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ABSTRACT

Measured antenna responses, namely their beam pattemsewit
spect to the vertical and horizontal polarizations, playaamrole
in realistic wireless channel modelling as well as in par@mesti-
mation techniques. The representations commonly useer$rdm
drawbacks introduced by the spherical coordinate systeiohw
affected by two knots at the poles. In general, all methodshwihe-
scribe the beam pattern with a matrix fail in correctly reproing
its inherent spherical symmetry. In this contribution wepgmse the
use of the Spherical Fourier Transformation (SFT) whicbvedl the
description of the beam pattern via spherical harmonicss Miath-
ematical tool, well known in other fields of science, is rathew
to wireless communications. In this context, the main aapions
of the SFT include the efficient description of a beam pafteoise
filtering, the precise interpolation in the spherical Feudomain,
and the possibility to obtain an equivalent descriptionhaf beam
pattern for an arbitrary coordinate system. The lattemalas to
improve an existing 2-D FFT based technique: the EffectiperA
ture Distribution Function (EADF).

1. INTRODUCTION

Considering the radiation pattern of the sensors of an aatarray
is crucial to any parameter estimation technique [1] ancbubtt
edly an important aspect of channel modelling as well [2].e Th
far-field radiation pattern of an array sensor is usuallycdbed
with its field strength for the so-called vertical and horital po-
larizations [3]. In fact, the vectaE (8, ¢,r), which represents the
electric field at distancefor a specific elevatio® and azimuthp,

is transversal to the direction of propagation and theest@an be
described as

—jyr

E0,01) =7 °

where y is the propagation constant, amg is the intrinsic
impedance of the medium. The vectors with unit natgnandu

are directed toward8 and¢. The complex functiondg and f,

express the antenna directivity functions (in voltage) tfeg two
polarizations, vertical and horizontal, respectively. eiftphases
represent the relative phase shift which leads to lineacylzr or
elliptical polarizations.

Traditionally the beam pattern for each polarization isestian
form of a matrix obtained by sampling the pattern on a regyiliar
on the sphere, namely a grid obtained by uniformly sampling a
imuth and elevation. This is a straightforward represémathich
is used to measure (calibrate) an antenna array [2]. Foraioh
in azimuth and elevation the response of each sensor to ttieare
and the horizontal excitation is measured. With this apgidae
coupling between the array sensors is included.

At this point the information can be treated as a traditid?al
dimensional discrete signal so that spectral analysistoah be
used. This principle sets the basis for the Effective Apermistri-
bution Function (EADF) proposed in [2], which implements-82
FFT applied on the periodified beam pattern. In the spectralain

[fe(ev(p)u9+ffp(67(p)u(0] ) (1)

it is possible to store the information more efficiently, trform
noise filtering (in case of a measured beam pattern) as wed as
carry out interpolation in the transformed domain.

Unfortunately, the transformation from the spherical clate
system to a 2-dimensional representation is strongly m@&at. In
the new representation, the samples are treated as if theyune
formly spaced from one another, which in the original cooati
system is evidently not true. Furthermore, the particuéaigalicity
existing in the spherical system is lost. The EADF partlyssithe
periodicity issue by considering an elevation angle whacthdfined
for a 360 range. By doing this, the beam pattern description is
periodic along elevation as well, at the expense of intrauyce-
dundancy. Nonetheless, the strong non-linearity of thesframa-
tion is impossible to overcome. Note that this drawback isginal
when the gain of the antenna in the direction of the polesetth
ordinate system chosen is negligible. However, when dgalith
antenna arrays which employ sensors pointing in all dioestisuch
as the spherical array used in [4] or the Omni-Directionatip@\r-
ray (ODA) in [5], we cannot disregard this problem.

One solution is to use different coordinate systems foedfit
sensors, with respect to the direction of the main lobe. Teawe
can either measure certain sensors on a different gridienpolate
the available data to obtain a representation in anotherdotwe
system. The first solution is not feasible from a practicahpof
view. The interpolation, either in angle domain or in the Zdaurier
domain (as proposed in [2]) is also impractical due to thé kigors
introduced around the poles by the non-linearity of the 2eBatip-
tion.

In this contribution we propose a solution to these problems
by exploiting the natural Fourier domain for spherical ftioics,
which is obtained via the Spherical Fourier Transform (SHTHe
use of the SFT leads to interesting interpretations andraksag-
plications valuable for channel modelling and parametémesion
techniques.

Section 2 introduces the SFT for the description and manipu-
lation of beam patterns. Section 3 describes its applicatiohile
Section 4 proposes an SFT based improvement of the EADF. Fi-
nally, Section 5 presents the conclusions.

2. THE SPHERICAL FOURIER TRANSFORM

Following the representation given in equation (1) it isaent that
both fg and fy are not continuous functions on the sphere, because
their value changes at the north and south poles for diffeaen
imuths. To overcome this problem we derive an equivalentrifes

tion by expressing the pattern in terms of unit basis veaiQrasy,
andw; pointing to thex, y, andz axes. Equation (1) becomes

e_jyr
E6,9r)=yn
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[fox + fy’lLy+ fz’le] N

where the directivitiedy, fy, and f; are functions oB and¢, and
are continuous on the sphere. The transformation functioms

—fg-sin(0)-cog@) — fy - sin(¢p)

fx
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—fg-sin(@)-sin(¢) + fy -cog¢)
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fy
fz ==
where we omit the angle depender{@y ¢) for simplicity.

In order to use spectral methods for spherical problems ose p
sibility is to use the Spherical Wave Expansion (SWE) as jiv[6
The SWE is based on the vector spherical wavefunctions, hnarie
a simplification of the tensor spherical harmonics [8]. Hegrethis
approach has the disadvantage that the Fourier coefficdentaim-
bersome to compute numerically, although theoreticathightfor-
ward. For instance, in [6], the coefficients of the expansiomes-
timated solving a least squares problem, whereas in [7] ey
obtained by methods of numerical matching.

We propose to use the scalar Spherical Fourier Transfor
(SFT) [8] applied separately ofy, fy, andf,. The SFT is the equiv-
alent of the 1-dimensional Fourier series, although it3sbasc-
tions are defined on the sphere. These functions are usaédlyed
to asSpherical Harmonic$SH). The spherical harmonics represent

the kernelof the SFT, analogous to the complex expontentials for

the 1-D Fourier series. The spherical harmonics can be define
any coordinate system and are continuous functions on therep
thus dependent on two parameters only. For convenienceevbes
spherical coordinate system. L@t [—7, 7] and¢ € [—m, 71 be
elevation and azimuth, respectively. Tﬁe north pole cpoeds to
elevationd = J. The spherical harmoni¢™ (6, ¢) of ordermand
levell is defined as:

Y™(6.9) =A™ (sin(~0))-&™, @)
where theR™ () is theassociated Legendre functiemd is derived
from theLegendre polynomial|Px):

PM(x) = ((2|+1)E:12§:)5 (1—x2)%a(x)
A = iy g (P

The levell can only assume positive integer values and plays the

equivalent role of the frequency in the 1-dimensional Fenseries.

In fact,| = 0 corresponds to the DC component, while higher levels

correspond to basis functions increasingly more varyingr tRe
I-th level there are 2 +1 modes. In other wordsn € [—I,1]. We
define, for convenience, the index sétas

S ={(I,m:1eNg, meZ, -1 <m<I}.

®)

The functions defined in equation (4) represent the basigifurs
of the spherical Fourier transform. They form a completbagb-
nal system in the Hilbert spaa;é’(Sz), i.e., the space of all square
integrable functions on the 2-sphe##[9]. Two functionsf andg
are orthogonal on the sphere when their inner produdtg > is
equal to zero, where

<f,g>= %T /_7;/_2_ £(6,4) g* (6,¢) sin(6) dodp, (6)

where(-)* denotes the conjugate operator. Hence, the orthogonality

of the basis functions can be mathematically expressedlas/fo

@)

where dnk is the Kronecker delta, so thag,x = 1 for m= k and
zero otherwise.

<Y™ Y& >= 8y mk, for (m1) and(k,n) € .7,

The spherical Fourier transform and its inverse are defised a

follows:

ai(f) = <fy"> (8
f = a"(f)-y", )
(ILme.s

wherea™(f) is the spherical Fourier coefficient for theh level
andm-th mode. From equations (8) and (9) the analogy with the
1-dimensional Fourier Series appears evident.

2.1 The discrete spherical fourier transform

Similarly to the 1-D case, we call a functiol(8,¢) on the S?
sphere dand-limited functionwvhen it can be completely described
by a limited numberL of spherical Fourier frequencies, so that
I =10, 1, ... ,L—1]. The total number of Fourier coefficierltsis
thenM = L2. Itis possible to compute these coefficients without er-
ror, and thus solve the integral associated with equatiprr@n a
finite numberS of samples on the sphere. This problem is known as

r&uadratureor cubature[10]. The value ofSdepends obviously on

nd on the sampling grid chosen. There exist many quadratle®
tailored for spherical harmonics. We present the two masiraon:
e Gauss-Legendre quadrature
This grid consists of a Gauss quadrature in the elevatioraand
uniform one in the azimuthal direction. L&) define the grid
points on the sphere as follows

%L{ (8910 = (cos (@)

h=1[0,1, ..., N],
wherez; are the zeros of the Legendre polynomial of orgdér-
1). Note that the azimuth is uniformly sampled with a sepamatio
angle offf. The total number of samples on the sphe®sjs=
(N+1) x 2N. The coefficients are computed as:

— I K  where

k=[0,1, ..., 2N—1], (10)

Mg N-1 1 N-1 ; Gh ~imé,
= o S e IMe )
A" (1) hzo(ZNkzN (6. 90) )

- P™(sin(—6h)) -cos(6h) Wi gy ,

where(6h, ¢x) € Yo andwt’:{GL are Gaussian weights along the
longitudes.

Chebyshev knots — uniform quadrature

This quadrature considers a uniform grid for both elevatind
azimuth. Let¥y, define the grid points on the sphere as follows

gch{ (9h,¢k)= <2N7 N |

h=[0, 1, ..., 2N], k
The Chebyshev knots are obtained by uniformly sampling both
elevation (with sampling intervalf = %) and azimuth (with
Ap = ’NT). The total number of samples on the spherEds=
(2N +1) x 2N. The coefficients are computed as:

(11)

g where

0, ..., 2N—1].

N (12)

2N N—-1
mesy _ @ (1 —imy | .
ai (f)fhgoeh <2N k:Z_Nf(ehv(pk)e ! )

(P (sin(—6n) Whcn,  (13)
where(6h, §x) € Ycn,
N _ [ 3 forh=0,N
&n *{ 1 forh=1,2 ...,N-1 (14)
andw’ﬁ‘_Ch are the weights computed as
1 N 2 hsrt
N (N)
Wheh= 5 2 & cos(—) . (15)
2N S; h 1-49 N

The following expression, similarly to the sampling theare
sets the minimum value for the paramebérappearing in equa-

tions (10) and (12), with respect to the highest levetontained

in the function on the sphere to be studied:

N> 3L+1.

. (16)
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M L N SeL Sch we implicitly rotate the basis vectousy, uy, andu; as well. Let
100 | 10 16 17 x 32 33 x 32

21 | 21 || 32 33 % 64 65 » 64 fx,, f)i%andfszefthe rg;atflz% funcglon_s oztztalneddbz)l/;pply_lgg iqua—
1764 | 42 || 64 | 65x 128 | 129 x 128 tion (17) ontofy, fy, andf,. The subscriptg’,y’, an describe the

7225 | 85 || 128 | 129x 256 | 257 x 256 rotated axes. The desired rotated directivity functi@ns?y, andf,
expressed in terms afy, uy, andu; can be computed as follows

Table 1. Relation between number of Fourier coefficigviteind

points on the spher& for the Gauss-Legendre and Chebyshev f:x f:x’
quadratures. The ter@is expressed as number of samples along fy | = Rz(a)-Ry(B) - Rz(8)-| Ty |, (20)
elevation times the number of samples along azimuth. fz fz

where the rotation matriceR;(-) and Ry(-) are
Note that equation (16) does not guarantee that a functimedon ) )
a certain grid with parametét can be described by < 241 +1 cog:)  sin() 0 cog:) 0 —sin()
levels. The equation simply states that with a gidéwe can deter-  Fz()=| —sin() cos) 0 |, Ry()= :
mine for how many levelk we can compute the Fourier coefficients 0 0 L
exactly. However, even for twice the number of levels defibgd  An example is given in Section 3.3.
equation (16) we commit very small errors, on the order 50 dB.
Table 1 shows the total number of complex coefficidvitsn the 2.3 Power spectrum and white noise
frequency domain, the corresponding minimum value for tae p E f spherical Fouri ffici f) obtained f
rameterN, and the number of samples needed on the spigre or a set of sp erical Founer coe icier(f) abtained from a
and Scp, following a Gauss-Legendre and a Chebishev quadrature>F T on the functiorf (6, ¢) we define thepower spectrun®(l)as
respectively. The Gauss-Legendre grid does not comprisplsa o(l) = 5! | m(f)|2 1)
at the poles, and is almost uniformly distributed along atiew. = emet 19 ’
The Legendre polynomials can be correctly integrated witltim  and thecumulative power functiofi(l) as
fewer points for the Gauss-Legendre quadrature, so thagesin
Table 1, approximately half the points are needed in corapario ra)= ZL;%CD(I), (22)
the Chebyshev grid.

0 1 0
sin(-) 0 cog-)

so thatl"(I) describes the amount of power present in the levels
2.2 The rotation operator 0, 1, ...I —1. Assuming that the functioh(6, ¢ ) can be described

It is possible to rotate freely a functian(6,¢) by applying the so by L levels, we define the powé () to be

calledWigner D-functionto the spherical Fourier coefficients [8]. R(f)=<f,f>= ZIL:Och(l) =Tr(L). (23)
According to Euler’s rotation theorem [11], an arbitraryation can ) - )

be accomplished by three basic rotations characterizetirbg ain-  Equation (23) represents the Parseval theorem for the ispher
gles, known aguler anglesa, 3, andd about three known axes. Fourier domain.

There are several conventions for Euler angles, dependintpe . o .

axes about which the rotations are carried out. The cororeiést Ve model the measurement noise as band-limited white Gaus-
fit for SH consists in applying a rotation of about thez axis, fol- ~ Sian noise in the angle domain. This proces&, ¢), can be de-
lowed by a rotation of8 about the new axis, and finally rotating ~ Scribed with spherical harmonics as follows

of & about the nevz axis. Letd(6,¢) be the transformed version olu-1 <

of g(6,¢), derived by a rotation ofa,3,5) as described above. w(0,9) =" T W, (24)

Thanks to the Wigner-Eckart theorem [8] we can write where the coefficientsw]” have both real and imaginary
9(6,¢) = Z a"(g)-y™ parts~ JV(O,%VZV), andLy is the bandwidthof the noise, delim-

iting the number of levels needed to describe it. Its powecspm

o " is®(l) = (21 +1)- 62 and the total noise power ks, - 2. Interest-
? a"(9)-Y, (17) " ingly, white noise in the spherical harmonics domain hasstirae

(Lme.s power spectral density for all modes but a power spectd(i)

(Ime.s

§(6.9)

I which grows linearly, as the number of modes increasesriyea
8'0) = Y Dhl(a.B.0)a"(g). with the levell.
m=—I

3. THE APPLICATIONS OF THE SFT

where the Wigner-D functioB'__ is defined as . o o
9 mn 3.1 Compressing, noise filtering, and SNR estimation

D (a,B,8)=e M .dl (B).-e M (18)  As Table 1 shows, the spherical Fourier coefficients are @ wam-
pact way to describe a function on the sphere than storinggioes
and of the function sampled on the traditional uniform grid irgndo-
| Lem main. Furthermore, similarly to the EADF (i.e., a 2-D DFThet
Ay = (=1 VM) —m) () ()t SFT applied on an oversampled beam pattern obtains a compres
coZk-m-n (ﬁ) sirg+ment -2k (ﬁ) sion of the information in the Fourier domain, so that evemalter
1) 2 2 number of samples is needed to fully describe the patterrthéit
Z ( K(+m—K!(+m —K!(k—m—m)!" same time we are able to perform noise filtering and to esinfnet
KEDH Signal to Noise Ratio (SNR). Lefy(6,¢)M3and fy (6, ¢)MeaS
The summation is carried out for the index . so that: be the measured directivities of an antenna (or array seasate-
scribed in (1). When calibrating an antenna with a known -dual
=] me Np, and 19 polarized probe antenna we cannot prevent an unknown cansta
1 max(0,—(m—m)] <m<min{l —m,I 4+ n7]. (19) phase difference affecting the data so that
meas
When we apply the rotation operator we rotate the complex di- fo(6,9) = fe(6,9) (25)

rectivity functions fy, fy, and f, on the sphere. When doing so fo(8,9)M% = f4(0,9) €Y, (26)
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Figure 1: Spherical Fourier coefficients for the measuredrbpat-
tern of one element of an Omni-Directional patch Array (ObA)
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Figure 3: Power directivityp(0, ¢) for the same beam pattern for
two different orientations: (a) as it was measured, (b)teatavith
a =30, =90, andd = 90°.

wherepy and p; are computed in the same way. The SNR of the
whole beam patterp is simply the average. For the measured beam
pattern we obtained an average SNR of approximately 25 dB.

3.2 Interpolation in the spherical Fourier domain

Once the spherical Fourier description of the beam pattasrbren
computed it is possible to carry out Fourier interpolatido.obtain
the values of the function$,, fy, andf; in an arbitrary direction
(60, 90) we can simply apply the inverse SFT as in equation (9).

Figure 2: Cumulative power functions for the beam pattern ex Unfortunately we cannot count on an algorithm such as the, FFT

pressed irx, y andz The bandwidthd , Ly, andL; indicate the
levels for whichrl" (1) reaches 96 % of the total power.

wherefg(6,9) andfy (6, ¢) are the directivity functions unaffected
by the phase shift. The phase shjftintroduces discontinuities at
the poles in the beam patterfisand fy. To overcome this problem
we use the corrected directivity functidiz (6, ¢ )" obtained by

fp(0,¢)°" = fy(0, p)Mmes e ¥, where( is the estimated phase
shift chosen such that the values of the beam pattepaimz are
constant for all azimuths at the poles, i.e., the= ig. We per-
form the transformation expressed in equation (3)fg(B, ¢)Meas
and fy(6,¢)%" to obtain the functiondy, fy, and f,. Then, we
carry out three separate discrete SFT'$grfy, andf; to obtain the
spherical Fourier coefficient’}, &'\, anda",, respectively, up tb
levels. Figure 1 shows the coefficients for one of the 25 elesnef
an Omni-Directional patch Array (ODA)which was measured in
an anechoic chamber with & 8ampling interval in both elevation
and azimuth. Figure 2 shows the corresponding cumulativepo
functions computed as in equation (22). For this antennaave h
approximately 35 % of the power directed towaydsndz, and the
remaining 30 % towards. Let Ly, Ly, andL; be the bandwidths
of the beam pattern expressedkiry, andz, defined as the levels at
which the cumulative power functions reach 96 % of the tobaler.
The remaining levels (betweég, Ly, andL; and the levels at which
the functions reach the total power) are affected by noi$g and
are therefore valuable for estimating the power of the ndiseler
the assumption of additive Gaussian noise we estimate tverpo
oZ possessed by each Fourier coefficient by averagi{f‘ig2 for all
the modes and levels within the range just described.PLgtfy),

since along latitudes we need to perform a Legendre transfee-
cently [12, 13] fast approximate and exact transforms haenb
proposed. Their computational complexity is however diffico
assess and up to now only complexity orders have been cothpute
For instance, the exact transform requi@(s\lzlog2 N). However,
considering the small number of levdlsneeded for our applica-
tions (around 20), these results do not apply.

3.3 Rotation and rotation invariant descriptors

Let us now consider another measured beam pattern whose powe
directivity functionb(8,¢) = |fg|? + | f(;,|2 can be seen in plot (a)

of Figure 3. The beam pattern belongs to one of 24 elements of
a Stacked Polarimetric Uniform Circular Patch Array (SPBELP
which was measured at lImenau University of Technology onia u
form 3> sampling grid. Plot (b) shows the very same beam pattern
rotated bya = 30°, f = 90°, andd = 9(°, as described in Sec-
tion 2.2, so that the main lobe points directly towards thetnpole.
Figure 4 shows the cumulative power functions farfy, andf, for

the beam pattern in the two orientations just describede Mutt for

the two orientations we have different functiofis fy, and f; and
therefore different power spectra and cumulative powectfons.
Thetotal cumulative power functiofot(l) is computed as

Fot(l) = Z b Prot(1), (28)
where theotal power spectrun®o(l) defined as
Prot(l) = Px(l) + Py (1) + Pe(1), (29)

is a rotation invariant descriptor of the beam pattern. heotvords,
with different orientations of the beam pattern we will haliter-
ent spherical Fourier coefficients. However, the total podgt(l)

R, (fy), andR,(f) be the powers of the beam patterns for the cor-for each level is fixed and is not dependent on the orientation or

responding bandwidtHs,, Ly, andL,. Then, we estimate the Signal
to Noise Ratio (SNRpx for fyx as

H_x(fX)*Uv%'Lf

27
s @7

Px:

1We thank Elektrobit Testing Ltd. for providing the antenrmditration
data [5]

coordinate system chosen. This property can be deriveddapth-
tion invariance of tensor spherical harmonics as they agdurcible
tensor products of scalar spherical harmonics [8].

In [2] the EADF was used to define the bandwidth of a beam
pattern, as the size of the limited support in frequency doma
needed to describe it. However, this description dependthen
coordinate system chosen and is therefore not related tfohym-
cal properties of the beam pattern. On the other hand, tratifuns
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cumulative power

level -1

Figure 4: Cumulative power functions expressed,iry and z for
the measured beam pattern (a), and for its rotated versjofséb
Figure 3). The total cumulative power functidiyt(l) is a rotation
invariant descriptor of the beam pattern.

Pot(l) andMor(l) are rotation invariant and are therefore ideal to

define a bandwidthy, for the beam pattern.

We can do so by settinlg, equal to the maximum level needed
to represent a certain percentage of the power. Furthernbgre
comparinglLy to the paramtek from equation (16) we can deter-

mine whether our sampling grid was dense enough.

4. IMPROVING THE EADF

The efficiency of the Effective Aperture Distribution Fuioct in
compressing the information depends on the beam pattethatsd
the spherical coordinate system chosen to represent itfXhact,

interpolation in the spherical Fourier domain, and the ibility to
obtain an equivalent description of the beam pattern forbitrary
coordinate system. The latter allows us to improve an exjs?tD
FFT based technique: the Effective Aperture Distributiométion
(EADF). The SFT leads to a rotation invariant descriptorcfahal-

lows us to define a bandwidth for any given beam pattern as the

number of spherical frequencies (levels) needed to desitrifbhis
tool is valuable for assessing whether the sampling gridnigiea

domain is dense enough. Quadrature rules suggest moreeffici

ways of measuring the beam patterns optimizing the sampliialy
and thus minimizing measurement time.
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cal tool, well known in other fields of science, is rather newvire-
less communications. The main applications of the SFT dethe
efficient description of a beam pattern, noise filtering, phecise
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