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ABSTRACT

In the design of the communication protocols for wireless sensor
networks a specific requirement emerges from the fact that the data
contained in an individual sensor is not importantper se, but its
significance is instantiated with respect to the contribution to the
overall sensing task and the decision fusion. Therefore, the com-
munication protocols should be application–aware and operate by
reckoning the utility of the carried data. In this paper we consider
the problem of hypothesis testing at the fusion center (sink) when all
the sensors communicate with the sink via a random access chan-
nel. Each sensor contains a binary information 0 (event occurred)
or 1 (event did not occur). In a traditional protocol design, an exist-
ing random–access protocol is used by which the sink collects the
data fromall sensors and subsequently makes the decision through
majority voting over the received data. In this paper, we propose
approaches for joint design of the communication and the decision
fusion for the application of hypothesis testing. The fusion center
terminates the data gathering through the random access channel
as soon as it can make sufficiently reliable decision based on the
data received so far. We describe two instances of the protocols,
where the total number of sensorsN is known and not known, re-
spectively. Our results show that the proposed approaches provide
optimized performance in terms of time, energy and reliability.

1. INTRODUCTION

The introduction of wireless communication capability in the realm
of the sensing technologies has initiated novel perspectives for de-
sign and analysis of distributed sensing systems. A wireless sen-
sor network can be defined as a system of sensing nodes that are
using wireless communication to achieve a synergetic sensing task.
This implies that the protocols for wireless sensor networks (WSNs)
should be designed in anapplication–centricor task–centricman-
ner instead of anarchitecture–centricmanner, such as the IP–based
networks or networking protocols based on the OSI–layering.

Let us consider for example a set of sensors deployed to detect
occurrence of an event in a certain area. The end user of the sen-
sory data is interested in the answer to the question “Has eventX
occurred?”. The node that collects the sensory data and answers the
query of interest is referred to asdata sinkor fusion center (FC).
The individual data collected at a sensor is not importantper se, but
to the extent to which it contributes to the answer to the aforemen-
tioned question. For example, if there are100deployed sensors,98
of which detected the event, then the remaining2 sensors do not
need to send their data “no event” to the fusion center, since it will
not affect the overall decision. In general, the communication pro-
tocol in a WSN should be designed in concert with the data fusion
process, thus conforming to the application–centric networking de-
sign paradigm.

In this paper we consider a single–hop wireless sensor network.
We consider a scenario that consists of a population of battery–
operated failure prone sensors, randomly deployed in a field of in-
terest, an unlimited energy supplied fusion center and a common

shared channel where the up–link communications follow a ran-
dom access scheme and the down–link transmissions are performed
in a broadcast manner. Initially, FC or the interrogator1 is prob-
ing the sensor field by broadcasting an inquiry in order to solicit
replies from sensors which have detected/sensed data with a certain
propertyA. Let us denote byNA the number of sensors that have
such a property. IfNA > 1, the sensors need to run some conflict
resolution algorithm in order to access the random access channel.
A sensor node is resolved if it successfully transmits its message
to the FC. Such conflict resolution is governed or facilitated by the
FC by providing feedback that collision or successful transmission
has been detected. The initial replies from theNA sensors arrive
simultaneously and produce an initial batch conflict of multiplicity
NA. After completely resolving the conflict and receiving all the
NA packets successfully, FC knows that exactlyNA packets have
the propertyA. Let the property of interest be whether or not an
event occurred. Then, each sensor has a binary decision to support
one of the two possible hypotheses:H1 = {EventE occurred} and
H0 = {EventE did not occurr}= {EventE occurred}. Among the
N devices,N1 support hypothesisH1 andN0 = N−N1 support hy-
pothesisH0. The FC tests the hypothesis by countingN0 andN1 and
deciding based on majority voting i. e. event occurred ifN1 > N0.
The straightforward implementation of this hypothesis testing is as
follows. The FC can first resolve the batch conflict among theN1
sensors and thus retrieve the value ofN1. Subsequently, FC can
run another batch conflict resolution and retrieveN0, then compare
N1 andN0 and make the decision. Nevertheless, this conventional
method may spend an excessively high number of messages/time
slots, without a significant improvement of the decision reliability.

The framework for resolution of batch conflicts proposed in [6]
allows to make estimation of the conflict multiplicityNi while run-
ning the random access algorithm. This estimate is progressively
correct as more nodes are resolved and is trivially correct when all
nodes are resolved. Now let us suppose that in the hypothesis test-
ing N1 À N0. Let the FC run the conflict resolution algorithms in a
time–division manner, such that at some instant it has the estimates
N̂1 andN̂0 and with high probabilityN̂1 > N̂0. In that way, the FC
does not need to run the complete conflict resolution procedure, but
only until it can make a satisfactorily reliable decision, e. g. the
probability of no detectionP(N̂0 > N̂1|N0 ≤ N1) < ε. With such
a partial conflict resolution, the approximate decision fusion con-
sumes less time and messages from the sensors and thereby con-
tributes to the efficient usage of the limited energy supply of a sen-
sor.

Using the framework for approximate counting over a random
access channel from [6], in this paper we introduce methods for
approximate hypothesis testing through majority voting. The FC
terminates the data gathering through the random access channel
as soon as it can make a sufficiently reliable decision based on the
data received so far. We describe two protocol instances, where the
total number of sensorsN is known and not known, respectively.

1The terms interrogator and fusion center will be used interchangeably.
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For each case, we infer a stopping criterion that satisfies certain
reliability constraint for the correctness of the hypothesis testing.

1.1 Related Work

The general problem of sequential detection with a sensor field is
described in [3]. Hypothesis testing for sensor fields has been con-
sidered in [1], in which the authors consider a network where de-
vices make binary decisions (H0 or H1) corrupted by probabilities
of missed detection and false alarm. An optimal decision rule is
derived, assuming that both the numbers of sensors which support
the two hypothesesH0 andH1 are known. In [2], a fusion rule is
presented to solve the problem of target detection. Binary hypothe-
ses are used and a model of signal power attenuation is considered
for the transmissions from the target to theN devices (N is consid-
ered to be a random variable that follows a Poisson distribution). A
related problem is considered in [4], where the authors propose an
algorithm to solve the problem of the decision fusion for binary hy-
potheses, exploiting the shared, time–slotted communication link:
besides, the multiplicityN of the sensors is supposed known, and
the computations required to the FC to run the algorithm grow ex-
ponentially with its value. In [5] a sequential polling is performed
in order to estimate the number of sensors that are in an operating
state. The sensors are numbered from1 to N and the number is
used as a sensor identity. The FC is polling each sensor by using
its identity, which avoids the usage of random access channel, but
this method is inapplicable when the sensors do not have unique
identity.

2. SYSTEM MODEL

We use the model ofslotted channel. The transmissions of the ter-
minals start at predefined, equally spaced instants. The duration
between two neighboring instants is denoted asslot. Whenk termi-
nals transmit in the same slott, then the interrogator perceives the
channel in slott as:
• Idle slot(I) if k = 0 i.e. no terminal transmits.
• Successful reception(S) or resolution if k = 1 i.e. only one

terminal transmits.
• Collision (C) if k≥ 2. The messages of the terminals interfere

destructively at the FC and error is detected.
Prior to the next slot(t +1), all nodes receive the feedbackI ,S, or
C, indicating the state perceived by the FC in slott. We neglect
other sources of error besides collisions. For the channel stateS,
the feedback must be explicit i.e. an acknowledgement from the
FC. For idle or collision, the feedback is implicit - ifk = 0 no ter-
minal expects feedback and ifk≥ 2 the feedback is the absence of
acknowledgement. The slot duration is enough to accommodate a
packet sent by a terminal and the acknowledgement from the FC. In
the model of slotted channel, the slot duration is the same regardless
of whether the channel state isI ,S, or C.

The terminals should generate random bits to be used in the
conflict resolution process. It is assumed that the sensors are indis-
tinguishable i. e. a sensor does not have unique ID that is known to
the FC.

3. APPROXIMATE MAJORITY VOTING OVER A
RANDOM ACCESS (RA) CHANNEL

3.1 Conflict Resolution with Approximate Counting

In order to introduce the framework for approximate counting
from [6], we start by describing the well–known splitting–tree al-
gorithms [7]. Fig. 1 depicts one possible evolution of the tree algo-
rithm for initial conflict of multiplicity N = 8. The level of a tree
node is the path length from that node to the root of the tree. Each
tree node is uniquely associated with a string calledaddress, related
to the tossing outcomes of a terminal. For example,d2 andd3 be-
long to the tree node with address01, enabled in slot 4. The root
has addressε (empty string) and is at level 0. In fact, the initial
conflict among the terminals follows the probe with addressε from
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Figure 1: An instance of the binary tree algorithm forN = 8 ter-
minals. The number denotes the slot in which a node is enabled.
Below each node is the channel state in that slot. For channel state
“single”, di denotes the resolved sensor.

the interrogator. Using the tree representation, we can say that an
address isenabledin slot t if the terminals that belong to that node
are allowed to transmit int. In the basic variant, the tree nodes are
enabled in a pre–order fashion.

By representing the binary tree in an alternative framework, we
can get an insight on how the conflict multiplicity can be estimated
while the conflict is being resolved. Instead of tossing coins, let
us assume that before the initial attempt to transmit, each terminal
generates a random real number, referred to as token, uniformly dis-
tributed in the interval[0,1). Now, instead of considering enabled
addresses from the tree, we can equivalently consider enabled inter-
vals. After the initial collision, the interval[0,0.5) is enabled in that
sense that all nodes that have drawn tokens in that interval have the
right to transmit in that slot. Fig. 2 shows how the instance of the
algorithm on Fig. 1 can be represented through a sequence of en-
abled intervals. The interval[0, p) is called resolved if all the sensor
nodes that have their tokens in[0, p) manage to transmit success-
fully to the interrogator. Let us assume that there aren tokens in
the resolved interval[0, p). Then the interrogator can estimate the
unknown multiplicityN asN̂ = n

p . This fact has been used in [6] to
speed up the conflict resolution by tuning the length of the enabled
intervals to the estimated valuêN. The fastest proposed version
of such algorithms is the Interval Estimation Collision Resolution
(IECR) algorithm. When the batch sizen→ ∞, it is shown that
the time efficiency of IECR reaches asymptotically the same time
efficiency that the FCFS algorithm [7, pp. 289-304] achieves for
Poisson instead of batch arrivals.

When applying the IECR (or any equivalent algorithm) for hy-
pothesis testing by approximate counting of a set ofN sensors, we
need to find what is the reliability of such obtained estimateN̂. The
probability thatN=Nestp given that exactlyN∗p sensors have tossed
the tokens in[0, p], can be modeled using a Bernoulli random vari-
ablen, with parametersp andN, where the latter is unknown:

P{n = N∗p | N = Nestp, p}= B(N∗p,Nestp, p) . (1)

For the conditional probabilities we can write:

P{N=Nestp|n=N∗p, p}=
P{n=N∗p|N=Nestp, p}·P{N=Nestp |p}

P{n=N∗p| p}
(2)

We can notice that ifN∗p devices tossed a uniformly distributed

number smaller thanp, there are1
p values ofN that makeN∗p the

most probable outcome forn: for example, ifn= 8andp= 0.25, we
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Figure 2: Representation of the example of binary tree from Fig. 1
by using tokens and sequence of enabled intervals.

have 1
p = 4 values that maken = 8 the most probable outcome, i.e.

N = 30,31,32,33. If no knowledge ofN is assumed, then the a pri-
ori probability for having each of those values is identical. Hence,
using (2), the probability ofN being equal to a particular valueNestp
can be approximated as:

P{N=Nestp |n=N∗p, p}= p·
(

Nestp
N∗p

)
· pN∗

p · (1− p)Nestp−N∗
p (3)

3.1.1 Majority Voting with UnknownN

Recalling that the set ofN sensors is divided into two subsets sup-
porting respectively the binary hypotheses, the strategy we will pur-
sue for the estimation ofN0 andN1 relies on the IECR algorithm:
a contention between two parallel runs of IECR is used to estimate
both the unknown values, exploiting the TDMA technique. The
slots are in fact alternatively used to resolve sensors of theN1 set
and of theN0 set, so that we can make at each unit of time an error-
prone decision, basing the choice on the value of the resolved nodes
and the scanned intervals.

Considering at each slot of majority voting algorithm the values
of the intervals (pi andqi) and devices (tpi andwqi ) resolved for
bothN0 andN1 estimations, and using expression (3), we can easily
calculate the probability of erroneous decision as follows: suppose
for example we are in sloti, and the estimated value ofN1 is bigger
than the one forN0 (N̂1 > N̂0). Referring to the previous results, the
mass distributions ofN0 andN1 are qualitatively shown on Fig. 3.

We recall here that the estimated values ofN1 andN0 are given
by the following:

N̂0(ML) =
⌊

tpi
pi

⌋
N̂1(ML) =

⌊
wqi
qi

⌋
, (4)

If we divide the set of possible values ofN0 into three subsets,
namelyN0 ≤ tpi

pi
,

tpi
pi

< N0 ≤ wqi
qi

andN0 >
wqi
qi

, the probability of
error can be written as in (5).

In slot i then we can calculate the probabilities:

P[N0 = N0estp] , ∀N0estp ∈
[

tpi
pi

,
wqi
qi

]

P[N1 = N1estp] , ∀N1estp ∈
[

tpi
pi

,
wqi
qi

] (6)

Figure 3: The a posteriori probability mass distribution forN0 and
N1.

and use them to get the values of the four conditional probabilities
of error of equation (3) as follows. First we define:

N0=

wqi
qi

∑
N0

∗=
tpi
pi

+1

P[N0 = N0
∗] , N1=

wqi
qi
−1

∑
N1

∗=
tpi
pi

P[N1 = N1
∗] (7)

As shown in figure 3, we will callP
[
N1 <

tpi
pi

]
andP

[
N0 >

wqi
qi

]
,

respectively,P[tail1] andP[tail0], where:

P[tail1] ≤ 1−2∗N1−P[N1 = N̂1] (8)

P[tail0] ≤ 1−2∗N0−P[N0 = N̂0] (9)

As stated previously, the distributions ofN0 andN1 are almost
symmetrical around the values

tpi
pi

and
wqi
qi

, at least whenp is small.

Finally we observe that for each value
tpi
pi

< N0≤ wqi
qi

, the error
occurs ifN1 is smaller thanN0, and this happens with probability
1 if N1 <

tpi
pi

, whereas for
tpi
pi
≤ N1 <

wqi
qi

the probability of error is
given by:

P[middle] = P

[
error| tpi
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qi
,
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−1

∑
N1

∗=
tpi
pi


P[N1 = N1

∗] ·
wqi
qi

∑
N0

∗=N1
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∗]


 (10)

Using derivations (7), (9), (8) and (10) in (5), and simplifying
the terms equal to zero (all the cases in which we assumeN0 < N1),
we obtain the following:

P[error] ≤ 1 ·P[tail1] · (1−N1−P[tail0])+
+ P[middle] ·N1 ·N0 +
+ 1 ·N0 ·P[tail1]+1 ·P[tail0] (11)

We have in (11) the sign of inequality because we are overes-
timating P[tail1] andP[tail0] and the error probabilities related to
them: in fact, when we considerN0estp ∈ tail1 andN1estp ∈ tail0, we
upperbound the probability of error by1.
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3.2 Majority Voting with Known N

In this section we will consider the same scenario as the previous
one, adding only one further hypothesis: we suppose to know the
value N, that is the total number of sensors in the network. We
expect to have better performance, since this information can only
improve the probability of correct decision. We can in fact state
now that the sum of estimatedN0 and estimatedN1 must be equal to
N, otherwise we are facing an error, but the evaluation of the conse-
quences of this observation on the estimation of the error probability
requires a tactful approach.

We will again pursue the technique of sequential counting us-
ing the IECR algorithm to evaluate the value ofN0 and N1: the
primary target we have is then to find or to build a statistical model
that describes the probability of correct decision under the follow-
ing hypotheses:
• In interval[0, pi ] tpi tokens are present;
• In interval[0,qi ] wqi tokens are present;
• The total number of tokens isN, then we only need to have a

precise knowledge of eitherN1 or N0 to estimate both of them;
• The value N

2 represents the critical value for the decision: if
setA has multiplicityN∗ larger thanN

2 with high probability,
consequently the other setB has multiplicityN4 = N−N∗ <
N
2 , and we can argue that|A |>|B |.

Given the above considerations, we can now develop the technique
for the most probable correct decision: at any slot of time we com-
pareN̂0 = tpi

pi
and N̂1 = wqi

qi
with the value N

2 , and we proceed if
and only if the two estimations reside in the two opposite halves of
interval [0,N]. If the latter condition is encountered, then we com-
pute for both sets the probabilities that the estimated value is in the
right half using again expression (3). An example will clarify this
procedure.

Suppose the following scenario:N = 100, tpi = 3, N̂0 = 28,
N̂1 = 75 and the required maximum error ispmax

err = 0.1. In this
case, the algorithm setsH1 as the correct decision, and computes
the probabilities that:

50

∑
N0est=3

P[N0 = N0est] ,
97

∑
N1est=50

P[N1 = N1est] (12)

The sums of expressions (12) represent respectively the prob-
abilities that the two multiplicities are in the two halves, i.e.
P{N0 ∈ [3,50]} andP{N1 ∈ [50,97]} (let’s say that in our example
they are0.95and0.7). At this point, we have an upper-bound for the
average probability of error we commit stating both thatN0≤ N

2 and
N1 ≥ N

2 . If any of the two quantities is larger than1− pmax
err = 0.9,

the algorithm stops: concluding our example then, the decision is
finally set forH1, sinceP{N0 ∈ [3,50]}= 0.95> 0.9.

4. PERFORMANCE ANALYSIS

For the analysis of the introduced algorithms, we set the para-
meters as follows:N = 1000, runs= 1500, maximum error=
[1,5,10,15,20,25,30,35,40]. Figures 4(a) and 4(b) show the per-
formance of the algorithm with unknownN in two situations:
ratio = 0.8 and ratio = 0.1, whereratio = N0

N1
. We plot different

parameters versus the maximal allowed error probability: the aver-
age number of slots used to run the algorithm, the mean error of the
decision, the mean number of messages sent per each sensor and fi-
nally the time efficiency, defined as the number of slots used to run
the algorithm divided by the number of sensors.

We can clearly see that for both values ofratio we can have an
improvement for the time complexity and the message complexity
if we accept to set an interval tolerance in the error probability. The
two figures show that as the value of maximum allowed error grows,
the curves representing the messages sent decrease, and the ones
representing the time efficiencies grow.
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Figure 4: Optimal Bound: results with unknownN.

We can also notice in Fig. 4(b) that the error is always equal to
0: we know that one set of sensors is much smaller than the other,
hence the algorithm counts all the sensors of that set before having
the first feedback from the other set. Since the totalN is unknown,
the information related to the smaller set is then not useful until esti-
mations of the second set are performed. The previous observations
give reason also to the fact that in Fig. 4(b) the number of slots used
by the algorithm approaches an asymptote different from0.

For knownN, the results are shown in figures 5(a) and 5(b),
respectively forratio = 0.8 and whenratio = 0.1.

Here again we notice that the time complexity and the mes-
sage complexity have a concrete improvement as soon we accept a
controlled probability of error. What is more relevant is that we ac-
complished an improvement as compared with the previous results
of figures 4(a) and 4(b): the number of messages sent whenN is
known is always smaller than in the case of unknownN, and the
number of slots used to run the algorithm is larger when no infor-
mation aboutN is given.

5. CONCLUSIONS

Wireless sensor networks (WSNs) require optimizations of the net-
working protocols according to the application i. e. the task that the
WSN is supposed to fulfill. In this paper we have considered the
problem of hypothesis testing for single–hop wireless sensor net-
works in which the sensors use a random–access channel to transmit
information to the fusion center (FC). There is a set ofN sensors,
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Figure 5: Optimal Bound: results with knownN.

N1 of them detect that an event has occurred andN0 = N−N1 have
detected the absence of that event. The fusion center needs to know
N0 andN1 and uses majority voting to decide whether or not the
event has occurred (i. e. it has occurred ifN1 > N0). In a conven-
tional approach, the FC runs a random access protocol to collect the
data and find the exact values ofN0 andN1 and then makes the de-
cision. Here we have proposed methods for decision fusion based
on approximate counting ofN0 andN1. The FC runs two instances
of the random access protocol, for theN0 and N1 nodes, respec-
tively. The protocol utilizes the framework introduced in [6], which
makes it possible to obtain estimates ofN0 andN1 while resolving
the conflicts. The precision of the obtained estimates is proportional
to the resources (time and messages) used in resolving the conflict.
Hence, by making a decision based on the estimates ofN0 andN1,
the FC can trade–off the reliability of the decision fusion with the
energy that the sensor nodes invest in resolving the conflict.

As a future work, we need to consider more general scenar-
ios for decision fusion over a random access channel. For exam-
ple, an interesting question is how FC can approximately compute
a function f (x1,x2, . . .xN) over the random access channel, where
xn denotes the reading ofn−th sensor. Furthermore, we need to
investigate how the channel impairments affect the design of such
fusion–aware networking protocols.
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