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ABSTRACT information, et cetera. The ultimate goal is to make therada

In this paper we deal with the design of Knowledge-Base@" intelligent device, such that it is capable of developing

adaptive algorithms for the cancellation of heterogeneou§0dnition of the surrounding environment [5]. ,
clutter. To this end we revisit the application of the Recur- !N this paper we show how Knowledge-Based techniques
sive Least Squares (RLS) technique for the rejection of un¢an be exploited for the adaptive implementation of the-opti
wanted clutter and devise modified RLS filtering procedurdnUm doppler processor. To this end, we first revisit the Re-
accounting for the spatial variation of the clutter powerelt ~ Cursive Least Squares (RLS) algorithm [6], which permits a
we introduce the concept of Knowledge-Based RLS and e reduced complexity adaptive implementation of the optimum
plain how the a-priori knowledge about the radar operating/t€f. designed under the assumption of homogeneous envi-
environment can be adopted for improving the system pe fonment. Then we |_ntroduce a recursive procedures exploit-
formance. Finally we assess the benefits resulting from thi?9 data normalizations. However, due to the strong clut-
use Knowledge-Based processing both on simulated and (%ﬁr variability, none of the algorithms uniformly outpemfos
measured clutter data collected by the McMaster IPIX radain€ others and the problem of choosing the most appropriate

in November 1993. procedure arises. In this context we propose to use the envi-
ronmental information for the selection of the most sukabl
1 INTRODUCTION adaptation technique and to mitigate the deleterious tsffec

of clutter heterogeneity.
Adaptive filters for clutter suppression are sub-optimal im
plementations of the optimum linear processor which, as- 2. PROBLEM FORMULATION AND DESIGN
suming the a-priori knowledge of the disturbance spectral ISSUES
properties, maximizes the output Signal to Interferenas pl
Noise power Ratio (SINR) [1]. In order to estimate the clut-
ter covariance matrix adaptive filters exploit trainingajat
namely clutter returns collected from range cells spatiall 7O kt)he cell under _testd_Undber hypot?e@lg; namely tar-
close to the one under test and assumed free of useful sigr%ﬁ’t absencey contains disturbance only, I.e.
component. The estimation procedure is usually performed Ho - r—d
through the sample covariance matrix and then the adaptive 0 ’

filter weights are derived [2]. Itis clear that the imperfectyynere the disturbance vectaraccounts for both clutter and
estimate of the clutter Power Spectral Density (PSD) leads tihermal noise. Undefly, instead,r also contains a target
sub-optimal performances even in the presence of a Sgat'alkomponent, ie.

homogeneous environment, namely secondary data indepen-
dent and identically distributed (iid). Hy: r=ap+d,
Nevertheless the assumption of homogeneous clutter
over the extent of the reference window is restrictive andvith a the complex amplitude accounting for both the target
quite often violated. Clutter heterogeneities are usuallyas well as the channel propagation effects gnthe target
present yielding severe losses in the performance of agaptitemporal steering vector.
filters [3]. A doppler processor performs the inner product between
A possible approach to circumvent the severe perfora suitable weight vectow and the vectorr of the returns
mance loss caused by clutter heterogeneities is to resort fom the cell under test. Ideally it provides coherent gain o
Knowledge-Based techniques, which should be valuable itarget while forming doppler response nulls to suppress the
using a-priori information to restore the radar performanc disturbance components. Specifically the optimum doppler
[4]. Examples of a-priori knowledge are Digital Terrain El- filter, which maximizes the output SINR [7], is given to
evation Models (DTEM), previous look data, Geographicwithin a scale factor byw = M~1 p, where M denotes the
Information Systems (GIS’s), roadways (to highlight sec-disturbance covariance matrix: the design of the optimum
tors of surveillance where moving cars or vehicles might bdilter requires a-priori knowledge of the clutter covarianc
present), background of air/surface traffic, system calibn ~ matrix. From a practical point of view, this knowledge is

Denote byr theN-dimensional complex vector of the sam-
ples from the base-band equivalent of the received signal
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not available, and thus it is necessary to develop a procean exponentially decaying diagonal loading. The computa-

sor which online estimate$/ and automatically adapts its tional complexity connected with the implementation of the

filtering action in response to a changing environment. RLS isO(NZ) flops, which indicates a significant saving in
In order to perform the covariance estimate, it is customeomputation time with respect to the online inversion of the

ary to resort to training data, namely returns from rangks cel sample covariance matrix.

spatially close to the one under test and free of useful sig-

nal components. Moreover, it is assumed that they shar22 Normalized RLS (NRLS) Covariance Update

the same covariance matrix of the disturbance compone

from the cell under test (homogeneous assumption). Den

ingby r 1,..., r x theN-dimensional vectors of the training

set K > N) the Maximum Likelihood (ML) estimator o

is the sample covariance matrix

M the presence of a heterogeneous environment, where the
Ofjutter power varies from cell to cell, the previous filtef-su
fers a severe performance loss with respect to the optimum
processor. This behavior is due to the fact that in this situ-
ation the sample covariance matrix is no longer the ML co-
variance estimator. A possible way to restore the system per

K . L .
N — 1 Z For? 1) formance in such a case is to employ a normalized sample
K& k covariance matrix [11] in place of the usual one, i.e.
where(-)" denotes conjugate transpose. i — N K rgr l )
The adaptive filter which use the sample covariance ma- nTK T2

trix (1) require the computation d¥l and its online inver-

sion. It is well known that the corgputational burden con-where|| - || denotes the Euclidean norm of a complex vec-
nected with this last operation @(N°). Hence, in order to tor. A normalized version of the RLS algorithm can also be

save computation time, recursive algorithms which esematcqnceived. Precisely, denoting by n = __T« _ thekth
the inverse covariance directly from the input samples @an b . I/ VN
conceived. normalized data vector, we get the following equation fer th

recursive update of the inverse covariance matrix
2.1 RLSCovarianceUpdate

~—1 + ~—1

The RLS algorithm was first conceived for beamformingap- -1 _)-1G71_,-2 Micn k1 T i 1.nMicn

Py : Misin=A""My—A o) , (B)
plications in [8] and then adopted for clutter suppression p : : T2t Mt r
poses in [9]. It relies on a recursive procedure which esti- krinVikn T k+1n
mates the inverse covariance matiix—! directly from the 1 ]
input samples. By doing so the online matrix inversion is novhereM, , denotes the estimate at the skep
longer required, and a significant saving in computatioetim  The computational complexity connected with the imple-
can be achieved. mentation of the NRLS i® (NZ) flops.

The recursive equation which defines the RLS can be ob- )
tained by applying the matrix inversion lemma [10] to the§-3t Knowledge-Based RLS (KB-RLS) Covariance Up-
e

equation a
N N + The previous subsections highlight that two different upda
M1 =AMy+ T ia g, 0<A<L, (2) ing algorithms for the filter coefficients can be conceived.

The former exploits a conventional recursive covarianee es
where the weighting coefficierk, referred to in the sequel timator whereas the latter resorts to a normalized one. It is
as the forgetting factor, determines the relative confidencclear that in the presence of a homogeneous environment the
of the input data with respect to the current estimate. Th@®LS provides better performance than the NRLS, since in

aforementioned procedure leads to this situation the conventional sample covariance masrix i

the ML estimate of the clutter covariance. On the contréry, i

1 el i M;l FenF EHMIZI the scene is such that the clutter power varies from onecell t
Mipr=A""M —A P . (3)  another, then the NRLS usually outperforms the classic RLS
T+A7Ir Mg i procedure. It follows that the problem of selecting the most

suitable filtering procedure arises. To this end it is quée n
which defines the estimate of the inverse covariance at thgral to exploit Knowledge-Based techniques, which might be
stepk+ 1 as a function of the estimate at the previous stepyery valuable in using a-priori information to select thesno
the new input data . vector, and the forgetting factor.  appropriate filtering algorithm. In this context, explniithe

This last parameter rules the speed of adaptation of thgeographical information provided by a GIS, it is possible t
algorithm. In fact, the highek the more accurate the esti- know the exact location of transition regions where the up-
mate. This, however, implies a longer reaction time due t@jating algorithm must be changed.Otherwise stated, if we re
the longer memory of the algorithm. A faster adaptation iser to an interface between homogeneous land (region 1) and
achieved by means of a smaller forgetting factor at the exsea (region 2), resorting to the GIS information, we can use
pense of a poorer accuracy, resulting in a loss of the steadiy region 1 the RLS procedure while in region 2 the NRLS
state SINR. As a consequence, a trade off between speed agigorithm.
accuracy must be achieved. R Another relevant source of a-priori information which

The recursion is usually initialized assumikiyg = d1 (I can be exploited for the selection of the algorithm is thedwin
is the identity matrix and is a scalar called loading factor) data. Precisely, if the filter must operate in a homogeneous
which is tantamount to introducing in the covariance estéma region covered by vegetation, it is reasonable to employ the
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plain RLS algorithm in the absence or for weak wind. How-
ever, for very windy conditions (for instance in the presenc
of wind gusts), it is known that the windblown vegetation
causes strong fluctuations of the clutter power from cell t
cell [12]and thus the NRLS must be adopted.

We also point out that Knowledge-Based technique
might be employed for the choice of the forgetting factor
In other words, we suggest to adopt a space-varying forge
ting factor whose value at the stkpnust be a function of the
environment, i.eA = A (environmenkt

The aforementioned idea may represent a very powerf
technique to mitigate the effects of clutter edges. Indee
exploiting a GIS for locating the presence of transition re s ‘ ‘ ‘ ‘
gions, we can think to lower (according to a certain mathe 0 % o 10 20

matical law) the forgetting factor when we are approachingigyre 1: Normalized SINR (dB) versus the number of range
the first side of the interface, and then to gradually inadas samples\i for the RLS (solid line) and the NRLS (dashed

right after the transition. By doing so, as it will be shown in ey a) Simulated land clutter. b) Simulated sea clutter.
the performance analysis, a-priori knowledge helps the-alg

rithm to rapidly forget the clutter conditions within thesfir

region. Otherwise stated, the filter will exhibit a shortef r the normalized SINR of the RLS and NRLS (both with for-
action time, namely a faster adaptation, than the plain RLS getting factorA = 0.99), averaged over 400 independent tri-
als, is plotted versus the number of range samplgs As
3. PERFORMANCE ANALYSIS expected, since the simulated environment is homogeneous,

This section is devoted to the performance assessment Bfter @ transient of about 30 cells, the plain RLS outpertorm
the previously presented algorithms both on simulated dati€ Normalized algorithm. An opposite behavior is shown by

and on real radar data (X-band mixed sea and land cluttef}€ Plots of Figure 1b where a heterogeneous scenario ac-
ounting for the spatial variations of the clutter powerds<

which was collected by the McMaster University IPIX radar . 4 .
in November 1993. y y sidered. Therein the disturbance vectorgare modeled as
All the experiments assume that the sum of a_cll_Jtter c_ontrlbutlonk and the receiver thermal
h ber of i d bulshs o 16: noise ny (statistically independent afy), i.e. r k= Cx+ N.
e the number of integrated puishisis equal to 16; The ny are iid zero-mean complex circular Gaussian vec-

SINR (dB)

SINR (dB)

e the structure of the useful signal component s tors with covariance matribxa?l. The clutter vectorscy
1 are iid complex circular Spherically Invariant Random Vec-
p=——[1exp(j2mfy),...,exp(j2rm(N — 1) fq)] , tors (SIRV's) [13] with covariance matrix given by (6) and
VN Gamma distributed squared textures whose shape parameter,

) ) ) which rules the impulsive nature of the clutter, is denoted
wherefy = 0.01 (slow moving target) is the normalized by v. The plots also assume = 0.8, f. = 0.2, v = 0.5,
doppler frequency; S _ and CNR= 20 dB, which is a typical scenario of sea clutter.
o the loading factod for the initialization of the algorithms  Finally, the forgetting factor is agaih = 0.99. It is clear
is equal to 18 which is tantamount to assumey = 2 p.  that the NRLS outperforms the plain RLS and this behavior
stems from the observation that in the simulated envirorimen
3.1 Simulated Data the sample covariance matrix is no longer the ML estimator

In the first experiment (Figure 1a) we assume a homogeneo@§ the disturbance covariance. . .
Gaussian environment. Namely, we model the vectogs The previous analyses have shown that no algorithm uni-

k=1,...,K, as zero-mean iid complex circular GaussianOfMly outperforms the others and the superiority of a spe-
vecto’rs V\,/ith covariance matriM = Mc + o2l where M, cific filtering procedure is strictly dependent on the actual
is the clutter covariance and? is the thermal noise level. disturbance environment. Thus it appears quite natural to

The matrix M, is assumed exponentially shaped, namely it€XPloit a-priori knowledge, provided by a GIS about the ob-
(i, )-th entry is given by served geographical site, in order to select the most apiprop

ate clutter suppression algorithm.

C o p oAl o In the next example the performance improvements
Me(i, j) = Pep™ M exp(j2m(i — ) fc) 6) achievable resorting to Knowledge-Based processing are |l
lustrated. Therein a heterogeneous scenario composed of tw
. different regions is simulated. The former, composed of the
denote respectively the clutter power level and doppler frerange cells fronk — 1 to 400, contains homogeneous land

%:lency. e a_lso SUppoFE= 0'9.99’ TC =0, and CNR= clutter plus noise (simulated according to the model used in
-5 = 30dB which is the typical situation of a homogeneousFigure 1a withp = 0.999, f; = 0, and CNR= 30 dB). The

land environment. The performance is evaluated in terms Qfgter, namely range cells froki= 400 to 800, includes sea
SINR, i.e. clutter plus thermal noise (simulated according to the rhode

wherep is the one-lag correlation coefficient, aRdand f

SINR— w! pf? 4y used in Figure 1b witip = 0.8, fo = 0.2, and CNR= 20 dB).
- Wl M w @) The RLS and NRLS with forgetting factdr = 0.99 are

compared with the KB-RLS that exploits a-priori informa-
at thek-th instance of the recursion. Precisely, in Figure 1ation concerning the location of the clutter edge. Precjsbby
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Figure 2. a) Normalized SINR (dB) versus the number ofFigure 3: 2-D intensity field of the mixed land and sea clutter
range sampleNg for the RLS (solid line), the NRLS (dashed live data (red are the strongest returns, blue are the weaker
line), and the KB-RLS (bold line). Simulated land clutter fo turns). The straight red lines delimitate the selectedomesgi
1 < Nr <400. Simulated sea clutter fdNg > 400. Ampli- namely Region 1[@50°,27C], land clutter) and Region 2
tude of the filter frequency response (dB) versus the normal{150°,17C°], sea clutter).
ized doppler frequencfy for the RLS (b), the NRLS (c), and
the KB-RLS (d).

3.2 Real Data

Radar measurements were collected in November 1993 us-

ing the McMaster IPIX radar from a site in Dartmouth [14],

Nova Scotia, on the East Coast of Canada. The radar was
KB-RLS coincides with the plain RLS algorithm in the first mounted on a cliff facing the Atlantic Ocean, at a height of
region. Moreover, after the clutter edge, it switches i@ t 100 feet above the mean sea level, and scans the site over 370
NRLS. As to the forgetting factor, the KB-NRLS algorithm deg in 10 seconds in a continuous azimuth scan mode. More
assumes a space-varyiign order to provide a fast adapta- details on the experiment (Dataset13) can be found in [14].
tion to the new clutter conditions. Otherwise stated, thre fo The 2-D clutter intensity field is plotted in Figure 3 showing
getting factor is ruled by the following linear piecewiseéad  the presence of two different sectors containing respelgtiv
tion Ax(environment = 0.99,vk € [1,400 U [421,800 and returns from land and sea. In order to perform the analysis in
Ax(environment = 0.5+ 0.0245k — 401),Vk € [401,420. the presence of clutter edge, we select two different angula
When, in correspondence of the clutter edge, the KB-RLSectors and put them near. Precisely, the selected areas are
commutes into thelNRLS the inverse c0\1/ariance estimate iss Region 1, from 250 to 270 deg, where there is a land
normalized, i.eMyg; = (1— A )tr(Mago)M 400, With tr(-) de- clutter region including the lands near Halifax.
noting the trace of a square matrix. Extensive simulatien re e Region 2, from 150 to 170 deg, where there is an open
sults have shown that this normalization ensures a fast con- view of the Atlantic Ocean.
vergence even if it adds a small increase in the algorithmye employN = 16 azimuth returns and a total of 400 trials
computational complexity, since a further scalar recersiv for estimating the SINR in a given range position. The RLS
equation for the trace updating, i.e. is required. and NRLS exploit a forgetting factor equal t®9. The KB-

RLS coincides with the RLS algorithm but exploits a space-

In Figure 2a, the normalized averaged SINR of the RLSyarying forgetting factor ruled by the linear piecewisedun

NRLS, and KB-RLS is plotted versidz. The curves high- tion Ac(environment = 0.99,Vk € [1,184 U [295 386 and
light an abrupt transition in correspondence of the cluttedy(environment = 0.5+ 0.0245k — 185),Vk € [185204.
edge. The RLS performs better than NRLS in the first regioin Figure 4 the normalized SINR is plotted versusshow-
while the opposite behavior is observed in the second regioing that the NRLS provide a faster convergence rate than
The KB-RLS algorithm achieves the best performance, espéhe RLS in the first 50 cells but is outperformed by the KB-
cially after the transition, requiring a shorter adaptatime  RLS, until the end of the Region 1. After the clutter edge the
than the NRLS to reach the steady state SINR. This behaviddRLS perform better than the non-normalized algorithm. As
is confirmed by the curves of Figure 2b where the amplitudéo the KB-RLS, it requires a short adaptation time after the
of the filter frequency response at range cell 800 is plottedlutter edge, achieving its best performance from cell 225 t
versus the normalized frequency. The plots show that ththe end of Region 2. A further evidence of this behavior is
RLS does not yet forget the land clutter environment; indeethighlighted in Figure 5, where the amplitude of the filterfre
the filter response exhibits a deep null in correspondence afuency response at the end of Region 2 is plotted versus the
fc = 0. The quoted null is less pronounced with referencanormalized doppler frequency. Figure 5a refers to the RLS
to the curve of the NRLS and vanishes if the KB-NRLS isfilter and shows a null around zero doppler frequency. It is
employed. In this last case, only one null is present in eorredue to the filter memory which has not yet forgotten the clut-
spondence of. = 0.2, namely the clutter doppler frequency ter condition of the first region and its effect is the degrada
in the second region. tion of the performance achievable for slow moving targets.
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Figure 4: Normalized SINR (dB) versus the number of rangd-igure 5: Amplitude of the filter frequency response (dB)
sampled\g for the RLS (solid line), the NRLS (dashed line), versus normalized doppler frequentgyfor the RLS (a) and
and the KB-RLS (bold line). Real land clutter (Region 1) forthe KB-RLS (b).
1 < Nr < 184. Real sea clutter (Region 2) fidg > 184.

and Electronic Systems, Vol. 26, No. 3, pp. 475-480,
On the contrary, the shape of the KB-RLS filter (displayed in ~ July 1990.

Figure 5b) is correctly adapted to the sea clutter PSD. [4] W. L. Melvin, M. Wicks, P. Antonik, Y. Salama, P. Li

and H. Schuman, “Knowledge-Based Space-Time Adap-
4. CONCLUSIONS tive Processing for Airborne Early Warning Radar,”

In this paper we have considered the design and the analysis |EEE AES Systems Magazine, Vol. 13, No. 4, pp. 37-42,

of RLS algorithms for the suppression of heterogeneous ciut ~ April 1998.

ter. First of all we have revisited the standard RLS procedur[5] S. Haykin, “Radar Vision,Proc. of the Second I nterna-

and then we have introduced a normalized RLS algorithm.  tional Specialist Seminar on the Design and Application

Since there exists no technique which uniformly outperform of Parallel Digital Processors, pp. 75-78, April 1991.

the other, we have investigated the use of a-priori inforomat [6] J. E. Hudson, “Adaptive Array PrinciplesPeter Pere-

for the choice of the most suitable clutter suppressiongroc * * grinys New York and London, 1981.

dure. This idea leads to the concept of KB-RLS where th By .

environmental conditions, in particular GIS data, are exte T7] 'ﬁagér?{égga%;gdok Asérc?sggc(:jé arT dhé?éérgﬂiﬁgg've

:r;T:\;enl)C/ee.prmted for the improvement of the system perfor tems, Vol. 9, No. 1, pp. 237-252, March 1973,

We have conducted a performance analysis both in thi8] E. B. Lunde, “The Forgotten Algorithm in Adaptive
presence of simulated and measured radar data, collected by Beamforming,” published in "Aspects of Signal Process-
the McMaster IPIX radar in 1993, showing the effectiveness ~ ing,” G. Tacconi (Ed),Proc. of the NATO Advanced
of the Knowledge-Based approach. Precisely, if a-prioriin ~ Study Institute on Signal Processing and Underwater
formation is suitably exploited, then significant performa Acoustic, Porto Venere, ltaly, 1976.
improvements can be achieved. [9] A. Farina, F. A. Studer, and E. Turco, “Adaptive Meth-

Possible future research tracks include the analysis of the  ods to Implement the Optimum Radar Signal Processor,”
KB-RLS in the presence of other real datasets, collected by Proc. of International Conference on Radar, pp. 42-47,
both ground-based and airborne radars, as well as the prob- Bangalore, India, October 1983.
lem of.de.vising the optimum function for the forgetting fac- [10] R.A. Hornand C. R. Johnson, “Matrix Analysi€am-
tor variations. bridge University Press, 1985.
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