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ABSTRACT whereqg 123 € R. Multiplication rules for imaginary units
are:
Statistical description of polarized signals is proposed i i2=42=x2=ijk=-1 )
terms of proper quaternionic random processes. Within this ij=—ji=k 2)

framework, the intrinsic nature of such signals is captured

well. Simulation results show the ability of quaternionfea The real part of a quaterniod(q) = qo is a scalar, while
proach (statistical model and processing) to perform betteits imaginary partl(q) = 011 + 02j + 0k is a vector. A
separation of polarized signals than real-valued neurdt ne quaternion with a null real part is callguire. The conjugate
works can do. of qisQ=0go—q1i — g2j — gk, with the propertypgq=97p.

The norm ofg is || = /03 + g2 + g5 + g% and if g # 0, then

1. INTRODUCTION its inverse isg~! =1/|g/%. A quaternion is calledinit if its
norm equals 1. It is possible to write quaternions as complex

In many applications such as seismology, eIectromangetic:ﬁumbers with complexified coefficients:

optics, communications, etc., the recorded signals amrpol
ized. This property is due to the nature of the waves carrying ), (2 3

the signals (elastic or electromagnetics waves). As a con- a=a"+97J (3)
sequence, polarized signals describe the evolution of a vec 0 ) 2 ) ,

tor with time, pointing into the direction of vibration of¢gh Whereq” = do + qii andq” =z + qzi. This way of
medium pertubated by the wave. This vector is confined int§/fiting quaternions is known as th@ayley-Dicksomota-

a plane (the so-calleflolarization plang and thus it is al- tion. The famous Euler formula generalizes to quaternions
ways possible (even for 3D signals) to describe a simply pos0 that any quaterniome H can be written:

larized signal in terms of two signals. Polarized signats ar . ¢

recorded with vector-sensors and so they are vector-valued q=|ql(cosp + psing) = [qle” (4)
signals.

A big challenge in polarized signal processing is to takewherep = (qii + 023 + ggk)/( /03 + 05+ 03 is a pure unit
advantage of the additional information provided by polar-quaternion called thaxis of q and¢ is called theangle (or

ization without loosing this information in the processimy  argumen}of . There are three canonical involutions defined
order to do so, we adopt here a quaternionic model for pagn

larized signals. This model was already used in [1] and here 0: = —iqi; 95 = —jqj; Ok = —kgk (5)
we add a statistical description to it. Using recent work on

quaternion random variables [2], we express polarized sigwith the following propertiesif € {1, j,k}):

nals asproper quaternion random processes. That way the

intrinsic nature of polarized signal is captured well. Henc Oy = [ePR
our model can be used advantageously for signal processing { (An)n q, (6)
tasks. This is demonstrated for signal separation. Foraepa (PA)y Prndn

tion inside the quaternionic framework a quaternionic aeur

network is used and its superior performance over a standalMbte that a more general definition for involutions &h
real-valued network is demonstrated. Additionally, repre  can be stated as follows}, = —nan, wheren? = —1 and
tation issues for optimal separation are discussed fort$te fi () = 0. Here, we will make only use of the canonical

time. involutions given in (5).
2. QUATERNIONS 3. PROPER QUAT\I/EIIE?(I:\I_II_ggg/ALUED RANDOM

Quaternions, denotéd, are a 4D hypercomplex number sys- The study of quaternion valued random vecigionsists in
tem and form a noncommutative division algebra. The Cartethe study of the joint probability density function (pdf)tbie
sian notation of a quaternianis given as: four components. In the Gaussian case, the first and second
order statistics (mean and variance) tell all the story.eHer
g=0o+ 01i—+ 02+ 0k (1) we introduce basic definitions and properties of quaternion
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valued random vectors. As only Gaussian cases will be cor8.3.1 C"-properness
sidered, we only present a second order study for quaternio&
valued random vectors. Available material on quaternionic
random variables and vectors can be found in [2, 3]. Of main
interest for us here is the concepfwbperrandom variables
and vectors.

quaternion random vectey € HN is called proper iff:
q2eq, vo (12)

for one and only one pure unit quaternign and where2
3.1 Definitions and representations stands for “equality in distribution”. A special case ofent

. . _estfor us in the sequel will b&*-proper random vectors for
One useful way to consider a quaternion random vector is to

. d . .
see it as a real valued random vector of size four times bigihicha = e'%q. As a consequence, the covariance matrix of
ger. However, it is also possible to see it as a complex o C -Proper random vectors commutes WithAqi = iAq.
quaternion valued vector of higher dimension. Thus, for al NiS commutation induces a special structure in the covari-
quaternion valued random vectqre HN there exists three ance matrix (see [2, 3] for details), which in its complex-rep
possible representations. Namely the @alR4N, complex ~ 'ésentation reads
G € C*N and quaternion &€ H*N representations. Their ex-

K 0 0 C
pressions are: ald) ) . aWq®?

0 Ko  Cioge 0
- T As = T4 aq (13)
a=[af af a qf] ] a T 0 Cluge  Kqo 0
q= [q(l)T q Ut @7 q(zn} @ Cluge 0 0 K,
S ToT aT ol o717 ) ) o .
d=[q" q] q; A | This suggests an equivalent definition f@f-properness.

where 1 stands for conjugation-transposition. These repreThus’ a quaternion random vectords-proper iff.

sentations allow to study the statistical relationshipgs/ieen C. =0

the components of a quaternion random vector. Transition Cq —0 14

matrices to switch between them can be found in [2]. Kq(z) - 0 (14)
aVq®@ =

3.2 First and second order statistics ) )
One can see thét*-properness for a quaternion random vec-

as: ;
B ) . (in the complex sense) complex random vectqtS and
o Elq] - E[_qo] +Elqa]i +Elqz]j + Efqs]k (8_) q? with a non-null crospseudo-covariancbut a vanish-
This is the definition of theneanof q € HN. ‘Then, consid-  ing cross-covariance. Note that the other possible cases (
ering a centered random vectqy its covariance matrix is CJ andC¥) lead to a different structure of the covariance ma-

given by: trix (different positions for the zeros).
Aq=FE[aq"] =E[qq'] ©
Using the vector representations introduced before, the co ™" —properness _ _
variance matrix ofy has also three representations: A quaternion random vectey € HN is calledH-proper iff:
A5 =E[GqT] q2eq, v (15)
Ay =E[5d]] (10) , , , o
Ay =E[Gq"] for any pure unit quaternionp. Once again, considering

. _ the classical basis for quaternionse( {1,i,j,k}), H-
In the sequel, we will only make use qf Thus we give here properness is equivalent to having the following equalitie

the explicit expression of its covariance matrix: verified:
Aqi=1iA
K, Coo  Kynga Cuog@ { A= jAu (16)
C* K* C* * q q
a® a® qWq®@ aWq®@ . . . ,
As = |t T (11) These commutation rules induces a very special structure in
4 Kq<1>q<2> Cqu)q(z) Kq@ Cq@ the covariance matrid4 = diag(K), whereKq =K ) =
Cl(l)q(z) szq(?) Cl2 K o K- This also suggests another equivalent definition for
H-properness:
where K, = E[vw'], K, = Ky, Cyw = E[vw] Cy =0
and C, = C,, and withv,w € CN. In the literature C. =0
[4], K is known as the covariance &f while C, is its qu 2 =0 a7)
pseudo-covariance A complex random vector with van- Cq - 0
ishing pseudo-covariancis calledproper (or alsocircular) alPq?
[4, 6]. We now introduce the generalization of this propertyTherefore aH-proper random vector can be seen as a pair
to the case off-valued random vectors. of proper (in the complex sense) complex random vectors
q'Y andq'@ which argointly proper(in the complex sense),
3.3 Proper random vectors i.e. their cross-covariance and cross-pseudo-covariance both

As firstly described in [3] and generalized in [2] there exist vVanish. In thet-proper case, the two complex components
two levels of properness. q'Y andq'@ are thusuncorrelated4].
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3.4 Proper random variables and polarized signals andg the so-called activation function. The weightsare

We now consider polarized random signals with possibl;}ree parameters that are adjusted trough learning. Foimonl
known polarization parametepsandg. Consider the output ~©ard, 9rouping neurons together in laygrsg(wijx; + 6)) in

of a two-component vector-sensor [5]. Such a sensor ouft fééd—forward and fully—connected manner yields the well-
puts two discrete signats (n) andsy(n) (with n=1,...,N) nown Multi-layer Perceptron (MLP). MLPs are trained by

that originate from vibrations in two orthogonal direction SUPervised learning,e. on examples with target outputs.
of 3D space. For such signal, we propose to use the mod |he most popﬂarc.:hmce f@ﬂs_the logistic fun(.:tlom(g) =
described in [1]. The output can be arranged in vector,l‘EeXFé—X))b with output in [0,1]. f Adapting Weégshts o
512 — [512(1) 512(2) .. s12(N)|T. Thus the whole 2D vi- 1S then done by minimizing an error function, say E, by

: : : gradient descent (backpropagation [10]). A quaternion val
Elrjitrgoarllsrecorded on the sensor can be written in a vagtor ued MLP {E-MLP)is obtained one by just using quater-

q=21+jz2 (18) nionic entities instead of real ones. As acti_vation funetio
o(q)u = 0(do) + 0(d)i + 0(q2)j + 0(d3)k is used [9].

wherez; andz, are the analytic signals ef ands,, respec- Separation of two polarized signals is a classification.task

tively. Here,s; ands; are consideredi.d. and Gaussian A H-MLP with one hidden layer of two neurons is there-

random processes. The real and imaginary partg @ind  fore the smallest meaningful quaternion valued architectu

2z, have zero mean and same variaoce It is well-known  in this case. We shall see that this minimal quaternionie net

that the analytic signal is proper (in the complex sense) [6]work is also already sufficient. This is a direct consequence

which involves thalC,, = C,, = 0. As a consequence, the of the invariance of distributions under (12) and (15), szsp

variance ofz; andz, equals 22 (real and imaginary parts tively.

having the same variance and being decorrelated). ,

Now, assuming that the recorded signglddarized then 4.2 Isomorphic Class Labels

there exists a phase shift and an amplitude ratio (both sune issue of th&l-MLP remains for discussion. That is how

posed constant along the time index here): to label the classes. This is one other consequence of the fun
. damental difference between real valued and quaternien val
71 = P2y = pe'¥z; (19)  ued neural networks. For a standard MLP neither the order of

o i components of a input vector nor the order of components of
wherep andg are the polarization parameters [1]. With the 5 oytput vector has a semantical meaning. Permutations do
above assumptions, itis easy to verify that the covariar®@e M not have any effect. Contrary, quaternions are tuples. ,Also
trix of the random vectog made of the samples of a polar- gptimal separation of polarized signals bjeMLP relies on
ized signals has the following structure (complex notgtion  the preserving of structural information, which needséspl

of data beforehand. In a formal notion and in a wider context

I 0 0 pe I this is discussed for the broader class of networks witheslu

A — 252 0 I peI 0 (20)  in Clifford algebrasin [11]. Here, there are four posstisi

q —i@ 2 H nqn .

0 pe 1 pI 0 for labeling the "1” class:

pet?l 0 0 %I

CL1 : 1+0i+0j+0k (21)
Thus, the proposed modeling allows to consider a polarized CL2 : O0+1i+0j+0k (22)
random signal (with deterministic polarization parameier CL3 : 0+0i+1j+0k (23)

andg) as aC*-proper quaternion valued random vector. ) ) i
Now, consider the case where the recorded signal is not CL4 @ 0+0i+0j+1k (24)
Eolanzed. Ther; andz, are uncorrelgted, so the .T,lgnal CaNThe latter three, refered to as imaginary labels, are isomor
e seen as H-proper quaternion random Vector. Its covari- phic | etx — xo 4 x11 + % + Xak be fixed. Furthermore, let

. ' o r
ance will then be diagonalq = 20“Ianx4n. ro+rii+raj+rsk = (a+bi+cj +dk) x. Then yields

4. NEURAL ARCHITECTURE (=b+ai—-dj+ck)x = —ri+roi—rzj—+rok (25)
Neural networks have found many applications in signal pro- (—C¢+di+aj—bk)x = —rp+rgi+roj—rk (26)
cessing (see.g[7, 8] and references therein). The previous (—d—ci+bj+ak)x = —rz3—rpi+rij—+rok. (27)

section established a theoretical link between polarizpd s ) o ]

nals and propeH—valued random variables. A quaternion Hence applying the appropriate isomorphism to every net-
valued neural network remains naturally inside our frameWork parameter allows to construct an equivalent network
work. Advantages of our proposed model should therehaving another imaginary class label than the originalmive
fore result in an outperformance of such networks over realone.

valued networks, for example on a signal separation task.

First we review technical details of a quaternion valued 5. SIMULATIONS

Multi-layer Perceptron [9]. Then the novel and relevant norys section reports results for separation@-proper vs
tion of isomorphic class labels is discussed. H-proper signals comparing the previously introduced two
. types of networks. Note that this task is more compli-
4.1 Multi-layer Perceptrons (MLPs) cated than separation @"-proper vsCH-proper signals
The atoms of neural networks are simple computationgsection 3.3). Simulations have been performed for syn-
units that compute from input an output according tgy =  thetic data generated from the three four—dimensional dis-
g(f(w,x)). Therebyf is the so-called propagation function tributions listed in table 1. From each of them 1000 points
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have been sampled. In each case the first 200 sample points

have been used for training and the remaining 800 points for | Weight | 1| i [ 3 | K |
testing. Note thatzs is H-proper and both#, and %, are Wiq -9.350 | -0.265 | +9.374 | +18.688
Ci-proper, respectively (w.r.t. the canonical identificatio W12 +8.925 | +0.430 | -8.955 | -17.823
{as 1,b& i,c& j,ds k). CT-proper data fon € {j,k} O11 +2.539 | -2.369 | -4.933 | +1.275
has been obtained fro¥;, 7, by simple permutation of B12 +5.350 | -8.112 | -6.532 | +1.929
components. For examplg¢a<« 1,b<« j,c« i,d < k} W21 || +3.965[ +0.109 | -0.115 | -0.142
givesCJ-proper data. For the MLP all that way derived data Wao +3.878 | +0.103 | -0.022 | -0.119
is the same (section 4.2). Hence the number of setups reduces| g,, 33.694| -20.531| -18.675| -23.505

to two in this case.

Table 2:C*-proper vsH-proper separation using; and CL4
(24) for theC*-proper class. Solution found by the quater-

| [ a [ b | ¢ | d | nionic network yielding perfect separation (zero erron) fo
2 #0,1)] #(0,1) ] 2a+4b | 4a—2b the training sets.
% | ¥ (0,1) | #(0,1) | 1Tat2b | 2a—1b
5 | /(0,1 | #(0,1) | #(0,1) | #(0,1)

Only for C3-proper vsH-proper signal separation differ-
ent class labels caused non—equal performance. Output of
Table 1: Distributions from which data for simulations hasthe first hidden neuron and the second hidden neuron for a
been generated.#(0,1) denotes one—dimensional normal typical run using CL4 are shown in figure 1 and figure 2,
distribution with mean 0 and variance 1. respectively. Again, successful separation was already pe

formed in the hidden layer. Th&J-proper class was solely
coded in thex-channel of the hidden neurons. Therfore out-
put weights have been used again only for scaling. With CL3
5.1 Results for the MLP used for coding the "same” solution is obtained. However,
the CJ-proper class is then solely coded in thehannel.
Separation o7, vs 23 turned out to be much more diffi- In both cases test classification rate was always in between
cult than 2, vs 23 separation &3 class was labeled as 0). 96%-97.5% for all runs. With CL2 coding this rate dropped
Training in the latter case was always successful with 6 hiddown significantly to 93%-94.5%. This means the network
den nodes (3000 iterations, learning rate 0.1) yielding zerwas not able to reproduce the CL3, CL4 solutions, which
ore only misclassified pattern. Test performance varied besan be done theoretically as outlined before. Actually, no
tween 97%-98% classification rate for different runs. Rissul other solution than the ones from CL3, CL4 could be ob-
for the other separation task are worse w.r.t. both effigiencserved when analyzing several runs. Switching class data
and accuracy. With 20 hidden nodes (optimal learning pai the output layer to the-channel from thej-channel or
rameters) a training error of 6-8 misclassified patterns wak-channel, respectively, needs a more complicated oparatio
achieved. Here test performance varied between 93%-94%an scaling. Although theoretically possible for #ieMLP,
classification rate. Using more hidden nodes caused ovepptimization becomes more complicated and the only locally
fitting (worse test performance, see[7]) without reduc- convergent training algorithm may get trapped in local min-
ing training error significantly. The lack of the MLP to ac- ima more likely. In the CL1 case, where there is also no
tually identify structure (levels of properness) causdtle@a other solution than the ones mentioned before, such opera-
low performance in this particular task. tion does not exist at all. This therfore accounts for the/onl
non-successful setting. Contrary, a CL1 solution welltsxis
when casted a&*-proper data, which can be seen from fig-
ure 3 (plot for the second hidden neuron is omitted again due
5.2 Results for theH-MLP to space limitations).

This plot shows a total different type of solution using
235 class was labeled as00i + 0j + Ok and forC"-proper  two channels. Hence the difference of covariance matrices
data all four possible labels (21)-(24) have been testdd-yie derived in section 3.3 also causes different solutionsdpr s
ing a total of 24 different setups. In 23 of these setups tharation. Summarizing all the simulations, either CL3 or CL4
H-MLP, having only 2 hidden nodes, was successful with 0should be used as class labels. Then optimal separation of
5 misclassified training patterns and 93.5%-99.5% classific C'7-proper vsH-proper signals is always possible byHa
tion rate for test data. One particular solution r-proper MLP having only two hidden neurons corresponding to a
vs H-proper separation using; and CL4 (24) for theC*-  total of only 28 real parameters. Note that the gap to per-
proper class is listed in table 2. This solution correspondfect 100% is both due to the gap between sample statistics
to zero training error and 99.5% successful classificatfon cand distribution statistics and also due to the local natfire
test data. Note that the hidden weights, w,, are basically training algorithm. TheH-MLP will usually outperform a
just used for scaling. This means that separation has glreadtandard MLP in terms of accuracy. The latter will always
been done in the hidden layer. Also note the symmetry of thbe less efficient in terms of complexity. In one of the simu-
1, j-components of the hidden layer weights. Same accuradgtions the standard MLP was not able to reach performance
was obtained using the other class labels, which is alwaysf the H-MLP although having five times more parameters.
guaranteed theoretically for CL2, CL3 by the argumentatiorAlso, note that overfitting does not occur for tHeMLP in
provided in section 4.2. any case.
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Figure 1: C3-proper vsH-proper separation using, and
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Figure 3: Ci-proper vsH-proper separation using, and

CL4 (24) for theCI-proper class. Histograms of the output CL1 (24) for theC*-proper class. Histograms of the output
of the first hidden neuron. Left column shows response foof the first hidden neuron.

H-proper data. Right column shows responseddmproper

data. Each row shows one component of the output.
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Figure 2: CJ-proper vsH-proper separation using, and
CL4 (24) for theCJ-proper class. Histograms of the output

of the second hidden neuron.

6. CONCLUSION
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We have presented a quaternionic approach for modeling po- [10]

larized signals and their statistical properties. Staymside
the quaternionic framework by usingl&MLP gave better

results than using a real-valued MLP on signal separation [11]
tasks. Moreover, successful separation was achieved by a

minimal quaternion architecture. Hence the presentedtsesu
illustrate well the advantages of the quaternionic franmbwo
for processing of polarized signals.
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