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ABSTRACT
Protein lysate array is a new technology for measuring the
relative expressions of proteins, where the array image pro-
vides information about the concentrations (expressions) of
a given protein for tens of patients or tissues. The array con-
sists of replicated and serially diluted versions of the pro-
tein concentration for the biological samples at several spots.
When producing the lysate array the experimenter has to set
several parameters, such as: the concentration of the sample
solution to be printed at a certain spot, the number of dilu-
tions, the number of replicates for each biological sample,
and the dilution factor. Having the resulting image of inten-
sities at all spots one can assume a nonlinear model and esti-
mate the values of the relative protein expression levels for all
biological samples. In this paper we study how the obtained
model can be used to improve the design of the experiment,
such that if a second lysate array will be produced, better
design parameters will be selected. We propose a methodol-
ogy for choosing the design parameters, and illustrate it with
results for several lysate array data sets.

1. INTRODUCTION

The estimation of the ratios of protein expressions in dif-
ferent biological samples finds important applications to the
molecular profiling of various diseases, allowing to observe
how a protein is expressed in an diseased tissue versus a nor-
mal tissue, or a tissue that is under treatment versus a normal
tissue.

The production of a lysate array follows a complicated
protocol where the solution of protein at each spot reacts with
a solution containing a specific antibody, marked with a dye.
Many experimental design parameters have to be set [1, 2],
resulting finally in an image where each spot has the average
gray level essentially dependent of two factors: the protein
concentration in the solution printed at that spot and the an-
tibody concentration. A detailed estimation procedure for
the relative protein expression level for two biological sam-
ples was introduced in [3]. The accuracy of the estimates is
strongly influenced by the values chosen for the design pa-
rameters, e.g., number of replicates and of dilution points.

Out of the many factors involved in the preparation of
a lysate array, we will consider in this study as design pa-
rameters the following quantities: the concentration of the
solution printed at each spot, the number of dilution and
replicates for each biological sample, and finally the dilution
factor from one spot to the next for the sequentially diluted
spots.

Since in many occasions the production of a lysate array
is repeated if a poor quality is obtained after the first array
production, it is important to derive a procedure by which
the experimenter can choose new values for the design pa-

rameters when preparing the second lysate array, with the
goal of improving the accuracy observed after the second ex-
periment.

The paper is organized as follows: in the next section
we describe the typical layout of a lysate array and the es-
timation procedure for nonlinear calibration curves, in the
third section several problems relevant to the experimental
design are presented, in the fourth section the procedure is
illustrated with real data, and we end with conclusions.

2. A LYSATE ARRAY EXPERIMENT

2.1 Lysate array layout
A lysate array contains N = p× k× r spots, where p is the
number of biological samples, k is the number of dilutions
and r is the number of replicates. For each biological sample,
a solution that contains the protein of interest is prepared and
this solution is serially diluted using a dilution factor of b = 2
and printed at successive spots. For each biological sample,
k = 6 such dilutions are produced and each diluted solution is
printed r = 3 times, resulting in k× r = 18 spots for each bi-
ological sample. The solution concentration printed at each
spot can be controlled by the number of touches, i.e. how
many times the robot will touch each spot and it was ob-
served that 5 touches yield the best overall quality. See [1, 2]
for a detailed explanation of how a lysate array is produced.

2.2 Relative protein expression level: modelling and es-
timation
A nonlinear modeling procedure is presented in [3], where
the parameters of a nonlinear calibration curve are estimated
together with the protein concentrations for different biologi-
cal samples. We review here only the main steps of the mod-
eling procedure, and refer to [3] for the detailed description
of the estimation algorithms.

Denote by c j the concentration corresponding to the bi-
ological sample j, j = 1, . . . , p, ỹi the measurement of the
gray level intensity at spot i, where i ∈ {1, . . . ,N}, and
si ∈ {1, . . . , p} the biological sample index whose solution
is printed at spot i. It was found more convenient to model
the dependency intensity - protein concentration in a log-log
domain. We denote yi = log2 ỹi the logarithm of the intensity
at one spot and xi the logarithm of the unknown protein con-
centration in the solution printed at the same spot i, which is
given by

xi = log2
csi

2di

= log2 csi −di = qsi −di, (1)

where di ∈ {0, . . . ,k−1} is the dilution number.

14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP



We note that the log-concentration qsi of any given bio-
logical sample will appear in the definition of abscissas xi’s
at a number of k× r spots. Finally the base of the logarithm
will be assumed to be always identical to b, and in this paper
b = 2 except Section 3.2., where b is subject to optimization.

A conditional Gaussian distribution is assumed for
the measured intensities yi|θ ∼ N (g(xi,β ),σ 2

0 g(xi,β )2α),
where θ = [qT β T σ0α ]T is the vector of unknown param-
eters, g(xi,β ) is the nonlinear model for the mean, also
called a calibration curve (typically a sigmoidal or polyno-
mial model), and σ2

0 g(xi,β )2α is the heteroscedastic model
for the variance. If we denote by yN = y1, . . . ,yN the string
with all measured data and assume that the measurements are
independent, the overall likelihood is given by:

L(yN ,θ) =
N

∏
i=1

1√
2πσ2

0 g(xi,β )2α
e
− (yi−g(xi,β ))2

2σ2
0 g(xi,β )2α (2)

Denote by θ̂ = [q̂T β̂ T σ̂0α̂]T the ML estimates for the
vector of parameters that maximizes the overall likelihood
in (2), see [3]. Of interest are the ratios of the concentrations

ĉ j

ĉre f
= 2(q̂ j−q̂re f ) (3)

between the concentration with current index, j ∈ {1, . . . , p},
and that with a reference index, ref ∈ {1, . . . , p}. The refer-
ence is either set according to the biological problem studied,
or if there is no biological preference, it will be chosen such
that the accuracy is maximized.

The accuracy of the estimation procedure has been eval-
uated in [3] by extensive Monte Carlo simulations. The vari-
ances of the estimated parameters obtained in the simulations
have been compared with the Cramér-Rao lower bound and
they were found to agree very well, validating the estimation
procedure.

A measure of interest when evaluating the accuracy of
the experiment is the sum of variances of the log-ratios,

p

∑
j=1

Var(q̂ j− q̂re f ) =
p

∑
j=1

(Var(q̂ j)+Var(q̂re f )

− 2cov(q̂ j, q̂re f )) (4)

The variances involved in (4) can be assumed to reach the
Cramér-Rao lower bound (as experimentally found in [3])
and thus, if we denote by R(θ̄) the inverse of the Fisher in-
formation matrix, the criterion in (4) can be conveniently ap-
proximated by:

J(q̄, η̄) =
p

∑
j=1

R j, j(θ̄)+ pRre f ,re f (θ̄)−2
p

∑
j=1

R j,re f (θ̄) (5)

where θ̄ = [(q̄)T (η̄)T ]T is the vector of the model parameters
with which the data was generated and η̄ = [(β̄ )T σ̄0ᾱ ]T .

3. CHANGING THE EXPERIMENT DESIGN
PARAMETERS

In the following we assume that the experimenter intends
to produce a new lysate array, and he is free to change

some of the parameters of the design, in light of the re-
sults obtained in the first experiment. In the current tech-
nology some of the parameters may be easier to change
than others, and for this reason we address separately the
choice of each design parameter. The goal is to obtain af-
ter the second experiment a new set of parameter estimates
θ̂ [2] = [(q̂[2])

T
(β̂ [2])

T
σ̂ [2]

0 α̂ [2]]T with an improved total accu-
racy as measured by (5), or an average of it.

3.1 Changing the initial dilution for each sample
We focus first on the possibility that in the second experi-
ment the experimenter changes the concentration of the bi-
ological sample j by an amount (in log-scale) of ∆̂q j, such
that the initial unknown concentration q̄[1]

j becomes q̄[2]
j =

q̄[1]
j − ∆̂q j. The value of ∆̂q j needs to be determined only

based on the available information, i.e., on the estimates
θ̂ [1] = [(q̂[1])

T
(β̂ [1])

T
σ̂ [1]

0 α̂ [1]]T = [(q̂[1])
T
(η̂ [1])

T
]T .

Intuitively, if a concentration estimate is located on the
saturated branches of a sigmoidal calibration curve, then it is
tempting to dilute it in the second experiment in such a way
that the 6 diluted versions are likely to fall around the center
of symmetry of the sigmoid, where the sensitivity dy

dx is the
highest. Our goal is to find such a location of high sensitivity
qideal

j (η̂ [1]), which is a function of the estimated calibration
curve and of the the estimated parameters for the variance
model. So, once we have an estimate q̂[1]

j , the additional di-
lution ∆̂q j will be decided to be

∆̂q j = q̂[1]
j −qideal

j (η̂ [1]). (6)

We observe that negative dilutions may be possible to be im-
plemented, if q̄[1]

j was originally obtained by dilution from
a concentrated biological sample, but if that is not the case
we will additionally constrain ∆̂q j ≥ 0 during the optimiza-
tion process. The correction policy (6) should be carefully
analyzed since q̂[1]

j will differ in general of q̄[1]
j , and instead

of moving into the point of high sensitivity qideal
j (η̂ [1]), the

real concentration will move to q̄[2]
j = q̄[1]

j − q̂[1]
j +qideal

j (η̂ [1]),
which depends on the estimation error resulted with the data
in the first experiment. We propose to choose the vector
qideal(η̂ [1]) by minimizing the criterion J(qideal , η̂ [1]) and
then we use simulations to analyze how the correction based
on the values in this vector affects the accuracy in the second
experiment.

To establish the likely change of the accuracy in the sec-
ond experiment due to the additional dilution ∆̂q j, we want to
produce a simulation scenario for statistically evaluating the
accuracy changes, if one would have access to the true pa-
rameters of the model, θ̄ [1] = [(q̄[1])

T
(η̄ [1])

T
]T . We assume

that the measured (simulated) data in the first experiment are
given by

yi = g(q̄[1]
si −di, β̄ )+ εi, (7)

where εi ∼ N
(

0, σ̄2
0 g(q̄[1]

si −di, β̄ )2ᾱ
)

, and we use the

estimation procedure to produce the estimates θ̂ [1] =
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[(q̂[1])
T
(η̂ [1])

T
]T . With the limited information available in

θ̂ [1] we propose to perform an additional dilution ∆̂q j for
each biological sample, in order to correct the value q̂[1]

j to the

value qideal
j (η̂ [1]) = q̂[1]

j − ∆̂q j. In effect, the original concen-
tration q̄[1] will change to q̄[2] = q̄[1]− q̂[1] +qideal(η̂ [1]), lead-
ing to a ”true state of nature” vector θ̄ [2] = [(q̄[2])

T
(η̄ [1])

T
]T .

We compute now the criterion J(q̄[2], η̄ [1]) which measures
the accuracy in the second experiment. We are interested if in
average the accuracy in the second experiment is better than
the accuracy in the first experiment J(q̄[1], η̄ [1]), although the
correction is done based on the estimated vector of parame-
ters θ̂ [1]. This simulation scenario can be implemented in the
following procedure:

Procedure 1 Evaluation of the accuracy improvement
when changing the concentrations of biological samples:

Step 1 Choose a ”true state of nature” vector of pa-
rameters θ̄ [1] = [(q̄[1])

T
(η̄ [1])

T
]T and compute the criterion

J(q̄[1], η̄ [1]) using (5).
Step 2 For i = 1 : Nr do the following:
Step 2.1. Generate a data set according to (7) and esti-

mate the parameter vector θ̂ [1] = [(q̂[1])
T
(η̂ [1])

T
]T .

2.2. Find the vector of log concentrations, qideal(η̂ [1]) by
minimizing the criterion J(qideal , η̂ [1]).

2.3. Determine the true vector of log concentrations for
the second experiment, q̄[2] = q̄[1] − q̂[1] + qideal(η̂ [1]) and
compute the criterion J(q̄[2], η̄ [1]).

Step 3 Collect the empirical distribution of J(q̄[2], η̄ [1]).

3.2 Changing the number of dilutions, replicates and the
dilution factor
The protein of interest can be expressed over a broad dy-
namic range, for example up to a factor of 1010 [4]. To
increase the measurement accuracy, the solution for each
biological sample is serially diluted with a factor of two,
yielding k diluted versions of the same solution and each
of these diluted versions is printed for r times. The total
number of measurements for each biological sample will be
k× r. The accuracy of estimation procedure will clearly
change with the number of dilutions and the dilution fac-
tor used, especially for proteins with low expression lev-
els, because many of the measured data will result in the
low saturation range of the calibration curve, where the ac-
curacy is low. The choice of the factors k and r is quite
limited, since they both need be integers, and furthermore,
the slide has a fixed number of spots, which imposes to
keep constant the product k × r. For the slides we dis-
cuss now k× r = 18 and the only possibilities of choice are
(k,r) ∈ {(1,18),(2,9),(3,6),(6,3),(9,2),(18,1)}.

Like in the previous case, we can use a similar sim-
ulation scenario to evaluate how the accuracy in the sec-
ond experiment will be modified using an optimal com-
bination (r(θ̂ [1]),k(θ̂ [1]),b(θ̂ [1])) that is found using only
the information in θ̂ [1]. Based on this optimal combina-
tion we compute the accuracy for the second experiment
J(θ̄ [1],r(θ̂ [1]),k(θ̂ [1]),b(θ̂ [1])). The bulk of the distribution
of these values should be located significantly at the left of
the value J(θ̄ [1],3,6,2) in order to decide to change the initial
combination (3,6,2).

However the change of (r,k,b) from one slide to the next
is quite inconvenient technologically, so we contend here to
illustrate how this change affects the accuracy of the experi-
ment by computing the optimal accuracy for a given θ̄ [1].

4. RESULTS

The presented procedures are illustrated here with the three
lysate arrays data used in [3] and publicly available at
[5]. Three different proteins are analyzed: pThr308AKT,
pSer473AKT, and β -actin for p = 96 biological samples,
where the solution for each biological sample is spotted in
three replicates with six two-fold dilutions. Using the esti-
mation procedure described in [3], we obtain for each slide
the parameter vector estimate, θ̂ = [q̂T β̂ T σ̂0α̂]T . Here we
are using only the sigmoidal model of the calibration curve
as described in [3]. The sigmoidal model

g(x,β ) = β1 +
β2

1+ exp(−β3x)
(8)

has three free parameters β = [β1β2β3]T .
The true parameter vector θ̄ , for each lysate array is given

by the one estimated from the real data sets, and we will ap-
ply the simulation scenario described previously to illustrate
the gains which can be obtained by changing the specified
parameters. The calibration curve, the heteroscedastic vari-
ance, and the estimated log-concentration are illustrated in
Figure 1.

4.1 Results - changing the initial dilution for each bio-
logical sample
We applied Procedure1, where the elements of the vector
qideal(η̂ [1]) are additionally constrained to be equidistantly
spread in the interval [qmin,qmin + L], so that the search is
done in a two dimensional parameter space (qmin,L), con-
veniently selected to cover the non-saturated part of the sig-
moidal model. The criterion J(q̄[2], η̄ [1]) was computed for
Nr = 200 realizations. In Table 1 we show the results of the
simulation scenario presented in Procedure 1. By looking at
the last two columns in the table, we can conclude that the
correction made based on the estimated vector θ̂ [1] will lead
on average to a better accuracy in the second experiment.

Although the main focus is in optimizing the overall cri-
terion J(q̄[2], η̄ [1]), it is interesting to know how close the con-
centration values q̄[2] = q̄[1]− q̂[1] +qideal(η̂ [1]) determined in
Step 2.3. are to the optimal concentration values qideal(η̄ [1]).
The distribution of these values q̄[2] is illustrated in Figure
2 by mean of the average avg(q̄[2]

i ) and standard deviation
std(q̄[2]

i ) of q̄[2]
i for each biological sample, superposed over

the ideal concentrations qideal
i (η̄ [1]).

4.2 Results - changing the number of dilutions, repli-
cates and the dilution factor
For each lysate array Nr = 200 realizations of the θ̂ [1]

were obtained and for each realization the optimal combi-
nation (r(θ̂ [1]),k(θ̂ [1]),b(θ̂ [1])) was found. Using this op-
timal combination we have computed the accuracy in the
second experiment J(θ̄ [1],r(θ̂ [1]),k(θ̂ [1]),b(θ̂ [1])) which we
denote for short Ĵ[2] Table 2. We have also computed
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proteinName J(q̄[1], η̄ [1]) J(qideal(η̄ [1]), η̄ [1]) avg{J(q̄[2], η̄ [1])} std{J(q̄[2], η̄ [1])}
pThr308AKT 4.80 3.56 3.56 3.32e-003
pSer473AKT 8.05 2.57 2.57 2.15e-003

β -actin 7.60 4.00 4.03 2.57e-002

Table 1: Accuracy measures comparison: The criterion J(q̄[1], η̄ [1]), reflecting the accuracy in the first experiment; The
criterion J(qideal(η̄ [1]), η̄ [1]) reflecting the best achievable accuracy if one would know the true η̄ [1]; The criterion J(q̄[2], η̄ [1]),
where q̄[2] = q̄[1]− q̂[1] +qideal(η̂ [1]) depends on the noise in (7). The last two columns present the average and the empirical
variance of J(q̄[2], η̄ [1]) for the Nr = 200 realizations.

proteinName J[1] J̄[2] avg{Ĵ[2]} std{Ĵ[2]} (r̄, k̄, b̄) na(r) na(k) avg{b} std{b}
pThr308AKT 4.80 4.17 4.17 9.34e-003 ( 9, 2, 5.00) 200 200 5.28 4.98e-001
pSer473AKT 8.05 5.29 5.50 2.47e-001 ( 9, 2, 11.00) 200 200 14.70 4.24e+001

β -actin 7.60 5.78 5.89 1.25e-001 ( 1, 18, 1.40) 192 192 1.50 1.89e-002

Table 2: Accuracy measures and parameter values comparison: The criterion J[1] reflecting the accuracy in the first
experiment; The criterion J̄[2] reflecting the true accuracy in the second experiment; The average accuracy avg{Ĵ[2]) and the
accuracy variance std{Ĵ[2])} for the second experiment; The true combination (r̄(θ̄ [1]), k̄(θ̄ [1]), b̄(θ̄ [1])); The number of times
the true number of repetitions was found; The number of times the true number of dilutions was found; The average of the
dilution factor and its variance.

for the true parameter vector θ̄ [1] the optimal combination
(r̄(θ̄ [1]), k̄(θ̄ [1]), b̄(θ̄ [1])) and the accuracy obtained when us-
ing these values, J(θ̄ [1], r̄(θ̄ [1]), k̄(θ̄ [1]), b̄(θ̄ [1])) which we de-
note for short J̄[2]. The accuracy in the first experiment
J(θ̄ [1],3,6,2) is denoted by J[1]. The results are presented
in Table 2 and from the column two to five we can see that
in average we will attain the true accuracy in the second ex-
periment. In columns seven and eight we show the success
in determination of the optimal structure: na(r) and na(k)
are the numbers of times of correct recovering for r and k,
i.e. r(θ̂ [1]) = r̄(θ̄ [1]) and k(θ̂ [1]) = k̄(θ̄ [1]) and in the last two
columns the average and variance of b are given, showing a
good agreement with the value b̄ from column 6.

In Figure 3, for all realizations we can see that for all
proteins a better accuracy is obtained when the optimal com-
bination is used in the second experiment.

5. CONCLUSIONS

We have presented methods for choosing new parameters for
a second experiment of a lysate array that can improve sig-
nificantly the accuracy of the estimated concentrations. Ap-
plying the procedures in laboratory will be the next stage of
this research, in order to check how much of the predicted
accuracy gains can be obtained in practice. In the past in-
ference of the protein network was not studied as much as
inference of genetic network, mostly due to the lack of accu-
rate protein expression measurements. Lysate array may be
the tool of the future for protein expression probing, similar
to probing gene expressions by DNA microarrays.
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Figure 1: Illustration of the true parameter vector θ̄ [1] in the first experiment: The calibration curve g(x, β̄ ) is plotted in
red; The 96 black stars are the pairs (q̄ j,g(q̄ j, β̄ )); The optimal model is heteroscedastic, the changing variance being visible
from the two blue lines showing the bounds g(x, β̄ )±2σ̄0g(x, β̄ )ᾱ .
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values avg(q̄[2]) plotted in red, almost covering the black points; The bounds avg(q̄[2])±2std(q̄[2]) plotted in blue.
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Figure 3: Empirical distributions: The accuracy in the first experiment J(θ̄ [1],3,6,2) is shown by the vertical red dotted line;
The distribution of the criterion in the second experiment, J(θ̄ [1],r(θ̂ [1]),k(θ̂ [1]),b(θ̂ [1])) when setting the optimal combination
to (r(θ̂ [1]),k(θ̂ [1]),b(θ̂ [1])) plotted in blue.
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