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ABSTRACT shared channel where the up—link communications follow a ran-

. L . dom access scheme and the down-link transmissions are performed

In the design of the communication protocols for wireless sensor broadcast Initially. EC or the int hii b

networks a specific requirement emerges from the fact that the daf3 & proadcast manner. initially, =L or the interrogatar prob-

contained in an individual sensor is not importaer se but its 19 the sensor field by broadcasting an inquiry in order to solicit
éeplles from sensors which have detected/sensed data with a certain

significance is instantiated with respect to the contribution to th WA Let us denote bWa th ber of that h
overall sensing task and the decision fusion. Therefore, the conf2fPertyA. Let us denote biN the number of sensors that have
ch a property. INp > 1, the sensors need to run some conflict

munication protocols should be application—aware and operate : ; \
reckoning the utility of the carried data. In this paper we considef€SClution algorithm in order to access the random access channel.
the problem of hypothesis testing at the fusion center (sink) when a sensor node is reslolved i |t.suc'cessfully transmits Its message
the sensors communicate with the sink via a random access chal.the FC. Such conflict resolution is governed or facilitated by the
nel. Each sensor contains a binary information O (event occurre C by providing feedback that collision or successful transmission

or 1 (event did not occur). In a traditional protocol design, an exist- 2> tl)teen detlecte(zi. Thc? initial .re.rt’.“?% frtogw tﬁ;eﬂs_etnsfors ?[m;.’e.t
ing random-access protocol is used by which the sink collects th Imuitaneously and produce an Iniial batch conflict of muftiplicity

data fromall sensors and subsequently makes the decision througj- After completely resolving the conflict and receiving all the
majority voting over the received data. In this paper, we propos&\A Packets successfully, FC knows that exaddly packets have
approaches for joint design of the communication and the decisiof'® PrOPertyA. Let the property of interest be whether or not an
fusion for the application of hypothesis testing. The fusion centef V€Nt 0ccurred. Then, each sensor has a binary decision to support
terminates the data gathering through the random access chanfi€ Of the two possible hypothesés; = {Eventé’ occurred; and
as soon as it can make sufficiently reliable decision based on thdo = {Eventé’ did not occurt = {Eventé’ occurred;. Among the
data received so far. We describe two instances of the protocold) devicesN; support hypothesisi; andNo = N — Ny support hy-
where the total number of sensdxisis known and not known, re- PothesiHo. The FC tests the hypothesis by countiigandN; and
spectively. Our results show that the proposed approaches providi€ciding based on majority voting i. e. event occurrebhif> No.
optimized performance in terms of time, energy and reliability. ~ The straightforward implementation of this hypothesis testing is as
follows. The FC can first resolve the batch conflict amongihe

sensors and thus retrieve the valueNaf Subsequently, FC can
1. INTRODUCTION run another batch conflict resolution and retriég then compare

The introduction of wireless communication capability in the realmNy andNp and make the decision. Nevertheless, this conventional
of the sensing technologies has initiated novel perspectives for dénethod may spend an excessively high number of messages/time
sign and analysis of distributed sensing systems. A wireless se§lots, without a significant improvement of the decision reliability.
sor network can be defined as a system of sensing nodes that are The framework for resolution of batch conflicts proposed in [6]
using wireless communication to achieve a synergetic sensing tas&llows to make estimation of the conflict multiplicity while run-
This implies that the protocols for wireless sensor networks (WSNshing the random access algorithm. This estimate is progressively
should be designed in application—centricor task—centrioman- ~ correct as more nodes are resolved and is trivially correct when alll
ner instead of aarchitecture—centrienanner, such as the IP-based nodes are resolved. Now let us suppose that in the hypothesis test-
networks or networking protocols based on the OSl-layering. ing N7 > Np. Let the FC run the conflict resolution algorithms in a

Let us consider for example a set of sensors deployed to detetifne—division manner, such that at some instant it has the estimates
occurrence of an event in a certain area. The end user of the selya andNp and with high probabilityN; > No. In that way, the FC
sory data is interested in the answer to the question “Has &¢ent does not need to run the complete conflict resolution procedure, but
occurred?”. The node that collects the sensory data and answers t@ly until it can make a satisfactorily reliable decision, e. g. the
query of interest is referred to amta sinkor fusion center (FC)  probability of no detectioiP(Ng > N1|Ng < N1) < €. With such
The individual data collected at a sensor is not importantsebut ~ a partial conflict resolution, the approximate decision fusion con-
to the extent to which it contributes to the answer to the aforemensumes less time and messages from the sensors and thereby con-
tioned question. For example, if there a@0deployed sensor88  tributes to the efficient usage of the limited energy supply of a sen-
of which detected the event, then the remainihgensors do not sor.
need to send their data “no event” to the fusion center, since it will  Using the framework for approximate counting over a random
not affect the overall decision. In general, the communication proaccess channel from [6], in this paper we introduce methods for
tocol in a WSN should be designed in concert with the data fusiormpproximate hypothesis testing through majority voting. The FC
process, thus conforming to the application—centric networking determinates the data gathering through the random access channel
sign paradigm. as soon as it can make a sufficiently reliable decision based on the

In this paper we consider a single—hop wireless sensor networklata received so far. We describe two protocol instances, where the
We consider a scenario that consists of a population of batterytotal number of sensord is known and not known, respectively.
operated failure prone sensors, randomly deployed in a field of in-
terest, an unlimited energy supplied fusion center and a common 1The terms interrogator and fusion center will be used interchangeably.




14th European Signal Processing Conference (EUSIPCO 2006), Florence, Italy, September 4-8, 2006, copyright by EURASIP

For each case, we infer a stopping criterion that satisfies certain
reliability constraint for the correctness of the hypothesis testing.

1.1 Related Work

The general problem of sequential detection with a sensor field is
described in [3]. Hypothesis testing for sensor fields has been con
sidered in [1], in which the authors consider a network where de-
vices make binary decisionsi§ or H1) corrupted by probabilities

of missed detection and false alarm. An optimal decision rule is
derived, assuming that both the numbers of sensors which support
the two hypothesebly andH; are known. In [2], a fusion rule is
presented to solve the problem of target detection. Binary hypothe-
ses are used and a model of signal power attenuation is considered
for the transmissions from the target to tRedevices N is consid-

ered to be a random variable that follows a Poisson distribution). A
related problem is considered in [4], where the authors propose an
algorithm to solve the problem of the decision fusion for binary hy-
potheses, exploiting the shared, time—slotted communication link:
besides, the multiplicitN of the sensors is supposed known, andFigure 1: An instance of the binary tree algorithm for= 8 ter-

the computations required to the FC to run the algorithm grow exminals. The number denotes the slot in which a node is enabled.
ponentially with its value. In [5] a sequential polling is performed Below each node is the channel state in that slot. For channel state
in order to estimate the number of sensors that are in an operatirtgingle”, d; denotes the resolved sensor.

state. The sensors are humbered frbo N and the number is

used as a sensor identity. The FC is polling each sensor by using

its identity, which avoids the usage of random access channel, byie interrogator. Using the tree representation, we can say that an

this method is inapplicable when the sensors do not have uniqugqdress ienabledin slott if the terminals that belong to that node

identity. are allowed to transmit ih In the basic variant, the tree nodes are
enabled in a pre—order fashion.

2. SYSTEM MODEL By representing the binary tree in an alternative framework, we
can get an insight on how the conflict multiplicity can be estimated
while the conflict is being resolved. Instead of tossing coins, let
Q5 assume that before the initial attempt to transmit, each terminal
generates a random real number, referred to as token, uniformly dis-
tributed in the interval0,1). Now, instead of considering enabled
addresses from the tree, we can equivalently consider enabled inter-

dy

We use the model dilotted channelThe transmissions of the ter-
minals start at predefined, equally spaced instants. The durati
between two neighboring instants is denotedlas Whenk termi-
nals transmit in the same slgtthen the interrogator perceives the
channel in slot as:

e Idle slot(l) if k=0i.e. no terminal transmits. vals. After the initial collision, the intervd0, 0.5) is enabled in that

e Successful receptiofS) or resolutionif k=1 i.e. only one sense that all nodes that have drawn tokens in that interval have the
terminal transmits. right to transmit in that slot. Fig. 2 shows how the instance of the

e Collision (C) if k > 2. The messages of the terminals interfere algorithm on Fig. 1 can be represented through a sequence of en-
destructively at the FC and error is detected. abled intervals. The interv@, p) is called resolved if all the sensor

Prior to the next sloft + 1), all nodes receive the feedbaklg, or ~ Nodes that have their tokens [@, p) manage to transmit success-
C, indicating the state perceived by the FC in gdlotWe neglect fully to the interrogator. Let us assume that there mtekens in
other sources of error besides collisions. For the channel State the resolved intervaD, p). Then the interrogator can estimate the
the feedback must be explicit i.e. an acknowledgement from theinknown multiplicityN asN = 3. This fact has been used in [6] to
FC. For idle or collision, the feedback is implicit -kf= 0 no ter-  speed up the conflict resolution by tuning the length of the enabled
minal expects feedback andki> 2 the feedback is the absence of intervals to the estimated valu¢. The fastest proposed version
acknowledgement. The slot duration is enough to accommodate @ such algorithms is the Interval Estimation Collision Resolution
packet sent by a terminal and the acknowledgement from the FC. INECR) algorithm. When the batch size— o, it is shown that
the model of slotted channel, the slot duration is the same regardlegige time efficiency of IECR reaches asymptotically the same time
of whether the channel statelisS or C. efficiency that the FCFS algorithm [7, pp. 289-304] achieves for
The terminals should generate random bits to be used in thpoisson instead of batch arrivals.
conflict resolution process. It is assumed that the sensors are indis- When applying the IECR (or any equivalent algorithm) for hy-
tinguishable i. e. a sensor does not have unique ID that is known tgothesis testing by approximate counting of a setlafensors, we

the FC. need to find what is the reliability of such obtained estint&tdhe
probability thatN =Nes;, given that exactiyN; sensors have tossed
3. APPROXIMATE MAJORITY VOTING OVER A the tokens if0, p], can be modeled using a Bernoulli random vari-
RANDOM ACCESS (RA) CHANNEL ablen, with parameterp andN, where the latter is unknown:

3.1 Conflict Resolution with Approximate Counting P{n=N& | N = Ney, P} = B(N5,Nesp. P) )
— "Vp — Nest - p>'vesh .

In order to introduce the framework for approximate counting
from [6], we start by describing the well-known splitting—tree al- For the conditional probabilities we can write:
gorithms [7]. Fig. 1 depicts one possible evolution of the tree algo-

rithm for initial conflict of multiplicity N = 8. Thelevelof a tree . P{n=Nj;|N=Nesy,, p}-P{N=Nes, |p}
node is the path length from that node to the root of the tree. EachP{N=Nes;[n=Np, p} = P{n=N3| p}
tree node is uniquely associated with a string cadléddressrelated P 2

to the tossing outcomes of a terminal. For examgjeandds be- : . . . -
long to the tree node with addre8s, enabled in slot 4. The root We can notice that iN; devices tossed a uniformly distributed

has address (empty string) and is at level 0. In fact, the initial number smaller thap, there are’% values ofN that makeN; the
conflict among the terminals follows the probe with addef®m most probable outcome for for example, ifn=8andp=0.25, we
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and use them to get the values of the four conditional probabilities

Figure 2: Representation of the example of binary tree from Fig. 1Of error of equation (3) as follows. First we define:

by using tokens and sequence of enabled intervals.

e o _q
Gi Gi
No= PNo=No"] , =3 PNi=N"] (7)
have% = 4 values that make = 8 the most probable outcome, i.e. No'="2 1 Ny =2

N = 30,31,32,33. If no knowledge oN is assumed, then the a pri-
ori probability for having each of those values is identical. Hence, Lo . ty W
using (2), the probability o being equal to a particular valdsy, As shown in figure 3, we will calP {Nl < H'} andP [No > Ti'] ,

can be approximated as: respectivelyP[tail;] andP[tailo], where:
X N . N _
P{N=Nes;, |n=N;, p} = p- ( ,ﬁ%‘“ ) Pl (1—p)less N (3) Pltail] < 1-2%.4— PN = Ni] ®)
Pltaily) < 1—2%.45—P[Ny= N )

3.1.1 Majority Voting with Unknow

Recalling that the set dfl sensors is divided into two subsets sup-  As stated previously, the distributions N§ andN; are almost

porting respectively the binary hypotheses, the strategy we will PUrsy mmetrical around the valu t and™e at least whem is small
sue for the estimation dflp andNj relies on the IECR algorithm: 4 % @ P :

a contention between two paralle_l runs of IECR is used_ to estimate  Finally we observe that for each vall&e <Np < % the error
both the unknown values, exploiting the TDMA technique. Theogccurs ifN; is smaller tharNg, and this happens with probability

slots are in fact alternatively used to resolve sensors of\thset 1i t; Ip Wy i i
. . if N 2 whereas forl: <N —I the probability of error is
and of theNp set, so that we can make at each unit of time an error-", 1< p =M< P y

prone decision, basing the choice on the value of the resolved nod@&en by:
and the scanned intervals.

Considering at each slot of majority voting algorithm the values
of the intervals i and ;) and devicestf, andwg) resolved for
bothNp andN; estimations, and using expression (3), we can easily wg wg
calculate the probability of erroneous decision as follows: suppose W 1 G
for example we are in slat and the estimated value Nf is bigger > [PINt=N1"]- % PNo=No']| (10)
than the one foNg (N; > Np). Referring to the previous results, the N =T No"=Ny"+1
mass distributions dflp andN; are qualitatively shown on Fig. 3.

We recall here that the estimated valueNgfandNg are given
by the following:

. ty Wg tp W,
P[middlg = P |error| % <No< 3 Popny <2

i i i G

Using derivations (7), (9), (8) and (10) in (5), and simplifying
the terms equal to zero (all the cases in which we asdugnreN;),

_ t _ i we obtain the following:
NoML) = 2| Nemu) = || )
Plerrof < 1-P[taily]-(1— .4 — PJtall
If we divide the set of possible values df into three subsets, [ i =< [ ] - ( ! [tailo]) +
tp  tp Wy Wy - + P[middlg- .41 - Ao+
namelyNy < o < No < & andNy > 5 the probability of 1. 4 Pltail 1. Pltail 1
error can be written as in (5). + 1.6 Pltaily] +1-Pltailo] (1)
In sloti then we can calculate the probabilities: . . . .
We have in (11) the sign of inequality because we are overes-
_ ty Wo timating P[tail;] and P[tailg] and the error probabilities related to
P[No=Noesy] » YNoes;, € | (6) them:infact, when we considbes; € tail; andNye; € tailo, we

Pi

P[N1 = Nies] . VNiesy € tﬁ, % upperbound the probability of error Hy
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3.2 Majority Voting with Known N

3
8

In this section we will consider the same scenario as the previous slots

one, adding only one further hypothesis: we suppose to know the  w,
value N, that is the total number of sensors in the network. We o0
expect to have better performance, since this information can only
improve the probability of correct decision. We can in fact state
now that the sum of estimaté and estimatedll; must be equal to
N, otherwise we are facing an error, but the evaluation of the conse-
quences of this observation on the estimation of the error probability
requires a tactful approach. ° "
We will again pursue the technique of sequential counting us-
ing the IECR algorithm to evaluate the value N§ and N;: the B
primary target we have is then to find or to build a statistical model
that describes the probability of correct decision under the follow-
ing hypotheses:
e Ininterval [0, pj] tp, tokens are present;
e Ininterval[0,q;] wy tokens are present; L Lo a2
e The total number of tokens N, then we only need to have a (a) ratio=0.8
precise knowledge of eithé; or Ny to estimate both of them; 1

e The value represents the critical value for the decision: if | r—— gos B
set./ has multiplicityN* larger than% with high probability,
consequently the other set has multiplicityN® = N — N* < °
N, and we can argue thae? |>| 2 |.

Given the above considerations, we can now develop the technique

o 0.1 0.2 03 0.4 0 01 02 03 04

o
°

500 -05

for the most probable correct decision: at any slot of time we com- s R TR TS v R
— ty < Wy, . .
pareNg = % andN; = q—‘j" with the valuej, and we proceed if

and only if the two estimations reside in the two opposite halves of

interval [0,N]. If the latter condition is encountered, then we com- 2

pute for both sets the probabilities that the estimated value is in the  * 1

right half using again expression (3). An example will clarify this 25

procedure. 24
Suppose the following scenaridy = 100, tp, =3, N\o =28,

N1 =75 and the required maximum error 2= 0.1. In this #
case, the algorithm setsd; as the correct decision, and computes

o
°
°
~
°
®
°
IS

03 0.4

the probabilities that:
P (b) ratio=0.1
50 97
> PNo=MNoest , > PIN1=Niegf (12) Figure 4: Optimal Bound: results with unknowh
Noest=3 Nies=50

The sums of expressions (12) represent respectively the prob-

abilities that the two multiplicities are in the two halves, i.e. We can also notice in Fig. 4(b) that the error is always equal to

\ : 0: we know that one set of sensors is much smaller than the other,
P{No € [3,50} andP{N, € [50,97)} (let's say that in our example hence the algorithm counts all the sensors of that set before having

they ared.95and0.7). At this point, we have an upper-bourll\ld forthe o first feedback from the other set. Since the thités unknown,
average probability of error we commit stating both tRgt< 5 and  the information related to the smaller set is then not useful until esti-

Ny > . If any of the two quantities is larger thdn- p?*=0.9,  mations of the second set are performed. The previous observations
the algorithm stops: concluding our example then, the decision igive reason also to the fact that in Fig. 4(b) the number of slots used

finally set forH1, sinceP{Np € [3,50/} = 0.95> 0.9. by the algorithm approaches an asymptote different ffom
For knownN, the results are shown in figures 5(a) and 5(b),
4. PERFORMANCE ANALYSIS respectively foratio = 0.8 and wherratio = 0.1.

; ; ; Here again we notice that the time complexity and the mes-
For the analysis of the introduced algorithms, we set the para- . -
meters as follows:N = 100Q runs= 1500 maximum error— sage complexity have a concrete improvement as soon we accept a

. _ controlled probability of error. What is more relevant is that we ac-

f%’r%;r?’cf’gfovtﬁz 355305&3]0% l\j\;%rl:riiI?r%\)/v?\lncijndfg\?\/)osrs‘%vatt?fng?r compllshed an |mprovement as compared with the previous results

o o N . of figures 4(a) and 4(b): the number of messages sent \Whisn
ratio = 0.8 andratio = 0.1, whereratio = gp. We plot different  ,own is always smaller than in the case of unkndwnand the
parameters versus the maximal allowed error probability: the avefumber of slots used to run the algorithm is larger when no infor-
age number of slots used to run the algorithm, the mean error of thgyation abouiN is given.
decision, the mean number of messages sent per each sensor and fi-
nally the time efficiency, defined as the number of slots used to run 5 CONCLUSIONS
the algorithm divided by the number of sensors. '

We can clearly see that for both valuesrafio we can have an  Wireless sensor networks (WSNs) require optimizations of the net-
improvement for the time complexity and the message complexityvorking protocols according to the application i. e. the task that the
if we accept to set an interval tolerance in the error probability. The/AVSN is supposed to fulfill. In this paper we have considered the
two figures show that as the value of maximum allowed error growsproblem of hypothesis testing for single—hop wireless sensor net-
the curves representing the messages sent decrease, and the amesks in which the sensors use a random-access channel to transmit
representing the time efficiencies grow. information to the fusion center (FC). There is a selNo$ensors,
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Figure 5: Optimal Bound: results with knovish

N; of them detect that an event has occurredldne- N — N; have
detected the absence of that event. The fusion center needs to know
Np andN; and uses majority voting to decide whether or not the
event has occurred (i. e. it has occurredllif> Np). In a conven-
tional approach, the FC runs a random access protocol to collect the
data and find the exact valuesif andN; and then makes the de-
cision. Here we have proposed methods for decision fusion based
on approximate counting dy andN;. The FC runs two instances

of the random access protocol, for thg and N; nodes, respec-
tively. The protocol utilizes the framework introduced in [6], which
makes it possible to obtain estimatesNafandN; while resolving

the conflicts. The precision of the obtained estimates is proportional
to the resources (time and messages) used in resolving the conflict.
Hence, by making a decision based on the estimatég ahd Ny,

the FC can trade—off the reliability of the decision fusion with the
energy that the sensor nodes invest in resolving the conflict.

As a future work, we need to consider more general scenar-
ios for decision fusion over a random access channel. For exam-
ple, an interesting question is how FC can approximately compute
a function f (x3,%p,...XN) over the random access channel, where
Xn denotes the reading of—th sensor. Furthermore, we need to
investigate how the channel impairments affect the design of such
fusion—aware networking protocols.
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