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ABSTRACT
Measured antenna responses, namely their beam patterns with re-
spect to the vertical and horizontal polarizations, play a major role
in realistic wireless channel modelling as well as in parameter esti-
mation techniques. The representations commonly used suffer from
drawbacks introduced by the spherical coordinate system which is
affected by two knots at the poles. In general, all methods which de-
scribe the beam pattern with a matrix fail in correctly reproducing
its inherent spherical symmetry. In this contribution we propose the
use of the Spherical Fourier Transformation (SFT) which allows the
description of the beam pattern via spherical harmonics. This math-
ematical tool, well known in other fields of science, is rather new
to wireless communications. In this context, the main applications
of the SFT include the efficient description of a beam pattern, noise
filtering, the precise interpolation in the spherical Fourier domain,
and the possibility to obtain an equivalent description of the beam
pattern for an arbitrary coordinate system. The latter allows us to
improve an existing 2-D FFT based technique: the Effective Aper-
ture Distribution Function (EADF).

1. INTRODUCTION

Considering the radiation pattern of the sensors of an antenna array
is crucial to any parameter estimation technique [1] and undoubt-
edly an important aspect of channel modelling as well [2]. The
far-field radiation pattern of an array sensor is usually described
with its field strength for the so-called vertical and horizontal po-
larizations [3]. In fact, the vectorE(θ ,ϕ, r), which represents the
electric field at distancer for a specific elevationθ and azimuthϕ,
is transversal to the direction of propagation and therefore can be
described as

E (θ ,φ , r) =
√

η
e− j γ r

r

[

fθ (θ ,φ)uθ + fφ (θ ,φ)uφ
]

, (1)

where γ is the propagation constant, andη is the intrinsic
impedance of the medium. The vectors with unit normuθ anduφ
are directed towardsθ and ϕ. The complex functionsfθ and fφ
express the antenna directivity functions (in voltage) forthe two
polarizations, vertical and horizontal, respectively. Their phases
represent the relative phase shift which leads to linear, circular or
elliptical polarizations.

Traditionally the beam pattern for each polarization is stored in
form of a matrix obtained by sampling the pattern on a regulargrid
on the sphere, namely a grid obtained by uniformly sampling az-
imuth and elevation. This is a straightforward representation which
is used to measure (calibrate) an antenna array [2]. For eachpoint
in azimuth and elevation the response of each sensor to the vertical
and the horizontal excitation is measured. With this approach the
coupling between the array sensors is included.

At this point the information can be treated as a traditional2-
dimensional discrete signal so that spectral analysis tools can be
used. This principle sets the basis for the Effective Aperture Distri-
bution Function (EADF) proposed in [2], which implements a 2-D
FFT applied on the periodified beam pattern. In the spectral domain

it is possible to store the information more efficiently, to perform
noise filtering (in case of a measured beam pattern) as well asto
carry out interpolation in the transformed domain.

Unfortunately, the transformation from the spherical coordinate
system to a 2-dimensional representation is strongly non-linear. In
the new representation, the samples are treated as if they were uni-
formly spaced from one another, which in the original coordinate
system is evidently not true. Furthermore, the particular periodicity
existing in the spherical system is lost. The EADF partly solves the
periodicity issue by considering an elevation angle which is defined
for a 360◦ range. By doing this, the beam pattern description is
periodic along elevation as well, at the expense of introducing re-
dundancy. Nonetheless, the strong non-linearity of the transforma-
tion is impossible to overcome. Note that this drawback is marginal
when the gain of the antenna in the direction of the poles of the co-
ordinate system chosen is negligible. However, when dealing with
antenna arrays which employ sensors pointing in all directions, such
as the spherical array used in [4] or the Omni-Directional patch Ar-
ray (ODA) in [5], we cannot disregard this problem.

One solution is to use different coordinate systems for different
sensors, with respect to the direction of the main lobe. To doso we
can either measure certain sensors on a different grid, or interpolate
the available data to obtain a representation in another coordinate
system. The first solution is not feasible from a practical point of
view. The interpolation, either in angle domain or in the 2-DFourier
domain (as proposed in [2]) is also impractical due to the high errors
introduced around the poles by the non-linearity of the 2-D descrip-
tion.

In this contribution we propose a solution to these problems
by exploiting the natural Fourier domain for spherical functions,
which is obtained via the Spherical Fourier Transform (SFT). The
use of the SFT leads to interesting interpretations and several ap-
plications valuable for channel modelling and parameter estimation
techniques.

Section 2 introduces the SFT for the description and manipu-
lation of beam patterns. Section 3 describes its applications, while
Section 4 proposes an SFT based improvement of the EADF. Fi-
nally, Section 5 presents the conclusions.

2. THE SPHERICAL FOURIER TRANSFORM

Following the representation given in equation (1) it is apparent that
both fθ and fϕ are not continuous functions on the sphere, because
their value changes at the north and south poles for different az-
imuths. To overcome this problem we derive an equivalent descrip-
tion by expressing the pattern in terms of unit basis vectorsux, uy,
anduz pointing to thex, y, andz axes. Equation (1) becomes

E (θ ,φ , r) =
√

η
e− j γ r

r

[

fxux + fyuy + fzuz
]

, (2)

where the directivitiesfx, fy, and fz are functions ofθ andϕ, and
are continuous on the sphere. The transformation functionsare

fx = − fθ ·sin(θ ) ·cos(ϕ)− fϕ ·sin(ϕ)
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fy = − fθ ·sin(θ ) ·sin(ϕ)+ fϕ ·cos(ϕ) (3)

fz = fθ ·cos(θ ),

where we omit the angle dependency(θ ,φ) for simplicity.
In order to use spectral methods for spherical problems one pos-

sibility is to use the Spherical Wave Expansion (SWE) as in [6, 7].
The SWE is based on the vector spherical wavefunctions, which are
a simplification of the tensor spherical harmonics [8]. However, this
approach has the disadvantage that the Fourier coefficientsare cum-
bersome to compute numerically, although theoretically straightfor-
ward. For instance, in [6], the coefficients of the expansionare es-
timated solving a least squares problem, whereas in [7] theyare
obtained by methods of numerical matching.

We propose to use the scalar Spherical Fourier Transform
(SFT) [8] applied separately onfx, fy, and fz. The SFT is the equiv-
alent of the 1-dimensional Fourier series, although its basis func-
tions are defined on the sphere. These functions are usually referred
to asSpherical Harmonics(SH). The spherical harmonics represent
the kernelof the SFT, analogous to the complex expontentials for
the 1-D Fourier series. The spherical harmonics can be defined on
any coordinate system and are continuous functions on the sphere,
thus dependent on two parameters only. For convenience we use the
spherical coordinate system. Letθ ∈

[

− π
2 ,

π
2

]

andϕ ∈ [−π,π] be
elevation and azimuth, respectively. The north pole corresponds to
elevationθ = π

2 . The spherical harmonicYm
l (θ ,ϕ) of orderm and

level l is defined as:

Ym
l (θ ,ϕ) = P|m|

l (sin(−θ )) ·ejmϕ
, (4)

where thePm
l (·) is theassociated Legendre functionand is derived

from theLegendre polynomial Pl (x):

Pm
l (x) =

(

(2l +1)
(l −m)!
(l +m)!

)
1
2 (

1−x2
) dm

dxm Pl (x)

Pl (x) =
1

2l l !
dl

dxl

(

x2−1
)l

.

The level l can only assume positive integer values and plays the
equivalent role of the frequency in the 1-dimensional Fourier series.
In fact, l = 0 corresponds to the DC component, while higher levels
correspond to basis functions increasingly more varying. For the
l -th level there are 2· l +1 modes. In other words,m∈ [−l , l ]. We
define, for convenience, the index setI as

I = {(l ,m) : l ∈ N0, m∈ Z, − l ≤ m≤ l} . (5)

The functions defined in equation (4) represent the basis functions
of the spherical Fourier transform. They form a complete orthogo-
nal system in the Hilbert spaceL2

(

S2
)

, i.e., the space of all square
integrable functions on the 2-sphereS2 [9]. Two functions f andg
are orthogonal on the sphere when their inner product< f ,g > is
equal to zero, where

< f ,g >=
1

4π

∫ π

−π

∫ π
2

− π
2

f (θ ,ϕ) g⋆ (θ ,ϕ) sin(θ ) dθdϕ , (6)

where(·)⋆ denotes the conjugate operator. Hence, the orthogonality
of the basis functions can be mathematically expressed as follows:

< Ym
l ,Yk

n >= δn,l δm,k, for (m, l) and(k,n) ∈ I , (7)

whereδm,k is the Kronecker delta, so thatδm,k = 1 for m= k and
zero otherwise.

The spherical Fourier transform and its inverse are defined as
follows:

am
l ( f ) = < f ,Ym

l > (8)

f = ∑
(l ,m)∈I

am
l ( f ) ·Ym

l , (9)

wheream
l ( f ) is the spherical Fourier coefficient for thel -th level

andm-th mode. From equations (8) and (9) the analogy with the
1-dimensional Fourier Series appears evident.

2.1 The discrete spherical fourier transform

Similarly to the 1-D case, we call a functionf (θ ,ϕ) on theS2

sphere aband-limited functionwhen it can be completely described
by a limited numberL of spherical Fourier frequencies, so that
l = [0, 1, . . . ,L−1]. The total number of Fourier coefficientsM is
thenM = L2. It is possible to compute these coefficients without er-
ror, and thus solve the integral associated with equation (8), from a
finite numberSof samples on the sphere. This problem is known as
quadratureor cubature[10]. The value ofSdepends obviously onL
and on the sampling grid chosen. There exist many quadraturerules
tailored for spherical harmonics. We present the two most common:
• Gauss-Legendre quadrature

This grid consists of a Gauss quadrature in the elevation anda
uniform one in the azimuthal direction. LetGGL define the grid
points on the sphere as follows

GGL =

{

(θh,ϕk) =
(

cos−1 (zh)− π
2 ,

kπ
N

)

, where

h = [0, 1, . . . , N] , k = [0, 1, . . . , 2N−1] ,
(10)

wherezj are the zeros of the Legendre polynomial of order(N+
1). Note that the azimuth is uniformly sampled with a separation
angle of π

N . The total number of samples on the sphere isSGL =
(N+1)×2N. The coefficients are computed as:

am
l ( f ) =

N−1

∑
h=0

(

1
2N

N−1

∑
k=−N

f (θh,ϕk)e− jmϕk

)

·

· Pm
l (sin(−θh)) ·cos(θh) ·wN

h,GL, (11)

where(θh,ϕk)∈ GGL andwN
h,GL are Gaussian weights along the

longitudes.
• Chebyshev knots – uniform quadrature

This quadrature considers a uniform grid for both elevationand
azimuth. LetGCh define the grid points on the sphere as follows

GCh =

{

(θh,ϕk) =
(

hπ
2N ,

kπ
N

)

, where

h = [0, 1, . . . , 2N] , k = [0, . . . , 2N−1] .
(12)

The Chebyshev knots are obtained by uniformly sampling both
elevation (with sampling interval∆θ = π

2N ) and azimuth (with
∆ϕ = π

N ). The total number of samples on the sphere isSCh =
(2N+1)×2N. The coefficients are computed as:

am
l ( f ) =

2N

∑
h=0

ε(2N)
h

(

1
2N

N−1

∑
k=−N

f (θh,ϕk)e− jmϕk

)

·

· Pm
l (sin(−θh)) ·wN

h,Ch, (13)

where(θh,ϕk) ∈ GCh,

ε(N)
h =

{

1
2 for h = 0, N
1 for h = 1, 2, . . . , N−1

(14)

andwN
h,Ch are the weights computed as

wN
h,Ch =

1
2N

N

∑
s=0

ε(N)
h

2
1−4s2 cos

(

hsπ
N

)

. (15)

The following expression, similarly to the sampling theorem,
sets the minimum value for the parameterN appearing in equa-
tions (10) and (12), with respect to the highest levelL contained
in the function on the sphere to be studied:

N ≥ 3L +1
2

. (16)
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M L N SGL SCh
100 10 16 17× 32 33× 32
441 21 32 33× 64 65× 64
1764 42 64 65× 128 129× 128
7225 85 128 129× 256 257× 256

Table 1: Relation between number of Fourier coefficientsM and
points on the sphereS for the Gauss-Legendre and Chebyshev
quadratures. The termS is expressed as number of samples along
elevation times the number of samples along azimuth.

Note that equation (16) does not guarantee that a function defined on
a certain grid with parameterN can be described byL ≤ 2N−1

3 +1
levels. The equation simply states that with a givenN we can deter-
mine for how many levelsL we can compute the Fourier coefficients
exactly. However, even for twice the number of levels definedby
equation (16) we commit very small errors, on the order of−50 dB.
Table 1 shows the total number of complex coefficientsM in the
frequency domain, the corresponding minimum value for the pa-
rameterN, and the number of samples needed on the sphereSGL
andSCh following a Gauss-Legendre and a Chebishev quadrature,
respectively. The Gauss-Legendre grid does not comprise samples
at the poles, and is almost uniformly distributed along elevation.
The Legendre polynomials can be correctly integrated with much
fewer points for the Gauss-Legendre quadrature, so that, asseen in
Table 1, approximately half the points are needed in comparison to
the Chebyshev grid.

2.2 The rotation operator

It is possible to rotate freely a functiong(θ ,ϕ) by applying the so
calledWigner D-functionto the spherical Fourier coefficients [8].
According to Euler’s rotation theorem [11], an arbitrary rotation can
be accomplished by three basic rotations characterized by three an-
gles, known asEuler angles, α, β , andδ about three known axes.
There are several conventions for Euler angles, depending on the
axes about which the rotations are carried out. The convention best
fit for SH consists in applying a rotation ofα about thez axis, fol-
lowed by a rotation ofβ about the newy axis, and finally rotating
of δ about the newz axis. Letg̃(θ ,ϕ) be the transformed version
of g(θ ,ϕ), derived by a rotation of(α,β ,δ ) as described above.
Thanks to the Wigner-Eckart theorem [8] we can write

g(θ ,ϕ) = ∑
(l ,m)∈I

am
l (g) ·Ym

l

g̃(θ ,ϕ) = ∑
(l ,m)∈I

ãm
l (g) ·Ym

l (17)

ãm
l (g) =

l

∑
m′=−l

Dl
mm′ (α,β ,δ )am′

l (g),

where the Wigner-D functionDl
mm′ is defined as

Dl
mm′ (α,β ,δ ) = e− jmα ·dl

mm′(β ) ·e− jm′δ
, (18)

and

dl
mm′ = (−1)l+m

√

(l +m)! (l −m)! (l +m′)! (l −m′)! ·

· ∑
k∈K

(−1)k
cos2k−m−m′

(

β
2

)

sin2l+m+m′−2k
(

β
2

)

k! (l +m−k)! (l +m′−k)! (k−m−m′)!
.

The summation is carried out for the indexk∈ K so that:

K =

{

m∈ N0, and
max[0,−(m−m′)] ≤ m≤ min[l −m, l +m′] . (19)

When we apply the rotation operator we rotate the complex di-
rectivity functions fx, fy, and fz on the sphere. When doing so

we implicitly rotate the basis vectorsux, uy, anduz as well. Let
f̃x′ , f̃y′ , and f̃z′ be the rotated functions obtained by applying equa-
tion (17) ontofx, fy, and fz. The subscriptsx′, y′, andz′ describe the
rotated axes. The desired rotated directivity functionsf̃x, f̃y, and f̃z
expressed in terms ofux, uy, anduz can be computed as follows





f̃x
f̃y
f̃z



= Rz(α) ·Ry(β ) ·Rz(δ ) ·





f̃x′
f̃y′
f̃z′



 , (20)

where the rotation matricesRz(·) andRy(·) are

Rz(·) =





cos(·) sin(·) 0
−sin(·) cos(·) 0

0 0 1



 , Ry(·) =





cos(·) 0 −sin(·)
0 1 0

sin(·) 0 cos(·)



 .

An example is given in Section 3.3.

2.3 Power spectrum and white noise

For a set of spherical Fourier coefficientsam
l ( f ) obtained from a

SFT on the functionf (θ ,ϕ) we define thepower spectrumΦ(l)as

Φ(l) = Σl
m=−l |am

l ( f )|2, (21)

and thecumulative power functionΓ(l) as

Γ(l) = Σl−1
k=0Φ(l), (22)

so thatΓ(l) describes the amount of power present in the levels
0, 1, . . . l −1. Assuming that the functionf (θ ,ϕ) can be described
by L levels, we define the powerPL( f ) to be

PL( f ) =< f , f >= ΣL−1
l=0 Φ(l) = Γ(L). (23)

Equation (23) represents the Parseval theorem for the spherical
Fourier domain.

We model the measurement noise as band-limited white Gaus-
sian noise in the angle domain. This process,w(θ ,ϕ), can be de-
scribed with spherical harmonics as follows

w(θ ,ϕ) = ΣLw−1
l=0 Σl

m=−l wm
l , (24)

where the coefficientswm
l have both real and imaginary

parts∼ N (0,
σ2

w
2 ), andLw is thebandwidthof the noise, delim-

iting the number of levels needed to describe it. Its power spectrum
is Φ(l) = (2l +1) ·σ2

w and the total noise power isL2
w ·σ2

w. Interest-
ingly, white noise in the spherical harmonics domain has thesame
power spectral density for all modes but a power spectrumΦ(l)
which grows linearly, as the number of modes increases linearly
with the levell .

3. THE APPLICATIONS OF THE SFT

3.1 Compressing, noise filtering, and SNR estimation

As Table 1 shows, the spherical Fourier coefficients are a more com-
pact way to describe a function on the sphere than storing thevalues
of the function sampled on the traditional uniform grid in angle do-
main. Furthermore, similarly to the EADF (i.e., a 2-D DFT), the
SFT applied on an oversampled beam pattern obtains a compres-
sion of the information in the Fourier domain, so that even a smaller
number of samples is needed to fully describe the pattern. Atthe
same time we are able to perform noise filtering and to estimate the
Signal to Noise Ratio (SNR). Letfθ (θ ,ϕ)meas and fϕ (θ ,ϕ)meas

be the measured directivities of an antenna (or array sensor) as de-
scribed in (1). When calibrating an antenna with a known dual-
polarized probe antenna we cannot prevent an unknown constant
phase differenceψ affecting the data so that

fθ (θ ,ϕ)meas = fθ (θ ,ϕ) (25)

fϕ (θ ,ϕ)meas = fϕ (θ ,ϕ) ·ejψ
, (26)
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Figure 1: Spherical Fourier coefficients for the measured beam pat-
tern of one element of an Omni-Directional patch Array (ODA)1.
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Figure 2: Cumulative power functions for the beam pattern ex-
pressed inx, y andz. The bandwidthsLx, Ly, andLz indicate the
levels for whichΓ(l) reaches 96 % of the total power.

wherefθ (θ ,ϕ) and fϕ (θ ,ϕ) are the directivity functions unaffected
by the phase shift. The phase shiftψ introduces discontinuities at
the poles in the beam patternsfx and fy. To overcome this problem
we use the corrected directivity functionfϕ (θ ,ϕ)corr obtained by
fϕ(θ ,ϕ)corr = fϕ (θ ,ϕ)meas·e− jψ̂ , whereψ̂ is the estimated phase
shift chosen such that the values of the beam patterns iny andz are
constant for all azimuths at the poles, i.e., forθ = ± π

2 . We per-
form the transformation expressed in equation (3) onfθ (θ ,ϕ)meas

and fϕ(θ ,ϕ)corr to obtain the functionsfx, fy, and fz. Then, we
carry out three separate discrete SFT’s onfx, fy, and fz to obtain the
spherical Fourier coefficientsam

l ,x, am
l ,y, andam

l ,z, respectively, up toL
levels. Figure 1 shows the coefficients for one of the 25 elements of
an Omni-Directional patch Array (ODA)1 which was measured in
an anechoic chamber with a 2◦ sampling interval in both elevation
and azimuth. Figure 2 shows the corresponding cumulative power
functions computed as in equation (22). For this antenna we have
approximately 35 % of the power directed towardsy andz, and the
remaining 30 % towardsx. Let Lx, Ly, andLz be the bandwidths
of the beam pattern expressed inx, y, andz, defined as the levels at
which the cumulative power functions reach 96 % of the total power.
The remaining levels (betweenLx, Ly, andLz and the levels at which
the functions reach the total power) are affected by noise only, and
are therefore valuable for estimating the power of the noise. Under
the assumption of additive Gaussian noise we estimate the power
σ2

w possessed by each Fourier coefficient by averaging|am
l |2 for all

the modes and levels within the range just described. LetPLx( fx),
PLy( fy), andPLz( fz) be the powers of the beam patterns for the cor-
responding bandwidthsLx, Ly, andLz. Then, we estimate the Signal
to Noise Ratio (SNR)ρx for fx as

ρx =
PLx( fx)−σ2

w ·L2
x

σ2
w ·L2

x
, (27)

1We thank Elektrobit Testing Ltd. for providing the antenna calibration
data [5]

(a) (b)

z
z

x

x

y

y

Figure 3: Power directivityb(θ ,ϕ) for the same beam pattern for
two different orientations: (a) as it was measured, (b) rotated with
α = 30◦, β = 90◦, andδ = 90◦.

whereρy andρz are computed in the same way. The SNR of the
whole beam patternρ is simply the average. For the measured beam
pattern we obtained an average SNR of approximately 25 dB.

3.2 Interpolation in the spherical Fourier domain

Once the spherical Fourier description of the beam pattern has been
computed it is possible to carry out Fourier interpolation.To obtain
the values of the functionsfx, fy, and fz in an arbitrary direction
(θ0,ϕ0) we can simply apply the inverse SFT as in equation (9).
Unfortunately we cannot count on an algorithm such as the FFT,
since along latitudes we need to perform a Legendre transform. Re-
cently [12, 13] fast approximate and exact transforms have been
proposed. Their computational complexity is however difficult to
assess and up to now only complexity orders have been computed.
For instance, the exact transform requiresO(N2log2 N). However,
considering the small number of levelsL needed for our applica-
tions (around 20), these results do not apply.

3.3 Rotation and rotation invariant descriptors

Let us now consider another measured beam pattern whose power
directivity functionb(θ ,ϕ) = | fθ |2 + | fϕ |2 can be seen in plot (a)
of Figure 3. The beam pattern belongs to one of 24 elements of
a Stacked Polarimetric Uniform Circular Patch Array (SPUCPA)
which was measured at Ilmenau University of Technology on a uni-
form 3◦ sampling grid. Plot (b) shows the very same beam pattern
rotated byα = 30◦, β = 90◦, andδ = 90◦, as described in Sec-
tion 2.2, so that the main lobe points directly towards the north pole.
Figure 4 shows the cumulative power functions forfx, fy, and fz for
the beam pattern in the two orientations just described. Note that for
the two orientations we have different functionsfx, fy, and fz and
therefore different power spectra and cumulative power functions.
The total cumulative power functionΓtot(l) is computed as

Γtot(l) = Σl−1
k=0Φtot(l), (28)

where thetotal power spectrumΦtot(l) defined as

Φtot(l) = Φx(l)+Φy(l)+Φz(l), (29)

is a rotation invariant descriptor of the beam pattern. In other words,
with different orientations of the beam pattern we will havediffer-
ent spherical Fourier coefficients. However, the total power Φtot(l)
for each levell is fixed and is not dependent on the orientation or
coordinate system chosen. This property can be derived by the rota-
tion invariance of tensor spherical harmonics as they are irreducible
tensor products of scalar spherical harmonics [8].

In [2] the EADF was used to define the bandwidth of a beam
pattern, as the size of the limited support in frequency domain
needed to describe it. However, this description depends onthe
coordinate system chosen and is therefore not related to thephysi-
cal properties of the beam pattern. On the other hand, the functions
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Figure 4: Cumulative power functions expressed inx, y andz for
the measured beam pattern (a), and for its rotated version (b) (see
Figure 3). The total cumulative power functionΓtot(l) is a rotation
invariant descriptor of the beam pattern.

Φtot(l) andΓtot(l) are rotation invariant and are therefore ideal to
define a bandwidthLb for the beam pattern.

We can do so by settingLb equal to the maximum level needed
to represent a certain percentage of the power. Furthermore, by
comparingLb to the paramterL from equation (16) we can deter-
mine whether our sampling grid was dense enough.

4. IMPROVING THE EADF

The efficiency of the Effective Aperture Distribution Function in
compressing the information depends on the beam pattern itself and
the spherical coordinate system chosen to represent it [2].In fact,
the beam pattern rotated as in plot (a) of Figure 3 will be much
more compressed by the EADF than rotated as in plot (b). In ad-
dition, when interpolating in the 2-D Fourier domain, the EADF
commits higher errors around the poles. Consequently, the beam
pattern (b) will suffer from a higher interpolation error asthe one
in (a) because a significant amount of power is directed towards the
north pole. For many array geometries this problem can be avoided
by selecting a proper coordinate system, so that all beam patterns
have little power in the direction of the poles. However, in the case
of sphere-like geometries such as the one used in [4] or the Omni-
Directional patch Array (ODA) in [5], one or more sensors will be
directed towards a pole and this issue cannot be disregarded. The
spherical harmonics offer an elegant solution to this problem. How-
ever the fast algorithms to compute the SFT are still much slower
compared to the FFT implemented by the EADF. We propose to im-
prove the EADF by measuring the array sensors with an arbitrary
coordinate system and compute the spherical Fourier coefficients as
explained in Section 3.1. For those sensors pointing towards the
poles we can still employ the EADF but in another coordinate sys-
tem. The description of the beam pattern in a more convenientco-
ordinate system can be obtained by rotating the beam patternin the
spherical Fourier domain, as explained in Section 2.2. Thereby, we
neither lose information nor add any interpolation noise. The trans-
formation between two spherical coordinate systems are quite inex-
pensive and add very little computational complexity to thealready
very efficient EADF.

5. CONCLUSIONS

In this contribution we propose the use of the scalar Spherical
Fourier Transformation (SFT) which allows the descriptionof po-
larimetric beam patterns via spherical harmonics. This mathemati-
cal tool, well known in other fields of science, is rather new to wire-
less communications. The main applications of the SFT include the
efficient description of a beam pattern, noise filtering, theprecise

interpolation in the spherical Fourier domain, and the possibility to
obtain an equivalent description of the beam pattern for an arbitrary
coordinate system. The latter allows us to improve an existing 2-D
FFT based technique: the Effective Aperture Distribution Function
(EADF). The SFT leads to a rotation invariant descriptor which al-
lows us to define a bandwidth for any given beam pattern as the
number of spherical frequencies (levels) needed to describe it. This
tool is valuable for assessing whether the sampling grid in angle
domain is dense enough. Quadrature rules suggest more efficient
ways of measuring the beam patterns optimizing the samplinggrid
and thus minimizing measurement time.
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