [8]. This method is 
based on the physical principles of the diffusion between 
fluids: the equation of diffusion is similar to that of the local 
concentrations of a fluid which equilibrates without matter 
creation or destruction. In order to perform anisotropic diffu-
sion of an image we will follow the classical Perona and 
Malik's algorithm [9]. This process smoothes regions while 
preserving, and enhancing, the contrast at sharp intensity 
gradients like contours. 
Consider the anisotropic diffusion equation: 

 ( )( ) ( ) fcft,cft,cdiv
t

f ∇⋅∇+=∇=
∂
∂ ∆xx  (4) 

where div  indicates the divergence operator and ∇ and ∆  
respectively the gradient and Laplacian operators, with re-
spect to the spatial variables ( )x . Here )t,(f x  represents a 

family of images with the initial condition )(f)0,(f xx =  

being the original image. It was shown that a diffusion in 
which the conduction coefficient ( )t,cc x=  is chosen locally 

as a function of the magnitude of the gradient of the bright-
ness function, i.e., 
 ( ) ( )( )t,fgt,c xx ∇=   (5) 

will not only preserve, but also sharpen, the brightness edges 
if the function g is chosen properly. Different functions were 

used for g  giving perceptually similar results [10]. The test 

images for this paper were obtained using  
 ( )

2
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



 ∇
+

=∇   (6) 

which favors wide regions over smaller ones. If the edge 
threshold parameter K  is low, small intensity gradients are 
able to block conduction and hence diffusion across step 
edges. A large value reduces the influence of intensity gradi-
ents on conduction. 

4. RESULTS 

4.1 Synthetic phantom 

We first simulated a 512x512 synthetic image presenting 
some characteristics of the physical bone images. The phan-
tom was made of five ellipses embedded in a white sur-
rounding (gray level=249) with the following gray levels: 

132, 200, 235, 239 and 244. The number of pixels in each 
region is indicated in the first line of Table 1. The image was 
corrupted with gaussian noise with a standard deviation of 7. 
The noisy image is shown in Figure 3 (noise is not too ap-
parent due to size reduction). In the histogram of the image 
(not shown), the peaks of the highest gray level ellipses 
overlap with that of the surrounding. 
 

 

Figure 3 – Noisy synthetic image  

 

 

Figure 4 – Segmentation applied to the noisy synthetic image. 

 

 

Figure 5 – Segmentation applied to the noisy synthetic image after 
denoising by the translation-invariant wavelet method. 
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The results of the region growing segmentation on the noisy 
synthetic image are presented on Figure 4. The algorithm 
delivers an image where each region has a different label, 
displayed in gray levels. The relative error between the esti-
mated and theoretical number of pixels in each region is pre-
sented in the second line of Table 1. There is a clear underes-
timation of each region. Trying to incorporate morphology 
operations (closing) during the segmentation process yields 
little improvement and perturb the homogeneity criterion. 
 
The three denoising methods were then applied before seg-
mentation: soft-thresholding wavelets (Wav), translation-
invariant wavelets (TI-wav) and anisotropic diffusion (Diff). 
Both wavelet transforms used Daubechies4 wavelet [11]. The 
segmentation process is neatly improved. The quantitative 
errors in each region with the different methods are summa-
rized in Table 1. The first line indicates the exact values. The 
second line shows the results obtained from the noisy image 
without denoising, and the three last lines corresponds to the 
results obtained applying the denoising process before region 
growing. The results show that denoising clearly improves 
the segmentation process. The translation-invariant wavelet 
method and anisotropic diffusion give close results. The rela-
tive error summed on the four more difficult regions (gray 
level >= 200), is equal to -0,9% with the translation-invariant 
wavelet method and -5,1% with the anisotropic diffusion 
method. The results obtained with the translation-invariant 
wavelet method giving the best performances are illustrated 
on Figure 5. 
 

Gray 
level 

132 200 235 239 244 

Original 3565 3653 4148 2959 3280 
Noisy -38,6% -34,0% -52,0% -34,9% -48,2% 
Wav -36,4% -39,4% -21,5% -14,0% -4,9% 
TI-Wav -8,8% -7,1% -7,3% -3,8% 16,7% 
Diff -5,4% -13,7% -7,4% -1,0% 3,8% 

Table 1 : Results of segmentation. First line:  number of pixels in 
each region with the given gray level. Next lines: relative error be-
tween the estimated and exact number of pixels for each method, in 

each region. 

4.2 Bone images 

The same process was applied to the physical bone image. 
We present the application of the method to the rough image 
(Figure 7) as well as to the denoised image using the transla-
tion-invariant wavelet method (Figure 8). On Figure 6 we 
have represented the structures (containing also parts of the 
ring artifacts) which were removed by the denoising. The 
zones detected in the denoised image are more compact with 
more regular contours. The segmented original image has the 
typical noise corrupted behavior. These figures show the ef-
fective improvement in the quality of segmentation by using 
a denoising based pre-treatment on the image. Finally, on 
Figure 9 we can check the localization and the shape of de-
tected remodeling zones, superimposed to the original image. 
Although some remodeling zones are missing, a majority of 
them are detected at the good location. 
 

 

Figure 6 – The removed noise with TI wavelet denoising 

 

Figure 7 – Segmentation applied to the bone image. 

 

Figure 8 – Segmentation applied to the bone image after denoising 
by the translation-invariant wavelet method. 

 
 

Figure 9 – Localization of segmented zones: superposition of the 
contours detected after segmentation to the original image. 
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5. DISCUSSION AND PERSPECTIVES 

The method presented in this paper for segmenting remodel-
ing regions in high resolution micro-CT images is encourag-
ing. Segmenting remodeling zones in 3D has yet never been 
performed. 
We used a relatively simple segmentation method based on 
region growing. However this method gave us the opportu-
nity to use the prior biological knowledge that the remodel-
ing regions are searched around pores. Other approaches 
such as K-means or a region growing method using the en-
ergy model of Mumford and Shah [12] were tested. The later 
is based on the minimization of an energy term incorporating 
a constraint on the curvature. Although this method seemed 
attractive, the results showed over-segmentations: false de-
tections appeared in bone background and a remodeling zone 
corresponding to a physiological entity could be split in 
many sub-regions. 
An efficient denoising method preserving the spatial resolu-
tion in the images has proven to be mandatory prior to seg-
mentation. In this respect, the translation-invariant wavelet 
method provided high quality result. Perspectives could be to 
use complex wavelet transform which were more recently 
introduced and offer advantages in terms of localization. 
Our final goal is to extend the method to 3D images. The 
pores, as may be seen in 3D, are cylindrical structures with a 
main axis roughly perpendicular to the direction of the slice 
[5]. Thus a 2D slice by slice approach is acceptable in a first 
step. However the extension of the method in 3D could im-
prove the robustness of the segmentation.  
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